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Abstract

The dynamics of genetic diversity in large clonally evolving cell populations are poorly 

understood, despite having implications for the treatment of cancer and microbial infections. Here, 

we combine barcode lineage tracking, sequencing of adaptive clones and mathematical modelling 

of mutational dynamics to understand adaptive diversity changes during experimental evolution of 

Saccharomyces cerevisiae under nitrogen and carbon limitation. We find that, despite differences 

in beneficial mutational mechanisms and fitness effects, early adaptive genetic diversity increases 

predictably, driven by the expansion of many single-mutant lineages. However, a crash in adaptive 

diversity follows, caused by highly fit double-mutant ‘jackpot’ clones that are fed from 

exponentially growing single mutants, a process closely related to the classic Luria-Delbrück 
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experiment. The diversity crash is likely to be a general feature of asexual evolution with clonal 

interference; however, both its timing and magnitude are stochastic and depend on the population 

size, the distribution of beneficial fitness effects and patterns of epistasis.

Reporting Summary.

Further information on research design is available in the Nature Research Reporting Summary 

linked to this article.

In large clonally evolving populations, lineages harbouring beneficial ‘driver’ mutations 

expand, compete with one another and acquire further beneficial mutations, shaping genetic 

diversity1–3. Recent studies employing deep genomic sequencing have shown that large 

laboratory4–6 and clinical7–13 cell populations harbour high levels of genetic diversity that 

change through time. In disease-relevant scenarios, such as cancer7–11 and within-host 

microbial dynamics13, the timescale over which diversity builds up is often short, such that 

dominant clones only accumulate a handful of driver mutations. When the supply of driver 

mutations is low, evolution is characterized by successive selective sweeps, wherein a single 

adaptive lineage periodically purges genetic diversity14,15. However, when the supply of 

driver mutations is high, evolution is characterized by clonal interference, with multiple 

adaptive lineages expanding and competing through time5,16–19. In the clonal-interference 

regime, mutations often rise and fall together in cohorts5,11,20,21. However, due to a limited 

ability to detect low-frequency mutations via genomic sequencing, it remains unclear what 

controls diversity changes through time in this regime, whether large purges of diversity 

might also occur as happens with a selective sweep and whether these diversity crashes are 

predictable across replicates and environments22.

Results

To address these questions, we introduced ~500,000 unique DNA barcodes into S. 
cerevisiae23 and evolved populations of ~5 × 108 cells in triplicate under two well-mixed 

environments: carbon limitation (C-lim) and nitrogen limitation (N-lim). Lineages were 

tracked by barcode sequencing approximately every 8–24 generations and those harbouring 

adaptive mutations were identified by deviation from a neutral expectation23. Tracking all 

adaptive lineages reveals the changing levels of adaptive lineage diversity (Fig. 1). Initially, 

adaptive diversity expands, driven by thousands of independent mutations. This expansion is 

quantitatively different between environments; in N-lim, the expansion is slower and fewer 

lineages reach high frequencies. Later, however, similarities between environments emerge: 

a handful of lineages dominate the population, causing a crash in adaptive lineage diversity.

The distribution of fitness effects shapes early adaptive genetic diversity in a predictable 
way.

We suspected that differences in lineage diversity dynamics between environments could be 

attributed, in part, to differences in the mutational distribution of fitnesses effects (mDFE), 

defined as the distribution of mutation rates over fitness effects for single beneficial 

mutations arising on the ancestor. We have shown that high-resolution lineage tracking over 

short times can be used to infer the mDFE23. In C-lim, the mDFE results in approximately 
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104 beneficial mutations with fitness effects, s, greater than 3% entering over the first 

approximately 100 generations. This initially produces a quasi-deterministic expansion in 

diversity because the low fitness-effect beneficial mutations that dominate early occur at 

high rates. Later, the diversity expansion becomes more stochastic because the high fitness-

effect beneficial mutations that dominate occur at lower rates. To test whether these features 

generalize to other environments, we inferred the mDFE for N-lim (Supplementary 

Information: Section 1). We find that the shape of the mDFE in N-lim is qualitatively 

different from C-lim (Fig. 2): the rates of mutation to higher fitness effects (s > 5%) are 

approximately three-fold lower in N-lim and fall off rapidly, with no detectable fitness 

effects above 8%. With time, the lineage dynamics become exponentially more sensitive to 

these differences at the higher fitness effects (expanded region Fig. 2 and Supplementary 

Information: Section 2). In C-lim, these mutations establish (escaping stochastic loss), 

expand and compete over shorter timescales (Fig. 1a versus c). In N-lim, the lower mutation 

rate to higher fitness effects results in more stochastic dynamics: high-fitness mutations 

occur in smaller numbers, causing larger variations between replicates (Fig. 1c versus d and 

Supplementary Information: Section 2).

To verify that single beneficial mutations determine the early adaptive diversity dynamics, 

we whole-genome sequenced hundreds of unique adaptive mutations spanning a wide range 

of fitness effects. In C-lim, we previously found a near-comprehensive spectrum of 

adaptation-driving single mutations by sequencing 418 clones24. Here, we repeated this for 

N-lim, sequencing 310 adaptive clones and re-measuring their fitness (Supplementary 

Information: Section 3). In both environments, the majority of clones contain a single 

adaptive mutation (>75%), consistent with single mutants determining the early adaptive 

diversity dynamics. Lineages containing two adaptive mutations are crucial to the later time-

diversity dynamics, as discussed below. Focusing on single-mutant clones, we find major 

differences in mutational mechanisms and mutational targets (Fig. 2). Surprisingly, Ty 

transposition events play a major role in driving adaptation in N-lim but not C-lim. In both 

environments, adaptation is first driven by cells undergoing a frequent diploidization (Dip) 

event, and later, by cells that acquire mutations in a small set of nutrient sensing pathway 

genes (Fig. 2 and ref. 24). The majority of recurrently mutated genes are putative loss-of-

function (LoF) mutations, with a minority being putative gain-of-function (GoF) mutations 

(Supplementary Information: Section 3).

A crash in adaptive lineage diversity is observed in all evolutions.

Estimation of the mDFE required approximately 100 generations of lineage tracking in C-

lim23 and ~192 generations in N-lim. To study the clonal dynamics beyond the initial 

expansion of single-mutant clones, we tracked lineages for approximately 300 generations in 

C-lim and N-lim. In both environments, we find that lineage diversity crashes, with a 

handful of lineages dominating (Fig. 1). One possible explanation for this is that multiple 

adaptive clones within each lineage contribute to its dominance. Alternatively, a single large 

clone within each lineage may be responsible; however, it is unclear how such large clones 

would arise. Also unclear is whether crashes are specific to our experiments or are a general 

feature of clonal-interference dynamics. To investigate these questions, we first appeal to the 

simplest model of this evolutionary process, the fitness-staircase model17. Next, we perform 
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simulations using mDFEs measured experimentally. Finally, we validate predictions of our 

model using whole-genome sequencing and tracking the frequency of diploids.

A fitness-staircase model predicts a stochastic diversity crash and subsequent recovery.

In the fitness-staircase model, all beneficial mutations confer fitness advantage s, such that a 

clone with m mutations grows at rate ms relative to the wild type (Fig. 3a). Beneficial 

mutations occur at rate, U, in a constant population, of size N and establish with probability 

proportional to their ‘lead’, Q, over the mean fitness (Methods17). Mirroring our experiment, 

we focus on the multiple-mutation regime in which NU » 1 (Supplementary Information: 

Section 4). Clone-size dynamics in this model (coloured lines, Fig. 3b) are controlled by two 

parameters: the initial feeding rate of mutations from one fitness class to the next, R, and the 

ratio of fitnesses, α = g/(g + s), between fitness class growing at rate g, and the newly 

established fitness class growing at rate g + s. For wild-type cells (g = 0) feeding single 

mutants (g + s = s), the initial feeding rate R = NU » 1 and the ratio of fitnesses α = 0 

(Supplementary Information: Section 4). Since R is high, new mutations occur frequently 

and many mutant clones (~R) expand together with roughly equal size. This produces 

deterministic dynamics (Fig. 3b,c, light-green data). For single mutants (g = s) feeding 

double mutants (g + s = 2 s), the initial feeding rate R = NU2/s « 1 and the ratio of fitnesses 

α = ½. Since R is low, new mutations occur rarely and the first few mutant clones to occur 

are typically much larger than the rest. This produces large ‘jackpot’ events in which a 

handful of early clones dominate the population (Fig. 3b,c, dark green). The size of jackpots 

is controlled by α. If α « 1, the first established clone will become large before the sub-

sequent clones establish and the cumulative size of all subsequent clones will be small 

relative to the first. Thus, the population will be dominated by the first mutant clone to 

occur. In contrast, if the new mutant population grows at the same rate as the one feeding it 

(α = 1), which is the case for the classic Luria–Delbrück experiment25, a large number of 

clones that occur late collectively contribute just as much to the expanding mutant 

population as the early clones do.

By considering when the feeding population will give rise to a new mutation 

(Supplementary Information: Section 4 and refs. 15,17), we find that the median size of the 

kth mutant clone to occur will have a frequency relative to the first (k = 1) clone of

f k ∝ 1 + kα
R

−1/α

For single mutants (R » 1 and α = 0), the expected rank–frequency relationship is k ≈ 
Rln(fk) (Fig. 3c, purple line), which agrees closely with simulated data (Fig. 3c, light-green 

points). Large numbers of single mutants (~NUs) establish and expand together; however, 

only those that enter within the first ~1/s generations contribute substantially to the class. 

Therefore, approximate NU clones (~NUs × 1/s) drive the single-mutant expansion. We 

characterized adaptive diversity using the Shannon entropy, S = − Σkfkln f k
26 of adaptive 

clones. Because approximately NU single mutants each reach a maximum frequency of 

approximately 1/NU, the entropy peaks at S ≈ ln(NU), around when single mutants peak in 

abundance, t ≈ (1/s)ln(s/U) (dashed lines, marked (3) and (1), respectively, in Fig. 3d). 
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Because many mutations contribute to the single-mutant expansion, stochasticity in 

establishment times is averaged out, resulting in highly predictable entropy dynamics (Fig. 

3d).

For double mutants (R « 1 and(R « 1 and α = ½), the expected rank–frequency relationship is 

k ≈ f k
−1/2 (Fig. 3c, dashed line), which agrees closely with simulated data (Fig. 3c, dark-

green points). Because the rank–frequency curves of second mutants follow a power law, the 

first double mutants to establish dominate: on average the top one and five clones comprise 

>55% and >87% of the total double-mutant class, respectively (Fig. 3b,c). Because a few 

clones are so consequential, variation in their establishment times result in large fluctuations 

in the rank–frequency distribution: sometimes the first clone nearly sweeps the population 

(for example, Fig. 3b). As double mutants outcompete single mutants (after t ≈ (1/

s)ln((s/U)3/Ns), the earliest double-mutant clones cause the diversity to crash below the 

long-term average (dashed lines (2) and (4) in Fig. 3d). A precedent of this crash is 

observable: after t ≈ (2/s)ln(s/NU2), approximately 180 generations in Fig. 3, lineages 

harbouring double mutants become larger than the predicted size of any single mutant (Fig. 

3e, dark-green arrows). These double-mutant lineages drive the diversity crash.

Triple mutants cause the diversity to recover (Fig. 3d). This is because α is higher for triple 

mutants than double mutants. In general, α is controlled by the lead, Q, the difference 

between the fittest mutant class and the mean fitness (Supplementary Fig. 6). Because single 

and double mutants establish when the mean fitness is close to ancestral, Q is s and 2s, 

respectively, and double mutantα = ½. For triple mutants and subsequent mutant classes, the 

lead is determined by (Q/s) ≈ 2ln(Ns)/ln(s/U) ≈ 3.1 (ref.17; Supplementary Fig. 6). Thus, for 

triple mutants α = 2s/3s = 2/3 and the expected rank–frequency relationship is k ≈ f k
−2/3

(Fig. 3c, dashed line), in close agreement with simulated data (Fig. 3c, pink points). This 

distribution results in smaller jackpots than double mutants: on average, the top one and five 

triple-mutant clones comprise only approximately 43% and 72% of the triple-mutant class, 

respectively (Fig. 3b,c). As a consequence, when the triple mutants outcompete double 

mutants, the diversity recovers (Fig. 3d).

Simulations using the experimentally inferred mDFE also predict a diversity crash.

To investigate whether differences in the rank–frequency relationship could also cause the 

crashes in our experiments, we simulated the lineage dynamics using the experimentally 

determined mDFE inferred in each environment, removing any lineages that contain a 

double mutant (Supplementary Information: Section 5). Plotting the Shannon entropy of 

both adaptive lineages and clones shows that two measures of the adaptive genetic diversity 

track one another closely until triple mutants first appear. Simulations accounting only for 

the stochastic occurrence of, and competition between, single mutants (single-mutant model, 

with no further mutations occuring) predict that diversity should crash slowly, at odds with 

observations (Fig. 4a). However, additive model simulations, which allow for multiple 

mutants drawn from the single-mutant mDFE, produce diversity crashes that are 

qualitatively consistent with the observed lineage diversity crash (Fig. 4b). In qualitative 

agreement with what is observed in the staircase model, typically fewer than five lineages 
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comprise >90% of the population at times beyond 150 generations. This demonstrates that, 

even with a more complicated mDFE, the same general behaviour emerges: early jackpot 

double mutants cause a diversity crash of both lineages and clones.

Experimental validation of double-mutant jackpot events driving an adaptive diversity 
crash.

We next sought to experimentally validate that early double mutants drive the adaptive 

diversity crash by examining whole-genome sequencing data of single-cell derived colonies. 

While >75% of sequenced clones were verified single mutants, we reasoned that the 

remaining <25% might include early double mutants that have yet to become abundant. 

Because these double mutants are expected to be highly fit, they should quickly expand in 

frequency. As predicted, these early double mutants do indeed dominate the population, 

driving a diversity crash in both C-lim and N-lim (Fig. 4d,e). To our surprise, however, 

clonal sequencing revealed that the dominant double mutants were not composed of two 

high fitness-effect mutations (for example, LoF + LoF) as would be predicted by our 

additive model simulations. Instead, sequenced dominant clones were Dip + GoF double 

mutants (Dip + ras2 in C1; Dip + mep1 in N1), despite neither GoF mutation occurring at a 

high rate. We reasoned that this inconsistency with the additive model could be due to 

epistasis: some classes of beneficial mutations combine sub-additively and these interactions 

might determine which first mutants eventually dominate. To test this, we modified our 

additive model simulations (above) to ban second mutations that are implausible or 

unobserved (Dip + Dip, Dip + LoF, LoF + LoF or LoF + GoF, see Supplementary Fig. 5). 

Simulations using this ‘epistasis model’ produce diversity crashes and lineage trajectories 

that are in qualitative agreement with observations (Fig. 4c). Crucially, the epistasis model 

(not the additive model) predicts that clones driving the diversity crash will usually be Dip + 

GoF if the crash is deep and LoF + Dip if the crash is shallow. The reason for this difference 

relates to α, discussed above. Both Dip + GoF and LoF + Dip double mutants have similar 

fitnesses (~0.14, see Fig. 2). In the case of Dip + GoF, the single-mutant fitness (~0.035) 

results in α ≈ 0.25, a very broad distribution and a deep crash. However, in the case of LoF 

+ Dip, the single-mutant fitness (~0.10) results in α ≈ 0.7, a narrower distribution and a 

shallow crash.

Evidence for broad ‘categorical’ epistasis between mutations.

Lineage trajectories alone have limited power to quantitatively distinguish between the 

additive and epistasis models (Fig. 4b,c). To further interrogate our models, we therefore 

asked if the dynamics of mutations, rather than lineages, are consistent with predictions of 

either model. We measured the abundance of diploids in the population every 8–24 

generations using a colony-growth assay (Supplementary Information: Section 6 and ref. 24), 

not only for the four evolutions described above, but for two additional evolutions (one in C-

lim, one in N-lim) that were not characterized by lineage tracking (Fig. 5b–e). Consistent 

with our observations, both models predict that replicate diploid trajectories will track each 

other closely—first, as large numbers of ancestral cells diploidize and expand, and second, 

as diploids begin to be out-competed by haploids that have acquired fitter LoF and GoF 

mutations. At later times, however, the models deviate. In C-lim, the additive model predicts 

that LoF + LoF or LoF + GoF double mutants drive the continuing decline of diploids (Fig. 
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5b). In N-lim, the additive model predicts that Dip + LoF mutations should expand fast 

enough that diploid trajectories never dip (Fig. 5d). However, consistent with observations, 

the epistasis model predicts that the diploid trajectory will dip and subsequently recover, 

driven by LoF and GoF haploids that diploidize and by diploids that acquire GoF mutations 

(Fig. 5c,e). Since this diploid recovery is driven by rare double mutants, its timing and depth 

are predicted to be highly stochastic, resulting in large variations between replicates, in 

agreement with our data.

To further test which model is more consistent with the observed data, we calculated the 

likelihood of the data under a binomial error model for the categorical epistasis and the 

additive models (Supplementary Information: Section 7). We found a higher likelihood when 

double mutants are restricted to occur through the Dip + GoF route alone (categorical 

epistasis model, log-like-lihood L ≈ 360) than when all mutations are available (additive 

model, L ≈ 730). In addition, the maximum-likelihood parameters obtained for the additive 

model are inconsistent with measured values; for example, the best-fit mutation rate to fit 

mutations (LoF and GoF) is three orders of magnitude smaller than the measured value (2 × 

10–10 versus 3 × 10–7).

Discussion

In our experiments, the adaptive genetic diversity first increases quasi-deterministically, 

caused by a large number of single mutants, and later crashes stochastically, caused by a 

handful of jackpot events: highly fit double mutants occuring anomalously early. These 

diversity dynamics are a consequence of the clone-size distributions for single-, double-and 

subsequent multiple-mutant clones. The distribution of clone sizes is controlled by the initial 

feeding rate (R) and the ratio of the fitnesses (α) between a clone and its parent. When the 

dynamics are dominated by rare beneficial mutations (R « 1) that grow exponentially faster 

than their parent (α < 1), clone sizes are power-law distributed, with the largest clones 

dominating the population. This effect is closely related to the Luria–Delbrück experiment 

in which one observes jackpots of neutral mutations (α = 1). However, a key difference is 

that when adaptive mutations are accumulating (α < 1), mutants grow faster and the 

population is dominated by small numbers of large clones instead of large numbers of small 

clones. Jackpots drive a predictable crash in diversity followed by a subsequent recovery. 

These diversity expansions and crashes are likely to be general features of clonal 

interference; however, the expansion rate, timing and the depth of the crash are influenced 

by population size, mDFE and patterns of epistasis between adaptive mutations.

In environments where the mDFE of first mutations lacks extremely high fitness effects, 

mutations that cause the diversity expansion are fed from a large, effectively constant-sized 

(ancestral) population, while mutations that cause the crash are fed from a small, 

exponentially growing (single-mutant) population. When extremely high fitness-effect 

mutations are possible, such as in the presence of a growth-inhibiting drug27, a crash is 

sometimes driven by the expansion of very rare highly fit single mutants (Supplementary 

Information: Section 8). Thus, a diversity crash is likely to occur, whether driven by a 

traditional selective sweep of a single mutant14,15 or by a multiple mutant that occurs 

anomalously early. While we have focused on well-mixed yeast populations, expansion of 
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spatially structured populations exhibit qualitatively similar dynamics28. Furthermore, 

‘clonal dominance’ is a common feature to many cancers11,29,30 with one recent example 

explicitly showing that the stochastic emergence of a highly fit double mutant underlies a 

diversity crash31. High levels of tumour diversity are associated with poorer survival29,32. 

Thus our work raises the possibility of exploiting fluctuations in diversity to optimize 

treatment schedules. More generally, our work highlights that while genetic diversity evolves 

stochastically and depends on rare events, the diversity dynamics are statistically predictable 

in an analogous way to a weather forecast22.

While in our experiments the deterministic to stochastic transition occurs between first and 

second mutations, in small populations (NU < 1), first adaptive mutations are stochastic and 

diversity crashes (of neutral mutations) will occur at nearly every adaptive event. In even 

larger populations ((s/U)2 < Ns < (s/U)3), double mutants will occur deterministically, but 

triple mutants stochastically, and therefore the diversity crash will be caused by a handful of 

triple mutants. More generally, for mDFEs that lack a supply of high fitness-effect 

mutations, the dynamics are driven by ‘predominant’ mutations of similar fitness17 and the 

diversity crash will be caused by clones harbouring q beneficial mutations, where q is the 

smallest integer for which (s/U)q > Ns, where U is the mutation rate to the ‘predominant’ 

fitness mutations17. Previous work has found that beneficial cohorts—multiple beneficial 

mutations co-occurring in clones that are at frequencies below the detection limit of genomic 

sequencing—commonly drive laboratory5,20 and clinical11 evolution. Our results suggest 

that, at least during the early stages of evolution, these cohorts are expected, with cohort size 

being determined by q (Supplementary Information: Section 4).

Theoretical work presented here and elsewhere21,33 predicts that beneficial cohorts and 

fluctuations in genetic diversity should occur throughout evolution, driven by the stochastic 

occurrence of anomalously early and/or fit multiple mutants. Our results indicate that the 

precise nature of these fluctuations will depend on patterns of epistasis. For example, we 

find that Dip + GoF mutations (α ≈ 0.25) are the dominant route for acquiring a fit double 

mutant in our experiments, making the dynamics particularly stochastic. Due to limitations 

of our barcoding platform, we were unable to validate that triple mutations resulted in a 

recovery of the adaptive diversity, as is predicted by our simulations. However, the 

development of new double-barcoding technologies34 or barcodes that continuously generate 

diversity through time35–37 offer a promising path forward to address these questions.

Methods

Experimental evolutions.

The barcoded yeast library from ref. 23, containing approximately 500,000 barcodes, was 

evolved by serial batch culture under carbon or nitrogen limitation in 100 ml of ×5 Delft 

media23. Nitrogen limited media contained 0.04% ammonium sulfate and 4% dextrose. 

Carbon limited contained 4% ammonium sulfate and 1.5% dextrose. Cells were grown in 

500 ml Delong flasks (Bellco) at 30 and 223 r.p.m. for 48 h between each bottleneck. 

Bottlenecks were performed by adding 400 μl of the evolution to fresh media. Cell counts 

were performed using a Coulter Counter at each bottleneck to estimate the generation time. 
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Contamination checks for bacteria or other non-yeast microbes were performed regularly 

(every 2–4 bottlenecks).

Barcode sequencing.

The barcode sequencing follows the same protocol as in ref. 23. Briefly, genomic DNA was 

prepared by spooling. A two-step directed PCR was used to amplify the lineage tags for 

sequencing. We amplified ~14 μg of template per sample, which corresponds to ~109 

genomes or ~2,000 copies per barcode initially. First, a three-cycle PCR with OneTaq 

polymerase (New England Biolabs) was performed in 24 reaction tubes, with ~600 ng of 

template and 50 μl total volume per tube. Primers for this reaction were

ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNNNXXXXXTTAATATGG

ACTAAAGGAGGCTTTT and 

CTCGGCATTCCTGCTGAACCGCTCTTCCGATCTNNNNNNNNXXXTCGAATTCAAG

CTTAGATCTGATA

where Ns are degenerate bases used for the Unique Molecular Identifiers and Xs correspond 

to a one of several multiplexing tags. The PCR product was pooled into four 50 μl aliquots 

using four PCR Cleanup columns (Qiagen) at six PCR reactions per column. A second 24-

cycle PCR was performed with high-fidelity PimestarMAX polymerase (Takara) in 12 

reaction tubes, with 15 μl of cleaned product from the first PCR as template and 50 μl total 

volume per tube. Primers for this reaction were

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTA-

CACGACGCTCTTCCGATCT and 

CAAGCAGAAGACGGCATACGAGATCGGTCTCGGCATTCCTGCTGAACCGCTCTTC

CGATCT

PCR product from all reaction tubes was pooled into 50 μl using a PCR Cleanup column 

(Qiagen). The appropriate PCR band was isolated by E-Gel agarose gel electrophoresis (Life 

Technologies) and quantitated by Bioanalyzer (Agilent) and Qubit fluorometry (Life 

Technologies).

Identifying adaptive lineages.

Adaptive lineages were identified using the same methods as in ref. 23. Briefly, for a given 

lineage trajectory (read number measurements over time) we evaluated two hypotheses: (1) 

no adaptive mutation established in the lineage and (2) an adaptive mutation with fitness 

effect, s, occurred in the lineage and established to grow exponentially with an establishment 

time, τ. We used a uniform prior over a broad range of τ (– 150 < τ < 100) and an 

exponential prior over s, with decay length 0.1. To calculate the probability of each 

hypothesis given the data we developed a noise model23 that accounted for the variance 

introduced into barcode frequency estimates from three sources: (1) finite depth of coverage 

during sequencing, (2) noise introduced during DNA extraction and PCR amplification of 

the barcodes and (3) biological noise introduced during the growth cycle. Each of these were 

quantified by performing replicate measurements (1) on the same sequencing library, (2) on 

the sample sample and (3) on samples from adjacent time points, respectively (see 
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supplemental information of ref. 23). We then evaluated each (s, τ) hypothesis in intervals of 

(Δs = 0.005, Δτ = 1) and determined whether any of these were more probable than the 

neutral hypothesis. If so, we took the (s, τ) hypothesis with the largest posterior as our best 

estimate.

Isolating and sequencing of adaptive clones.

We isolated clones from generation 192 of N1, and re-measured the fitness of the 310 clones 

within that pool, whose trajectories indicated they were adaptive. We whole-genome 

sequenced all clones from this pool to a mean coverage of 30×. Variants were called using 

the same pipeline as outlined in ref. 24. Details of the top 100 clones ranked by re-measured 

fitness are shown in Supplementary Fig. 5.

From the whole-genome sequencing data, we identified single nucleotide polymorphisms, 

small indels, larger deletions and insertions, Ty transposition events and copy number 

variations, including aneuploidy and segmental aneuploidy, and annotated the genes within 

which those mutations fell. To determine whether mutations were adaptive, or simply neutral 

passenger mutations, we used the following criteria. First, if a gene was mutated multiple 

times in clones with distinct barcodes, mutations in that gene were designated as adaptive. 

Because of the low mutational burden of clones, the number of times this is expected for two 

neutral mutations is small (<0.005). Second, if a mutation in a gene was only observed once, 

but that clone was clearly non-neutral (mean re-measured fitness >0.01) and no other 

mutations were identified in the clone, then that gene was labelled as adaptive. A clone was 

labelled as a multiple mutant if it contained two or more mutations that were identified as 

adaptive via the above criteria.

Simulated lineage and clone dynamics.

To simulate lineage and clone trajectories in python, we initiate a dictionary object 

‘barcodes’ whose keys are tuples that are the barcode IDs entered in the form (BC1_id, 

BC2_id…), which can be adapted for simulating a re-barcoding process. For single-barcodes 

the keys are (1,), (2,), (3,) and so on. The value for each key is a list of all genotypes 

belonging to that barcode, for example, ‘barcodes[(1,0)]’ might return [([(0,’WT’, 0.0)],

10**8), ([(0,’WT’, 0.0),(0,’DIPLOID’, 0.04)],10**4)]. Each entry of the list is a ‘(genotype, 

abundance)’ tuple. The abundance is how many cells share that genotype. The genotype 

itself is list of ‘(unique_mutation_integer, NAME, selective effect)’; that is [(0,’WT’, 0.0), 

(12,’DIPLOID’, 0.04), (21,’IRAT’, 0.10)] would mean that the sequence of mutations in this 

clones was wild-type, then a ‘DIPLOID’ mutation (which was the 12th mutation to occur in 

the simulation and confers a 4% advantage) and an ‘IRA1’ mutation that was the 21st 

mutation to occur and confers an additional 10% advantage. The genotype would grow at 

14% relative to wild type. Mutations are generated from another dictionary ‘dfe_dict’, which 

is a dictionary whose keys are floats of possible fitness effects: for example, 0.02. The value 

for each key is a dictionary of ‘{NAME: mutation rate}’ key–value pairs. Mutations occur 

stochastically each generation determined by the mutation rate, U. New mutant clones are 

born from their parents by calling a random Poisson variate with mean given by the product 

of the parent clone size, n, and the mutation rate, U. Establishment of new clones is 

determined by calling a random variate from a uniform distribution on the interval [0,1]. If 
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this random variate is less than the fitness advantage of the new clone relative to the mean 

fitness the clone establishes with a starting establishment size 1 per fitness advantage, 

capped at 200 for weakly beneficial clones. The dynamics of each established clone is then 

deterministic: obtained by the exponential growth rate of its fitness advantage over the mean 

fitness. Low-frequency and low-fitness clones are removed from the population when their 

fitness advantage is negative and when their size drops below n = 10.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1|. Muller plots of adaptive lineages.
a-d, The cell numbers of all adaptive lineages (colours) inferred from barcode sequencing 

(arrows) and whole-genome sequencing of picked clones (large arrowheads) of replicate 

evolutions in C-lim (a and b) and N-lim media (c and d). Colours are for visualization 

purposes only and do not represent lineages harbouring specific mutations.
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Fig. 2|. Barcode-directed whole-genome sequencing of adaptive clones to find the mutational 
targets underlying the distribution of beneficial fitness effects (mDFE).
a, C-lim. b, N-lim. Most adaptive events are diploidizations (top, light blue), but high fitness 

effects are caused by mutations in or near genes (bottom, colour key). Each fitness bin is 

coloured according to the estimated rate of mutation of verified single mutants to each gene 

in that bin (S3). The colour key is roughly ordered from lowest to highest fitness effect of a 

mutational event. Pie charts indicate the mutational mechanisms of adaptive mutations.

Blundell et al. Page 14

Nat Ecol Evol. Author manuscript; available in PMC 2020 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3|. The dynamics of adaptive genetic diversity in the fitness-staircase model.
a, The fitness-staircase model in the multiple-mutation regime. Clones with different 

numbers of mutations expand in the population concurrently. The distribution of cells 

containing different numbers of mutations changes through time, with the distribution at t ≈ 
250 (from simulation in b) shown. Clones expand or contract in relation to their advantage 

over the mean population fitness. b, The trajectories of all unique adaptive clones (lines, 

coloured by fitness class) from a typical simulation with population size N= 5×108, 

beneficial mutation rate U = 10−6 and additive fitness effects of size s = 0.05. c, The rank-

frequency plot for single-(light green), double-(dark green) and triple-(pink) mutant clones 

averaged over 100 simulations, one instance of which is shown in b. Frequencies shown are 

relative to the first mutant to establish. Single mutants establish deterministically with a 

clone-size distribution that is approximately exponential (purple lines). Double and triple 

mutants establish stochastically with power-law clone-size distributions (dashed lines). Solid 

blue and purple lines indicate the limiting behaviours: no fitness difference between mutant 

classes (α ≈ 1, blue line), the Luria-Delbrück limit, and constant feeding (α ≈ 0). d, The 

entropy of all adaptive clones in the population over time for 100 simulations (grey lines). 

The particular simulation from b is highlighted in red and the mean of all 100 simulations is 

shown in black. Diversity approaches its steady state non-monotonically, reproducibly 

crashing below the long-term average and subsequently recovering to above long-term 

average levels. The parameter combinations that determine the positions of the various 

features labelled (1)-(4) are outlined in the text. e, The barcode trajectories from b and, 

beneath, their size distributions at three time points. At intermediate times, the largest 

barcode lineages are inconsistent with the single-mutant size distribution (black line) and, 
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instead, are driven by anomalously large double mutants expanding within (and dominating) 

these lineages (green arrows). These are detectable before double mutants dominate the total 

population.
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Fig. 4|. Exponential feeding of double mutants causes a diversity crash.
a-c, Shannon entropy of adaptive lineages from replicate experiments in C-lim (black lines) 

and stochastic simulations (grey lines) using a single-mutant model (a), additive model (b) 

or epistasis model (c). The entropy of adaptive clones closely tracks the entropy of adaptive 

lineages (Supplementary Figs. 9–14). d,e, Muller plots from Fig. 1 recoloured to depict 

single-mutant (grey) and early double-mutant (green and blue) adaptive lineages in C-lim 

(d) and N-lim (e). f, Schematic showing the statistical behaviour of the ancestor (grey), 
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single-(light green) and double-(dark green) mutants. Grey arrows show the relative growth 

rates due to selection.
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Fig. 5|. Simulations of diploid dynamics using the additive and ‘categorical’ epistasis models.
a, The simplified fitness landscape used for simulations in C-lim, where μ(s) indicates the 

mutation rates and s indicates the fitness effects, of Dip, LoF and GoF mutations. Greyed 

arrows are paths disallowed by the epistasis model. Dashed lines indicate the paths taken by 

the dominant clones in the additive (blue) and epistasis (red) models. b-e, The diploid 

trajectories in C-lim and N-lim predicted by the additive model (b and d, respectively) and 

the epistasis model (c and e, respectively) compared to the measured diploid trajectories 

(data points) from the three replicate populations in each condition. Colour scale indicates 

the extent to which the diploid rescue is driven by Dip + GoF (purple) versus LoF + Dip or 

Dip + LoF (yellow) mutants, with early rescue being more likely to be driven by Dip + GoF 

mutations. Error bars are one standard deviation.
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