Skip to main content
. 2018 Dec 4;2018(12):CD011902. doi: 10.1002/14651858.CD011902.pub2

6. Algorithm and threshold analysis for each definition of the target condition.

Target condition
Testa
Datasets (n) Lesions
(cases)
Pooled sensitivity
(95% CI)
Pooled specificity
(95% CI)
Datasets (n) Lesions
(cases)
Pooled sensitivity
(95% CI)
Pooled specificity
(95% CI)
a. Invasive melanoma and atypical intraepidermal melanocytic variants In‐person Image‐based
No algorithm: any threshold 8 4707 (849) 0.88
(0.75 to 0.95)
0.87
(0.80 to 0.92)
24 4498 (941) 0.76
(0.70 to 0.82)
0.79
(0.71 to 0.85)
No algorithm: correct diagnosis 18 4118 (795) 0.77
(0.69 to 0.83)
0.84
(0.76 to 0.89)
No algorithm: excise decision 10 831 (263) 0.79
(0.69 to 0.86)
0.55
(0.50 to 0.61)
Pattern: any threshold or NR 6 4307 (296) 0.92
(0.87 to 0.95)
0.92
(0.68 to 0.98)
20 4621 (989) 0.83
(0.76 to 0.88)
0.87
(0.80 to 0.92)
Pattern: at ≥ 1 characteristics present 1 220 (33) 0.88
(0.72 to 0.97)
0.79
(0.73 to 0.85)
Pattern: at ≥ 3 characteristics present 1 68 (5) 1.00
(0.48 to 1.00)
0.56
(0.42 to 0.68)
Pattern: correct diagnosis 19 4095 (896) 0.81
(0.73 to 0.87)
0.87
(0.80 to 0.92)
Pattern: excise decision 3 933 (227) 0.97
(0.68 to 1.00)
0.72
(0.60 to 0.81)
ABCD at NR (likely > 5.45) 1 235 (5) 1.00
(0.48 to 1.00)
0.90
(0.85 to 0.93)
ABCD at > 5.45 4 1203 (155) 0.78
(0.58 to 0.90)
0.93
(0.79 to 0.98)
7 2471 (406) 0.81
(0.60 to 0.92)
0.81
(0.69 to 0.89)
ABCD at or likely > 5.45 (2 previous groups combined) 5 1438 (160) 0.81
(0.62 to 0.92)
0.92
(0.82 to 0.97)
ABCD at > 4.75 1 309 (73) 0.83
(0.69 to 0.92)
0.45
(0.39 to 0.51)
10 4242 (816) 0.81
(0.67 to 0.90)
0.72
(0.93 to 0.80)
Revised ABCD at ≥ 4 1 269 (84) 0.87
(0.78 to 0.93)
0.89
(0.83 to 0.93)
ABCD at 60% specificity 1 356 (73) 0.90
(0.81 to 0.96)
0.60
(0.54 to 0.66)
ABCD at 70% specificity 1 356 (73) 0.85
(0.75 to 0.92)
0.70
(0.64 to 0.75)
ABCD at 75% specificity 1 356 (73) 0.85
(0.75 to 0.92)
0.75
(0.69 to 0.80)
ABCD at 80% specificity 1 356 (73) 0.77
(0.65 to 0.86)
0.80
(0.75 to 0.84)
ABCD at 85% specificity 1 356 (73) 0.71
(0.59 to 0.81)
0.85
(0.80 to 0.89)
ABCD at 90% specificity 1 356 (73) 0.64
(0.52 to 0.75)
0.90
(0.86 to 0.93)
ABCDE at > 1.3 1 356 (73) 1.00
(0.95 to 1.00)
0.15
(0.11 to 0.20)
ABCDE at > 2.65 1 356 (73) 0.97
(0.90 to 1.00)
0.39
(0.33 to 0.45)
ABCDE at > 3.05 1 356 (73) 0.95
(0.87 to 0.98)
0.57
(0.51 to 0.62)
ABCDE at > 3.6 1 356 (73) 0.90
(0.81 to 0.96)
0.70
(0.64 to 0.75)
ABCDE at > 4.25 1 356 (73) 0.82
(0.71 to 0.90)
0.82
(0.77 to 0.86)
ABCDE at > 4.9 1 356 (73) 0.74
(0.62 to 0.84)
0.90
(0.86 to 0.93)
ABCDE at ≥ 4 1 269 (84) 0.90
(0.82 to 0.96)
0.87
(0.81 to 0.92)
7FFM at ≥ 2 1 401 (60) 0.80
(0.68 to 0.89)
0.89
(0.85 to 0.92)
4 2200 (340) 0.89
(0.76 to 0.96)
0.84
(0.78 to 0.89)
7PCL at ≥ 2 1 638 (108) 0.93
(0.86 to 0.97)
0.98
(0.97 to 0.99)
7PCL at ≥ 3 2 11137 (127) 0.67
(0.46 to 0.83)
0.96
(0.88 to 0.99)
11 3408 (798) 0.80
(0.63 to 0.91)
0.67
(0.51 to 0.80)
7PCL at ≥ 5 1 322 (70) 0.67
(0.55 to 0.78)
0.83
(0.78 to 0.87)
7PCL at NR 4 1936 (360) 0.72
(0.56 to 0.84)
0.79
(0.61 to 0.90)
Revised 7PCL at NR (likely ≥ 1) 1 1678 (238) 0.61
(0.54 to 0.67)
0.88
(0.86 to 0.89)
Revised 7PCL at ≥ 1 1 300 (100) 0.88
(0.80 to 0.94)
0.51
(0.44 to 0.58)
Revised 7PCL for FU: major change 1 70 (12) 0.67
(0.35 to 0.90)
0.60
(0.47 to 0.73)
Menzies at 2 negative and ≥ 1 positive 1 206 (23) 0.83
95)
0.69
(0.62 to 0.75)
4 1856 (317) 0.78
(0.38 to 0.96)
0.63
(0.39 to 0.81)
Menzies at NR 2 60 (26) 0.77
(0.57 to 0.89)
0.82
(0.66 to 0.92)
3PCL at ≥ 2 7 1505 (363) 0.74
(0.61 to 0.85)
0.60
(0.42 to 0.76)
4‐point (scored 3PCL) at > 2 1 75 (32) 0.84
(0.67 to 0.95)
0.81
(0.67 to 0.92)
Hofman algorithm at NR 1 254 (75) 0.87
(0.77 to 0.93)
0.88
(0.82 to 0.92)
CASH at ≥ 6 1 477 (119) 0.78
(0.70 to 0.85)
0.51
(0.46 to 0.56)
CASH at ≥ 8 2 190 (56) 0.97
(0.79 to 1.00)
0.69
(0.60 to 0.76)
Chaos/Clues at = 2 2 940 (148) 0.82
(0.75 to 0.87)
0.53
(0.36 to 0.70)
Acral 3‐step 1 107 (25) 0.96
(0.80 to 1.00)
0.91
(0.83 to 0.96)
b. Invasive melanoma In‐person Image‐based
No algorithm: threshold NR 3 190 (62) 0.87
(0.76 to 0.93)
0.96
(0.91 to 0.98)
6 683 (202) 0.77
(0.59 to 0.88)
0.79
(0.63 to 0.90)
Pattern analysis: threshold NR 1 45 (16) 0.81 (0.54 to 0.96) 0.97
(0.82 to 1.00)
1 119 (24) 1.00
(0.86 to 1.00)
0.97
(0.91 to 0.99)
ABCD at > 4.2 1 495 (23) 0.88
(0.69 to 0.97)
0.64
(0.60 to 0.68)
ABCD at > 4.75 2 330 (85) 0.76
(0.66 to 0.84)
0.84
(0.73 to 0.91)
ABCD at > 5.45 2 832 (242) 0.79
(0.74 to 0.84)
0.90
(0.58 to 0.98)
1 258 (64) 0.45
(0.33 to 0.58)
0.94
(0.89 to 0.97)
7PCL at NR 1 332 (217) 0.90
(0.85 to 0.94)
0.79
(0.71 to 0.86)
Menzies at 2 negative and ≥ 1 positive 4 4184 (715) 0.91
(0.83 to 0.96)
0.71
(0.68 to 0.74)
3PCL at > NR 1 332 (217) 0.82
(0.77 to 0.87)
0.40
(0.31 to 0.50)
Kenet (modified) at MM likely 1 54 (12) 1.00
(0.74 to 1.00)
0.95
(0.84 to 0.99)
1 258 (64) 0.75
(0.63 to 0.85)
0.94
(0.89 to 0.97)
Kenet (modified) at MM possible 1 54 (12) 1.00
(0.74 to 1.00)
0.45
(0.30 to 0.61)
1 258 (64) 0.89
(0.79 to 0.95)
0.87
(0.82 to 0.91)
CASH at ≥ 8 1 332 (217) 0.82
(0.76 to 0.86)
0.72
(0.63 to 0.80)
Kreusch algorithm 1 265 (96) 0.98
(0.93 to 1.00)
0.83
(0.77 to 0.89)
Menzies for amelanotic at 1 1 332 (217) 0.91 (0.87 to 0.95) 0.70
(0.61 to 0.79)
Menzies for amelanotic at 0 1 332 (217) 1.00 (0.98 to 1.00) 0.52 (0.43 to 0.62)
c. Any skin cancer or lesion with high risk of progression to melanoma In‐person Image‐based
No algorithm at NR 1 231 (77) 0.90
(0.81 to 0.95)
0.94
(0.89 to 0.97)
2 83 (32) 0.78
(0.61 to 0.89)
0.75
(0.61 to 0.85)
Pattern analysis: threshold NR 1 3372 (98) 0.90
(0.82 to 0.95)
1.00
(0.99 to 1.00)
1 119 (37) 1.00
(0.91 to 1.00)
0.96
(0.90 to 0.99)
ABCD at > 5.45 1 200 (46) 0.98
(0.88 to 1.00)
0.98
(0.94 to 1.00)
3PCL at ≥ 2 1 77 (39) 0.85
(0.69 to 0.94)
0.26
(0.13 to 0.43)
1 150 (44) 0.91
(0.78 to 0.97)
0.72
(0.62 to 0.80)
3PCL: three‐point checklist; 7FFM: seven features for melanoma; 7PCL: seven‐point checklist; ABCD(E): asymmetry, border, colour, differential structures (enlargement);CASH: colour, architecture, symmetry and homogeneity; CI: confidence interval; FU: follow‐up; MM: malignant melanoma; NR: not reported

aAll analyses by algorithm were undertaken using the bivariate normal model (BVN).