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Abstract

Purpose of Review—This review summarizes research on the physiological changes that occur 

with aging and the resulting effects on fracture healing.

Recent Findings—Aging affects the inflammatory response during fracture healing through 

senescence of the immune response and increased systemic pro-inflammatory status. Important 

cells of the inflammatory response, macrophages, T cells, mesenchymal stem cells, have 

demonstrated intrinsic age-related changes that could impact fracture healing. Additionally, 

vascularization and angiogenesis are impaired in fracture healing of the elderly. Finally, 

osteochondral cells and their progenitors demonstrate decreased activity and quantity within the 

callus.

Summary—Age-related changes affect many of the biologic processes involved in fracture 

healing. However, the contributions of such changes do not fully explain the poorer healing 

outcomes and increased morbidity reported in elderly patients. Future research should address this 

gap in understanding in order to provide improved and more directed treatment options for the 

elderly population.

Keywords

Fracture healing; Elderly; Senescence; Inflammatory response; Inflamm-aging

Ralph Marcucio Ralph.marcucio@ucsf.edu. 

Conflict of Interest Daniel Clark, Mary Nakamura, and Ralph Marcucio declare no conflict of interest.

Human and Animal Rights and Informed Consent This article does not contain any studies with human or animal subjects 
performed by any of the authors.

HHS Public Access
Author manuscript
Curr Osteoporos Rep. Author manuscript; available in PMC 2019 May 14.

Published in final edited form as:
Curr Osteoporos Rep. 2017 December ; 15(6): 601–608. doi:10.1007/s11914-017-0413-9.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Introduction

The elderly population in the USA has been steadily increasing, and those aged 65 years old 

and older are expected to comprise 17% of the population by 2030 [1, 2]. This growing 

population presents their own unique health needs, and in order to meet these needs a better 

understanding of the physiologic changes that occur with aging is necessary. The skeletal 

system exhibits physiologic changes that occur with increasing age. Conditions such as 

osteoporosis and osteoarthritis increase with age. Additionally, many reports demonstrate a 

higher rate of bone fracture, and these are associated with increased morbidity and mortality 

[3–5]. A decline in healing potential is observed in the elderly, and this may result in 

increased rates of delayed healing or nonunions [6]. Delayed healing, and the resulting 

incapacitation, can have more severe and systemic consequences in the elderly, which poses 

unique challenges for the treating clinician [3, 7]. While increased age has been generally 

associated with a wide range of physiological changes, the mechanisms that result in 

decreased capacity for fracture healing are not fully understood.

An understanding of the age-related effects to fracture healing is complicated by a lack of a 

complete understanding of fracture healing in healthy and in young individuals. However, by 

analyzing the individual facets of fracture healing that we do understand we can compare 

differences in fracture healing between the young and old humans and animals. This review 

will highlight the phases of fracture healing and the respective physiologic changes that 

occur with age. Cellular, molecular, and genetic differences between young and old humans 

and animal models will be characterized to illustrate the current understanding of the effect 

of age on bone fracture healing. Figure 1 summarizes the effect of age on critical cells that 

contribute to fracture healing.

Physiology of Bone Fracture Healing

Fracture healing proceeds through multiple phases characterized by anabolic and catabolic 

processes [8]. The early healing stage is characterized by a robust inflammatory response 

that is responsible for debriding the fracture site and contributing to the signaling milieu that 

will propagate the successive stages of healing, including recruitment and differentiation of 

skeletal tissue progenitor cells [9]. The anabolic phase follows the initial inflammatory 

response. Progenitor cells give rise to a soft callus with a central cartilaginous region and 

new bone formation at the periphery [9, 10]. The soft callus is characterized by avascular 

cartilage tissue that induces vascularization [11]. A hard callus begins to develop through 

endochondral ossification with increased mineralization and replacement of chondrocytes 

with osteoblast, in part, through transdifferentiation [12, 13]. Finally, remodeling of the 

callus occurs through catabolic processes. The callus is reduced in size and osteoblastic and 

osteoclastic processes alternate to reestablish the normal hematopoietic and trabecular 

structure, restoring bone to its pre-injured state [14].

Histological and molecular changes within the callus have been described during the stages 

of fracture healing as mentioned above and provide healing comparisons between old and 

young animals. Numerous studies have reported delayed fracture healing in elderly animals 

and have shown decreased cartilage and bone formation, delayed cartilage resorption, and 
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slower mineralization within the callus [15–17]. Delayed bone healing may be associated 

with age-related changes in the osteochondral stem cells. In general, there is an age-related 

decrease of stem cell quantity compounded by a decrease in proliferation and differentiation 

potential as demonstrated in humans and animal models [18–20]. Lopas et al. demonstrated 

a decrease in osteochondral stem cell proliferation associated with a significant decrease in 

bone and cartilage content within the facture callus of aged mice compared to young [15].

Chondrocytes and osteoblasts arise from stem cells predominantly located in the periosteum 

during fracture healing [9, 21, 22]. Senescence and greater oxidative damage was associated 

with periosteal-derived progenitor cells from old humans compared to young [23]. 

Additionally, a decreased number of periosteal cells were able to be derived from the 

periosteum of old humans compared to young [21]. The chondrogenic potential of stem cells 

in the periosteum is decreased in elderly mice compared to young mice, and chondrogenic 

differentiation from periosteal cells is delayed in old versus young mice [22, 24]. Older 

animals have delayed expression of type 2 collagen (ColII) and delayed cartilage matrix 

deposition at early time points of fracture healing [24]. Similarly, osteoblast differentiation 

and osteocalcin expression is delayed from periosteal cells at the fracture site in elderly mice 

compared to young mice [24].

Stem cells contributing to fracture healing may also arise from other tissue sources that 

could be negatively affected by age-related changes. Cells located in the muscle appear to 

contribute to bone fracture healing. While muscle stem cells, known as satellite cells, may 

contribute only a small number of cells that comprise the skeletal tissues, they appear to 

regulate fracture healing possibly through signaling interactions [25]. With aging, satellite 

cell quantity and function decline which may negatively affect their ability to support 

fracture healing [26]. However, the role of other cell types that reside in the muscle is not 

known and worthy of investigation. The bone marrow is also a potential source of 

osteochondral stem cells [27, 28]. Similar to satellite cells, aging results in decreased 

function and quantity of bone marrow stem cells that could have a negative effect on fracture 

healing [29, 30].

Age also affects later stages of healing during endochondral ossification. The characteristic 

histological findings that describe endochondral ossification, hypertrophic chondrocytes, 

expression of type 10 collagen (ColX), and vascular invasion were all delayed in elderly 

mice compared to young mice [24]. Completion of endochondral ossification, characterized 

by complete conversion of cartilage to bone within the callus, was also delayed in elderly 

mice versus young mice [24].

The age-related alterations to the cellular processes that are evident during facture healing 

are accompanied by changes in the regulation of critical genes involved in bone fracture 

healing. By using the whole genome expression analysis of fracture calluses in rats, 

significant differential regulation of 144 genes was found in young compared to elderly rats 

[31]. Functional analysis of these genes suggested they were largely involved in cell 

migration [31]. More specifically, bone morphogenic protein (BMP-2) and Indian Hedgehog 

(IHH) expression in the fracture callus of elderly rats were decreased compared to young 

rats [32]. Other studies have shown comparable levels of gene expression in the early time 

Clark et al. Page 3

Curr Osteoporos Rep. Author manuscript; available in PMC 2019 May 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



points of fracture healing; however, in elderly rats, expression of IHH, BMP, and TGF-β 
decreased at the same rate as the young rats despite requiring almost twice as long for 

complete healing to be detected radiographically [33]. Thus, molecular changes occurring in 

cells comprising the fracture callus are evident in animals of advanced age, and these 

changes may contribute to the alterations in healing that are observed in older animals. 

However, systemic changes as a result of the normal process of aging also occur and could 

contribute to the delays in healing.

Inflammation and Fracture Healing

The initial phase of fracture healing is characterized by a robust inflammatory response. 

Secretion of pro-inflammatory cytokines at this time is necessary to initiate the healing 

process and achieve adequate healing [34]. Temporal control of the inflammatory response is 

crucial for proper bone fracture healing. After the initial pro-inflammatory phase, 

inflammation must be resolved in order to allow the anabolic processes to begin and 

continue the subsequent healing phases. However, changes in the inflammatory system occur 

with age, and chronic inflammation and/or a decreased ability to resolve inflammatory 

processes could negatively affect bone fracture healing.

Inflamm-Aging and Immunosenescence

An excessive or prolonged inflammatory phase can have detrimental effects on fracture 

healing [35, 36]. In animal models, prolonged inflammation results in delayed 

chondrogenesis and smaller callus size [37]. Recently, it was shown that elevated systemic 

levels of a pro-inflammatory cytokine, TNFα, in induced diabetic mice negatively affected 

angiogenesis during fracture healing [38]. In humans, an elevated inflammatory status is 

related to certain systemic conditions, including diabetes, smoking, and increased age. These 

conditions are all associated with poorer fracture healing outcomes, but the mechanisms 

remain incompletely understood. The term “inflamm-aging” has been used to describe a 

chronic increased pro-inflammatory status in the elderly [39]. Elderly people are found to 

have higher levels of circulating proinflammatory cytokines, even in healthy individuals. It 

appears that the increased pro-inflammatory status in the elderly predisposes them to the 

range of systemic diseases including osteoporosis, Alzheimer’s disease, Type II diabetes, 

atherosclerosis, and Parkinson’s disease [40–42]. Currently, it is unclear what drives this 

increased inflammation. Inflamm-aging has been suggested to be the result of a defect in the 

proper resolution of the normal inflammatory response, or the result of an unknown chronic 

mechanism that signals and prolongs the inflammatory response [43•, 44]. As the 

inflammatory response is a critical step in proper fracture healing, any disruption of the 

inflammatory response could negatively affect fracture healing.

Inflamm-aging may also be a result of age-related changes to the immune response. Aging 

of the adaptive immune response has been described as immunosenescence [45]. 

Immunosenescence describes a loss of immune function that is associated with a 

predisposition to infection and disease in the elderly [45]. Increased age is associated with 

changes in T and B cell production and maturation. T cell production and maturation is 

negatively affected by age-related changes to the bone marrow hematopoietic compartment 
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and to the thymus [46, 47]. With increasing age, the source of T cell progenitors, the 

hematopoietic compartment, decreases in size and is associated with a decrease in T cell 

progenitor quantity and proliferation potential [47]. The T cell progenitors migrate to the 

thymus for further differentiation and maturation. A decrease in thymus function and T cell 

output is seen with increasing age as involution and atrophic changes are present [46]. The 

lack of a sufficient quantity of T cells produced by the thymus negatively affects the ability 

to mount an effective immune response. Additionally, the lack of T cells limits the 

availability of regulatory T cells that are present to resolve the mounted immune and 

inflammatory response [46, 48]. Immune cell trafficking has also been shown to be of 

importance in fracture healing studies showing impaired fracture healing in CCR2 deficient 

mice [49]. CCR2 is a chemokine receptor for the ligands Ccl2, Ccl7, and Ccl12 that is 

expressed on monocytes, myeloid-derived cells, a subset of T cells, and mesenchymal stem 

cells. Recent studies in a muscle regeneration model have suggested that CCR2 deficiency in 

young mice results in an inflamm-aging environment similar to changes seen with aging 

[50]. In this way, it has been proposed that the elevated pro-inflammatory status of inflamm-

aging may be a response to age-related defects of the immune response. Figure 2 

demonstrates a conceptual model of the effects of inflammatory response dysregulation on 

the subsequent stages of fracture healing.

The age-related effects on inflammation during fracture healing can be investigated 

independently of other age related changes to the organism by using a chimeric animal 

model. Xing et al. used such a chimeric model of lethal irradiation followed by bone marrow 

transplant [51]. By irradiating aged mice and transplanting the bone marrow of young mice 

to those animals, investigators found that the osteochondral stem cells were derived from the 

aged host and the inflammatory cells were derived from the young donor in a fracture 

model. In this manner, the older mice receiving young bone marrow had larger calluses and 

more bone in the early healing time points, more rapid callus remodeling at later stages of 

healing, and a rejuvenation of the inflammatory response compared to older mice receiving 

age-matched bone marrow transplants [51]. A similar study by Baht et al. utilized a 

parabosis and a bone marrow transplant model of old and young mice in a fracture healing 

study [52•]. Fractures in old mice healed significantly better with shared circulation from a 

young mouse or with bone marrow transplants from young mice compared to aged-matched 

old mouse donors. No cells from the young donor circulation or bone marrow differentiated 

into skeletal cells in the callus suggesting a component of the circulation or bone marrow 

could revert osteochondral stem cells of old mice to a more youthful phenotype. They 

further found that β-catenin was differentially expressed in old and young mice during 

fracture healing. Shared circulation with young mice resulted in decreased levels of β-

catenin and was associated with improved fracture healing. Decreasing β-catenin activity in 

old mice resulted in similar improvements in healing as sharing circulation with young mice. 

The two studies described above suggest a crucial component regulating fracture healing of 

the hematopoietic environment that is affected by age-related changes.

Cellular Regulation of Inflammation

An understanding of the intrinsic age-related changes to cells involved in the inflammatory 

response may explain, in part, the poorer healing potential in the elderly. Cells of the innate 
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and adaptive immune system local to the fracture site assist in regulating the inflammatory 

response. Macrophages are powerful regulators of inflammation. In the early inflammatory 

stage of healing, macrophages are classically activated and have an M1 phenotype [53, 54]. 

M1 macrophages are proinflammatory and release cytokines IL-1, IL-6, TNF-α, and iNOS 

to elicit and propagate the inflammatory response [53, 54]. As inflammation is down-

regulated in the later phases of fracture healing, the macrophages acquire an alternatively 

activated M2 state. M2 macrophages express anti-inflammatory cytokines, such as IL-10 and 

promote healing through secretion of growth factors TGFβ, VEGF, and PDGF [53, 55]. 

Temporal control of the polarization of M1 and M2 macrophages is important to regulate 

inflammation during the healing process.

Intrinsic age-related changes to macrophages may perturb the inflammatory response in the 

elderly and may have negative consequences for fracture healing. Aged macrophages were 

found to be less responsive to granulocyte macrophage colony-stimulating factor (GMCSF) 

that resulted in decreased proliferation compared to young macrophages [56]. Additionally, 

elevated serum levels of chitotriosidase, a marker for chronically activated macrophages, 

was found in elderly humans compared to young controls [57]. The negative effects of age-

related changes to macrophages are further supported in animal models of healing. 

Cutaneous wounds heal slower in aged mice and can be rescued with transplants of 

macrophages from young mice [58•]. Further, aged macrophages appear to be detrimental to 

healing. In blocking macrophage recruitment to the fracture site, elderly mice appear to 

exhibit better fracture healing compared to elderly mice that had normal macrophage activity 

[59]. Conversely, in the same experiment, blocking macrophage recruitment to the fracture 

site in young mice had a negative effect on fracture healing [59].

Macrophages are known to contribute to bone healing. A tissue resident population of 

macrophages, termed “osteomacs,” has recently been described [60•]. Osteomacs regulate 

osteoblast function and promote fracture healing; blocking their activity has deleterious 

effects on bone healing [60•, 61]. While it appears clear that circulating macrophages that 

are recruited to the site of bone injury have age-related changes that hinder fracture healing, 

whether age-related changes occur in osteomacs is not known.

Cells of the adaptive immune system also contribute to fracture healing [62]. T and B cells 

are present within the early callus during the inflammatory phase [63]. Regulatory B cells 

negatively regulating inflammation through expression of IL-10 and downregulating pro-

inflammatory cytokine expression in Tcells within the callus [64]. B cells from patients with 

poor fracture healing outcomes had decreased expression of IL-10 compared to patients that 

healed normally [64]. As healing continues, cartilage formation within the callus is 

associated with a local increase in Treg cells [65]. At later time points of healing, T and B 

cells are readily present at sites of mineralization and in direct contact with osteoblasts and 

osteoclasts [63]. Models of fracture healing using mice with genetic modifications have 

further elucidated the role of T and B cells. Deficient T and B cell function in Rag1−/− mice 

demonstrated impaired fracture healing which was associated with decreased IL-17F 

expression [66]. IL-17F was shown to promote osteoblast maturation in vivo [66]. 

Additionally, dysregulated T cell recruitment and activation within the bone in a mouse 

model of lupus was associated with increased bone turnover and decreased bone fraction 
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within the fracture callus [65]. As discussed above, T and B cell quantity and function are 

negatively affected by age. Due to the involvement of T and B cells in fracture healing, such 

age-related changes could have a negative effect on fracture healing.

Mesenchymal stem cells are also involved in the inflammatory response and act as powerful 

immunomodulators at the site of injury to control excessive inflammation and promote 

repair [67–69]. Suppression of inflammation mediated by MSCs occurs, in part, through 

signaling and interactions with local inflammatory cells. MSCs have been shown to interact 

with T cells, B cells, NK cells, and dendritic cells through signaling that limits proliferation 

of inflammatory cells or promotes secretion of anti-inflammatory molecules [70]. 

Additionally, research has suggested that MSC and macrophages interact to promote 

alternatively activated macrophages in the downregulation of inflammation and promotion of 

healing [71]. The immunomodulatory properties of MSCs have been utilized clinically and 

have been reported beneficial in the treatment of graft versus host disease, Crohn’s disease, 

renal failure, and heart failure [72–75].

Intrinsic age-related changes to MSCs could explain the impaired healing in older humans 

and animals as a result of dysregulated inflammatory response. The quantity of MSCs 

isolated from bone marrow is decreased with age [30]. Additionally, there are increased 

markers for oxidative damage of MSCs from elderly human samples [58•]. These agerelated 

changes to MSCs corroborate findings in experimental wound healing studies that show a 

benefit of therapeutic administration of MSCs from young animals but no benefit in healing 

with aged MSCs [58•].

Vasculature and Fracture Healing

Successful bone fracture healing requires adequate vascularization of the tissue [76]. The 

contribution of the vasculature to fracture healing includes providing blood supply for 

delivery of nutrients and cells, providing the endothelial cells that express angiogenic and 

osteogenic signaling molecules locally, and providing the source of oxygen to the healing 

callus [9, 77, 78]. However, the complete contribution of the vasculature to fracture healing 

is not fully understood.

With increasing age, perturbations in bone fracture healing are associated with age-related 

dysfunction to the bone vascular system and its ability to regenerate in healing. Generally, 

the vascular perfusion of the skeleton decreases with age [79]. Elderly rats display 

significantly higher ossifications and decreased patency of bone marrow blood vessels 

compared to younger rats [80]. The decrease in vascularization at the time of fracture may 

delay angiogenesis during the fracture healing. The fracture callus at early healing time 

points in young mice have a higher surface density of blood vessels compared to the elderly 

mice [77]. The increase in vascular density was associated with an early detection of 

vascular endothelial growth factor (VEGF) and hypoxia inducible factor 1α (HIF-1α) in 

young mice but not elderly [77]. Additionally, increased Mmp9 and Mmp13 transcripts were 

detected throughout early and late stage healing in young compared to old mice [ 77 ]. 

Differential expression of angiogenic factors, including VEGF, HIF-1α, and Mmps, has 

been well demonstrated in young animals versus old during bone fracture healing [81–83].
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Conclusions

Increasing age has been shown to negatively affect the cellular and molecular processes 

throughout the different stages of bone fracture healing. Inflammatory regulation, cellular 

differentiation, and signaling cascades are all affected, in part, by age-related changes. Our 

current understanding of these age related changes explains, only partially, the decreased 

healing potential and increased complications observed during fracture healing in elderly 

patients. A more complete understanding is necessary to allow for therapeutics to target the 

specific age-related deficiencies and provide better care for the increasing geriatric 

population.
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Fig. 1. 
The effect of age on the cellular contribution to fracture healing. Stem cells and immune 

cells involved in fracture healing demonstrate age-related changes that may negatively affect 

fracture healing. Osteochondral stem cells arise from the periosteum and bone marrow and 

demonstrate decreased quantity, increased oxidative damage, and decreased osteoblastic and 

chondrogenic differentiation potential with age. T-cells contribute to fracture healing and 

production and maturation of T cells is negatively affected by age-related changes to the 

bone marrow hematopoietic compartment and to the thymus. Macrophages are important 

regulators of inflammation during fracture healing. Aged macrophages demonstrate 

decreased proliferation and increased activation that may contribute to the poorer healing 

outcomes associated with aged macrophages compared to young. Finally, adequate 

vascularization is required for successful fracture healing. Aged animals demonstrate 

decreased vascular density within the callus which is associated with decreased levels of key 

angiogenic factors required for healing
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Fig. 2. 
The effects of inflammatory response perturbation on the stages of fracture healing. a 
Fracture healing follows three general stages of inflammation, proliferation, and remodeling. 

The initial inflammatory response is tightly regulated and crucial in initiating the subsequent 

stages of healing. b Systemic conditions, including increased age, have an effect on 

inflammation and may result in differential inflammatory responses during fracture healing. 

Senescence of the inflammatory response results in a decreased and limited inflammatory 

response (blue curve) that may result in inadequate activation of the proceeding healing 

stages. An exaggerated and sustained response (orange and red curves) can result from 

inadequate resolution of the response and may negatively affect the proceeding stages. An 

increased basal level of inflammation (red curve) is proposed to occur with inflamm-aging 

and would have possible negative effects throughout the healing process
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