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Abstract

Purpose of review—This article discusses recent advances in the understanding of clinical and
genetic aspects of primary ataxias, including congenital, autosomal recessive, autosomal
dominant, episodic, X-linked, and mitochondrial ataxias, as well as idiopathic degenerative and
secondary ataxias.

Recent findings—Many important observations have been published in recent years in
connection with primary ataxias, particularly new loci and genes. The most commonly inherited
ataxias may present with typical and atypical phenotypes. In the group of idiopathic degenerative
ataxias, genes have been found in patients with multiple system atrophy type C. Secondary ataxias
represent an important group of sporadic, cerebellar, and afferent/sensory ataxias.

Summary—Knowledge of primary ataxias has been growing rapidly in recent years. Here we
review different forms of primary ataxia, including inherited forms, which are subdivided into
congenital, autosomal recessive cerebellar ataxias, autosomal dominant cerebellar ataxias, episodic
ataxias, X-linked ataxias, and mitochondrial ataxias, as well as sporadic ataxias and idiopathic
degenerative ataxias. Secondary or acquired ataxias are also reviewed and the most common
causes are discussed.
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INTRODUCTION

Ataxia is a disorder of balance and coordination [1«]. The commonest forms are cerebellar
ataxia, in which the cerebellum and its afferent or efferent projections are affected, and
afferent/sensory ataxia, in which the proprioceptive pathways are affected [1m,2]. Cerebellar
ataxia is a syndrome that includes several signs and symptoms, such as gait ataxia,
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dysarthria, nystagmus, tremor, and cognitive dysfunction [1m,2—-4]. Ataxias can be classified
as primary or secondary, as well as hereditary or sporadic [1m,2-4].

PRIMARY ATAXIAS

Primary cerebellar ataxias are further subdivided into sporadic and hereditary ataxias. The
latter include autosomal recessive cerebellar ataxias (ARCAS), autosomal dominant
cerebellar ataxias, currently known as spinocerebellar ataxias (SCAS), episodic ataxias, X-
linked cerebellar ataxias, and mitochondrial ataxias. ldiopathic degenerative cerebellar
ataxias include the cerebellar form of multiple system atrophy (MSA-C) and idiopathic late-
onset cerebellar ataxias [3-9].

CONGENITAL ATAXIAS

Congenital ataxias can be caused by cerebellar mal-formations or pontocerebellar
hypoplasia and present with cerebellar ataxia. The most widely known form is Joubert’s
syndrome, a rare autosomal recessive disease characterized by a congenital hind-brain
malformation, which can be identified on MRI as the ‘molar tooth sign’ [10,11] (Fig. 1). The
clinical picture includes neonatal hypotonia, cerebellar ataxia, ocular motor apraxia,
breathing dysregulation, and multiple organ involvement. To date, more than 20 causative
genes have been identified, most of which encode proteins of the primary cilium, a
subcellular organelle involved in crucial cellular functions. Joubert’s syndrome is part of an
emerging class of genetic disorders known as ciliopathies [10,11].

INHERITED ATAXIAS

Inherited cerebellar ataxias constitute an extensive group of clinically and genetically
heterogeneous, complex neurodegenerative disorders caused by a large number of genetic
mutations. Among the hereditary cerebellar ataxias, there are almost 40 forms of SCAs,
more than 30 ARCAs, two X-linked ataxias, and several forms of mitochondrial ataxias
[7-9,12,13x].

SCA:s are predominantly caused by unstable repeat expansions in either coding (SCAs types
1,2,3,6,7,and 17, and dentatorubral-pallidoluysian atrophy) or noncoding (SCAs types
8,10, 12, 31, and 36) regions of the relevant genes [3,4,9,12,13w]. More rarely, they are
caused by conventional mutations, such as missense mutations, insertions, and deletions
(SCAs types 5, 11, 13, 14, 15, 20, 23, 27, 28, and 35). SCAs caused by unstable repeat
expansions in the coding area of the relevant genes have a trinucleotide (CAG) repeat, which
causes cells to produce expanded polyglutamine tracts. These diseases are known as
polyglutamine disorders [9,12,13m,14]. Another group of inherited ataxias are episodic
ataxias due to ion channel mutations [15]. Among the ARCAs, Friedreich’s ataxia (FRDA)
is associated with homozygous triplet GAA expansions in the XN gene [7,8,16]. The ataxia
telangiectasia gene, known as A7M, is located on chromosome 11q22-23 [7,8,14,17n].
Other ARCAs are associated with different, conventional mutations. Some, such as fragile
X-associated tremor/ataxia syndrome (FXTAS), are X-linked, whereas others are
mitochondrial ataxias [polymerase y (POLG) ataxia] [18w,19].
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AUTOSOMAL RECESSIVE CEREBELLAR ATAXIAS

ARCA s are included in the heterogeneous group of inherited ataxias. They are typically
characterized by cerebellar and spinal cord degeneration and have a relatively early age of
onset [3,4,7,8]. The most common forms of ARCASs that have been genetically defined are
shown in Table 1. In white children, the most common form is FRDA, followed by ataxia
telangiectasia [7,8,16,17x].

FRIEDREICH’S ATAXIA

Since the identification of the FRDA gene and the GAA trinucleotide expansion that leads to
FRDA, phenotypic variants of this ataxia have frequently been reported in individuals
carrying pathogenic mutations, some of which do not fit the classic descriptions of this
condition [16,20]. Atypical phenotypes include late-onset and very-late-onset ataxia, with
small GAA expansions, retained reflexes, pyramidal signs, and movement disorders [21,22].
FRDA is predominantly an afferent/sensory ataxia; however, the presence of a cerebellar
component was confirmed in neuropathological studies and recently in neuroimaging studies
(Fig. 2) [16,20,23]. Although there is no consensus regarding treatment, antioxidants such as
coenzyme Q10 and its derivatives, including idebenone, have been used. Idebenone has
shown significant benefits for hypertrophic cardiomyopathy but is ineffective for
neurological conditions [24,25]. More recently, new drugs have been tested, including
deferiprone, as well as epigenetic therapy [26,27].

ATAXIA TELANGIECTASIA

Since the ATM gene was first described, over 200 potentially pathogenic mutations
involving almost all coding exons of this gene have been reported [28]. In addition to the
classical phenotype, with cerebellar ataxia and oculocutaneous telangiectasia (Fig. 3), many
cases of ataxia telangiectasia with milder phenotypes have been described [28]. These
phenotypes include later disease onset; slower progression; longer life expectancy; a
predominance of movement disorders, such as dystonia, myoclonus, and chorea, instead of
cerebellar ataxia; the absence of ocular telangiectasia; and lower levels of chromosomal
instability and cellular radiosensitivity [17w,28]. In fact, ataxia telangiectasia represents a
multisystem entity with variable neurological and systemic manifestations. ATM syndrome
has been proposed as a more adequate designation for this entity (H.A.G. Teive,
unpublished).

OTHER AUTOSOMAL RECESSIVE CEREBELLAR ATAXIAS

Gordon Holmes’ syndrome, a peculiar form of ARCA, is characterized by hypogonadotropic
hypogonadism, and different mutations have been found in patients with this form of ataxia,
including STUB1, RNF216, OTUD4, and PNPLAG6 gene mutations [29w,30]. PNPLAG
mutations also cause Boucher-Neuhauser syndrome, a combination of ARCA and
hypogonadotropic hypogonadism, which is also associated with chorioretinal dystrophy and
hypersegmented neutrophils [29m,31-33]. Another form of early-onset ARCA associated
with retinal dystrophy is caused by a homozygous GR/DZ2 deletion [34]. Mutations in the
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SNX-14 gene cause a rare form of ARCA associated with sensorineural hearing loss and
intellectual disability [35]. Childhood-onset progressive myoclonic ataxia (Ramsay Hunt
syndrome) is associated with a novel mutation in the GOSRZ2 gene [36]. Although
significant progress has been made in the identification of ARCA genes, the genetic cause of
disease remains undetermined in about 40-50% of ARCAs [30,37,38w,39-43]. There is no
treatment for these ataxias, with the exception of ataxia due to vitamin E deficiency and a
group of ataxias associated with coenzyme Q10 deficiency [3,4,37,38x].

SPINOCEREBELLAR ATAXIAS

SCAs constitute a large, complex group of heterogeneous autosomal dominant degenerative
diseases characterized by progressive degeneration of the cerebellum and its afferent and
efferent connections, as well as other nervous system structures [3-6,9,12,13w,44um 45un],
Table 2 shows the main types of SCAs currently known (from SCA type 1 to SCA type 40)
and gives the genetic loci, mutations, and proteins associated with each disease. SCA type 3
is the commonest form of the disease worldwide; types 1, 2, 6, and 7 have greatly varying
prevalences depending on the ethnic background of the population [3-6,9,12,13s].

SPINOCEREBELLAR ATAXIA TYPE 3 (MACHADO-JOSEPH DISEASE)

The clinical picture of SCA type 3 is pleomorphic, with cerebellar ataxia in association with
pyramidal signs; peripheral amyotrophy; nystagmus, ophthalmoparesis, and bulging eyes
(Fig. 4); fasciculations of the face, tongue, and, occasionally, the limbs; and dystonia and
parkinsonism [3,4,12,13m,46,47]. Non-motor and extracerebellar features are common in
patients with SCA type 3, particularly sleep disorders, cognitive and affective disturbances,
movement disorders, psychiatric symptoms, olfactory dysfunction, peripheral neuropathy,
pain, cramps, fatigue, nutritional problems, and dysautonomia [48-51].

OTHER SPINOCEREBELLAR ATAXIAS

Other SCAs encompass a broad spectrum of clinical features and include SCA type 10
(caused by an expansion of an ATTCT pentanucleotide repeat), which is the second most
common SCA in Mexico and the South of Brazil (Fig. 5) [52]. In the latter, the main
phenotype observed is pure cerebellar ataxia, unlike the typical phenotype, which consists of
cerebellar ataxia and epilepsy [52]. More recently, several new forms of SCAs with new loci
and gene mutations have been described. These include SCA types 31, 34, 35, 36, 37, 38 and
40 (Fig. 6) [53-60]. In spite of the very large number of mutations described in individuals
with SCA, many patients (30-40%) remain without a genetic/molecular diagnosis [12,13m,
14].

SPINOCEREBELLAR ATAXIAS — TREATMENT

To date, there is no effective treatment for SCAs [62]. Neurorehabilitation is mandatory, and
different studies using motor training, including physiotherapy or whole-body controlled
videogames (“‘exer-games’), have shown significant benefits for patients with SCAs
[63,64=]. New treatment options, including RNA interference therapy, and mesenchymal and
cerebellar neural stem-cell transplantations, have been tested [65-68]. Treatment of SCA
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type 3 mouse models with the Hsp90 inhibitor 17-DMAG or overexpression of beclinl (an
autophagy-related protein) was shown to mitigate motor and neuropathological deficits in
SCA type 3 [69,70].

HEREDITARY EPISODIC ATAXIAS

Hereditary episodic ataxias are characterized by recurrent episodes of ataxia and vertigo, as
well as progressive cerebellar ataxia [15,71,72m]. To date, seven forms of episodic ataxia
have been identified, the most common being types 1 and 2. Both are secondary to mutations
in genes coding for ion channels and transport proteins [15,71,72m]. Recently, mutations in
the PRRTZ2 gene that cause autosomal dominant paroxysmal kinesigenic dyskinesia were
associated to episodic ataxia [73] (Table 3). Acetazolamide, a carbonic-anhydrase inhibitor,
may reduce the frequency and severity of attacks [15,71,72u].

X-LINKED ATAXIAS

X-linked SCAs are very rare forms of ataxia caused by X-linked recessive mutations [18m].
At present, the most clinically relevant and common form is FXTAS [18s]. FXTAS occurs
predominantly in males over 50 years of age and is characterized by action tremor with an
important kinetic component, cerebellar ataxia, cognitive dysfunction, and, occasionally,
parkinsonism and autonomic dysfunction. It is caused by an intermediate CGG expansion
(between 55 and 200 repeats) in the fragile X mental retardation 1 gene [18s].

MITOCHONDRIAL ATAXIAS

In mitochondrial ataxias, cerebellar and sensory ataxias are usually combined with other
features and are the result of abnormalities in mitochondrial DNA [19]. These forms of
ataxia include maternally inherited heredoataxias due to point mutations in genes coding for
RNASs and respiratory chain subunits or deletions/duplications of the mitochondrial DNA
[19,74]. Mitochondrial recessive ataxia syndrome is caused by a mutation in the
mitochondrial DNA POLG gene [19,74]. POLG-related ataxia is a mixed ataxia (with
cerebellar and afferent/sensory ataxia) and presents with a large number of nonataxia
features, such as sensory neuropathy, external ophthalmoplegia, ptosis, epilepsy, and
hyperkinetic movement disorders [19,74].

IDIOPATHIC DEGENERATIVE ATAXIAS

Idiopathic cerebellar degeneration includes a group of disorders of unknown cause, such as
MSA-C and idiopathic late-onset cerebellar ataxia, also known as sporadic adult-onset ataxia
of unknown cause (SAOA) or even idiopathic sporadic cerebellar ataxia [3-5,75m,76].

MULTIPLE SYSTEM ATROPHY

MSA is a sporadic and progressive neurodegenerative disease characterized by
parkinsonism, cerebellar ataxia, and autonomic failure [75a] (Fig. 7). In most Western
populations, the clinical picture is dominated by parkinsonian features (defined as MSA-P),
but cerebellar ataxia represents the most important motor feature in one-third of patients
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(defined as MSA-C). However, in Japan, there is a predominance of MSA-C (83.8%)
[3,4,75m]. Recently, homozygous and compound heterozygous mutations in the coenzyme
Q2 gene (COQZ)were identified in Japanese patients with familial and sporadic MSA [77].
Although the frequency of mutations in COQZ2in a group of Chinese patients with MSA was
1.28%, [78] other studies failed to confirm the association between mutant COQ2and MSA
[79]. MSA and amyotrophic lateral sclerosis have been associated with a hexanucleotide
repeat expansion in the protein C9orf72. This mutation has very diverse clinical
presentations, including amyotrophic lateral sclerosis and frontotemporal dementia [80].

SPORADIC ADULT-ONSET ATAXIA OF UNKNOWN CAUSE

SAOA is an idiopathic neurodegenerative disorder previously defined as cerebello-olivary
degeneration or pure cerebello-olivary degeneration of Marie, Foix, and Alajouanine [81].
Clinically, it presents as slowly progressive cerebellar ataxia, with onset after the age of 50
years and noncerebellar signs, such as chorea, and pyramidal and sensory signs [3,4,81]. The
diagnosis is one of exclusion after secondary inherited ataxias and MSA have been
eliminated [3,4]. In a Brazilian case series of eight elderly patients with SAOA, mild
cognitive impairment and visual loss due to macular degeneration were observed in 50% of
cases in addition to slowly progressive gait ataxia and cerebellar atrophy. Chorea was found
concomitantly in three patients (H.A.G. Teive, unpublished).

WHOLE-EXOME SEQUENCING IN INHERITED AND SPORADIC ATAXIAS

Investigation of inherited ataxias is a challenge for neurologists because there is great
clinical and genetic heterogeneity and a genetic diagnosis can only be made in 60% of cases
[82]. Many patients therefore fail to receive a genetic diagnosis, limiting genetic counseling
and prenatal diagnosis [83]. A powerful new tool that can be used to investigate these
patients with undiagnosed inherited and sporadic ataxias is exome sequencing. Several
studies have recently been published confirming that this is a very useful technique for
evaluating this group of patients with primary ataxia [83,84ml].

SECONDARY ATAXIAS

Secondary or acquired ataxias include ataxias because of exogenous or endogenous
nongenetic causes, including those of a toxic, paraneoplastic, immune-mediated, nutritional,
and infectious nature, as well as focal injury to the cerebellum [3,4]. In this setting,
neuroimaging studies are of capital importance in defining focal lesions in the cerebellum
and its connections caused by, for example, neoplastic, inflammatory, demyelinating, and
vascular disorders [3,4]. Ataxia can also be the result of the adverse effects of different drugs
[85m]. Drug-induced cerebellar ataxia is most commonly due to antiepileptic medicines
(including oxcarbazepine, lamotrigine, and phenytoin), benzodiazepines (nitrazepam and
triazolam), and antineoplastic/immunosuppressive drugs (cytarabine, tacrolimus, and
cyclosporine) [85m]. Chemicals such as alcohol, lithium, and toluene are also known to cause
ataxia [85m,86]. Several infectious disorders, such as syphilis and Whipple’s disease,
mumps, and infectious mononucleosis, can lead to cerebellitis with cerebellar ataxia [3,4].
Endocrine abnormalities, particularly hypothyroidism, may present with cerebellar ataxia.
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Steroid-responsive encephalopathy associated with autoimmune thyroiditis, also known as
Hashimoto’s encephalopathy, is defined by the presence of cerebellar ataxia, tremor, and
myoclonus, as well as cognitive disorders and high serum levels of thyroperoxidase
antibodies. As its name suggests, steroid-responsive encephalopathy associated with
autoimmune thyroiditis responds well to steroid treatment [3,4]. Cerebellar and afferent/
sensory ataxias can occur in individuals with a deficiency of vitamins such as thiamine,
tocopherol, and cobalamine [3,4]. Paraneoplastic cerebellar degeneration is an immune-
mediated cerebellar disorder associated with malignancy, particularly small-cell lung, breast,
and ovary carcinomas, and Hodgkin’s lymphoma [87]. In paraneoplastic cerebellar
degeneration, several types of autoantibodies are directed against neuronal antigens, the
most common being anti-Yo, anti-Hu, and anti-Tr [3,4,87]. Cerebellar ataxia may occur in
association with antibodies to glutamic acid decarboxylase (GAD), originally described in
patients with stiff-person syndrome [3,4,87,88]. Anti-GAD ataxia is more common among
women and can co-occur with insulin-dependent diabetes mellitus and thyroid diseases.
Anti-GAD ataxia is variably responsive to intravenous immunoglobulins and steroids
[3,4,87,88]. Gluten ataxia is another immune-mediated disorder caused by ingestion of
gluten in patients who are genetically susceptible to this protein composite [89]. Gluten
ataxia is characterized by progressive adult-onset gait ataxia with gaze-evoked nystagmus
associated with signs of peripheral neuropathy. The antigliadin antibody is positive in 100%
of patients. A gluten-free diet can improve gluten ataxia [89]. However, the relationship
between cerebellar ataxia and antigliadin antibodies is currently very controversial, and
several studies failed to confirm this association [90]. Finally, Miller Fisher syndrome, a
Guillain-Barre syndrome variant, should also be considered in the differential diagnosis of
cases with acute sensory ataxia [3,4].

CONCLUSION

Primary ataxias represent a very large group of neurodegenerative diseases and include
sporadic and inherited forms, which are subdivided into congenital ataxias, ARCAs, SCAs,
episodic ataxias, X-linked ataxias, mitochondrial ataxias, and idiopathic degenerative
ataxias. Despite the increase in the number of defined genetic causes of primary ataxias,
around 30-40% of patients remain without a diagnosis. Furthermore, to date, there is no cure
for the majority of primary ataxias. Secondary ataxias are an important group of sporadic
diseases and include immune-mediated ataxias and ataxias due to toxic agents and vitamin
deficiencies among other causes.
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KEY POINTS

. ARCA:s are a group of primary ataxias; more than 30 forms have been
described recently.

. Autosomal dominant cerebellar ataxias or SCAs are a very large group of
clinically and genetically very heterogeneous degenerative ataxias.

. Other peculiar forms of primary ataxias are episodic ataxias, X-linked ataxias,
and mitochondrial ataxias.

. MSA-C and SAOA of unknown cause are idiopathic, degenerative forms of
primary ataxias.

. Secondary or acquired ataxias are immune-mediated ataxias or ataxias caused

by toxic agents, particularly drugs and alcohol, and vitamin deficiencies.
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FIGURE 1.
Brain MRI, T2-weighted, axial view. Molar tooth sign, Joubert’s syndrome. Adapted with

permission.
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FIGURE 2.
Spinal cord MRI, T2-weighted, sagittal view.Cervical spinal cord atrophy in a patient with

Friedreich’s ataxia. Adapted with permission.
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FIGURE 3.
Conjunctival telangiectasia in a patient with ataxia telangiectasia. Adapted with permission.
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FIGURE 4.
‘Bulging eyes’ in a patient with spinocerebellar ataxia type 3. Adapted with permission.
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FIGURE 5.
Brain MRI, T1-weighted, sagittal view. Cerebellar atrophy in a patient with spinocerebellar

ataxia type 10. Adapted with permission.
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FIGURE 6.
Spinocerebellar ataxia type 34. Brain MRI, axial view, T1-weighted, showing cerebellar

atrophy. Adapted with permission.
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FIGURE 7.
Hot cross bun sign of cerebellar form of multiple system atrophy. Adapted with permission

from [61].
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