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Abstract

Microscopic features (i.e., microstructure) of axons affect neural circuit activity through 

characteristics such as conduction speed. To what extent axonal microstructure in white matter 

relates to functional connectivity (synchrony) between brain regions is largely unknown. Using 

magnetic resonance imaging data in 11,354 subjects, we constructed multi-variate models that 

predict functional connectivity of pairs of brain regions from the microstructural signature of white 

matter pathways that connect them. Microstructure-derived models provide predictions of 

functional connectivity that explained 3.5% of cross-subject variance on average (ranging from 

1-13%, or r=0.1-0.36) and reached statistical significance in 90% of the brain regions considered. 

The microstructure-function relationships were associated to genetic variants, co-located with 

genes DAAM1 and LPAR1, that have previously been linked to neural development. Our results 
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demonstrate that variation in white matter microstructure predicts a fraction of functional 

connectivity across individuals, and that this relationship is underpinned by genetic variability in 

some brain areas.

Introduction

Communication between brain regions is achieved by axons grouped in white matter 

pathways. Properties of these structural connections are highly relevant to brain function, 

often described as functional connectivity. However, it is not simply the presence of a 

connection, but also the microscopic tissue architecture (i.e., microstructure) of white matter 

that influences brain function. For example, axonal diameter, myelination and length all 

affect the precise timing of neural signals, which is crucial to synchronizing network 

dynamics1.

Much of our knowledge about structural connectivity in the brain comes from animals2, 

human lesions3, and post-mortem human dissections4. These approaches have relatively 

high biological specificity and interpretability but are limited in their ability to characterize 

inter-individual differences. More recently, diffusion MRI (dMRI) has emerged as a 

powerful in vivo tool for studying the brain’s structural connections5. Although limited in 

spatial resolution6, dMRI has the unique ability to estimate the trajectories of white matter 

bundles (i.e., tractography) as well as some microstructural properties of these bundles, 

through models linking the within-voxel dMRI signal to tissue architecture. An important 

benefit of dMRI is that it enables us to characterize inter-individual differences, even in large 

cohorts (e.g., UK Biobank7). dMRI thus has the potential to relate individual variations in 

white matter microstructure to differences in brain function, which can also be characterized 

with MRI.

Diffusion and functional MRI have been used to investigate structure – function 

relationships, relating the anatomy of a white matter tract to the functional coupling between 

the regions it connects8–11. Importantly, these studies relate the macroscopic organization 

of the network to brain function but did not aim to establish whether the microstructural 

properties of a white matter tract relate to the functional communication it establishes 

between brain areas.

A few studies have demonstrated the potential for dMRI to establish relationships between 

microstructure and function. For instance, the commonly-used metric fractional anisotropy 

(FA) is a measure of diffusion directionality that is biologically non-specific, being sensitive 

to many properties including axon density, size and myelination12. Mean FA in a given 

white matter tract has been demonstrated to correlate with strength of functional 

connectivity13,14. However, these studies focus on the tract connecting a single pair of 

regions and summarise a tract’s microstructure with a single quantity (e.g. FA averaged over 

the entire tract).

In this work, we address whether functional connectivity between brain regions is mediated 

by microstructure of white matter pathways that connect them. We hypothesize that a data-

driven model based on dMRI metrics can predict cross-subject variation in functional 
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connectivity, and more specifically that this is a general principle that holds across many 

brain regions and the pathways connecting them. Unlike previous literature, we generate 

models that capture rich spatial representation of a tract’s microstructural profile (i.e., a 

microstructural signature). In addition to diffusion tensor based metrics, we incorporated 

estimates from a more sophisticated biophysical model that aims to provide greater 

biological specificity15. We consider interhemispheric connectivity between pairs of 

homotopic regions (i.e. the homologous region in the two cerebral hemispheres) that are 

connected by commissural white matter axons that run through the corpus callosum. We 

build a set of regression models to relate the tract’s microstructural profile to functional 

connectivity for a large number of paired homotopic regions.

The models described above linking white matter microstructure to functional connectivity 

were trained (n=7481) and replicated (n=3873) on data from the UK Biobank7. We show 

that these models can predict up to 13% of the cross-subject variance in functional 

connectivity, and demonstrate that the microstructure-function link exists for a large number 

of brain regions and is highly reproducible. We additionally performed genome-wide 

association studies (GWASs) to identify single-nucleotide polymorphisms (SNPs) that are 

significantly associated with functionally relevant microstructure in the brain16. The 

identified SNPs are co-located with genes that have been reported to play an important role 

in axonal guidance and cortical development.

Results

In our primary analysis, we tested for microstructure-function relationships between 

homotopic brain regions and the callosal pathways connecting them using dMRI and resting-

state functional MRI (fMRI) data from subjects in the UK Biobank project7. All subjects 

were selected based upon usable resting-state fMRI and dMRI data, in addition to genetic 

inclusion criteria (seeMethods section). The activity of homotopic region pairs is often 

synchronized, with high functional connectivity17,18. These pairs are primarily connected 

through the corpus callosum, the largest commissural pathway in the brain, which is well 

defined at typical imaging resolutions employed with dMRI.

Functional connectivity

We previously conducted a group-average decomposition of resting-state fMRI data using 

independent component analysis (ICA), which yielded 55 components corresponding to 

resting-state networks7,19. For the work here, more finely-grained functional “nodes” were 

then generated from these components by first splitting each component into its constituent 

parts for right and left hemispheres, and further splitting if a component still contained non-

contiguous brain areas. Homologous regions for the two hemispheres were then identified as 

nodes with strong similarity, producing 81 homotopic pairs (see Fig. 1.A). Functional 

connectivity was estimated at the single-subject level by partial correlation of the average 

BOLD signal time-series (equivalent to regressing out the time-series from all other regions 

prior to calculating pairwise correlations). This gives a connectivity matrix for each subject, 

which is summarized in Fig. 1.B as the mean partial correlation across all subjects. Entries 

in this matrix are ordered first by hemisphere and then by region number, such that inter-
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hemispheric connections are given in the upper-right and lower-left quadrants. Homotopic 

connections, shown on the diagonals of these quadrants, were found to express on average 

the strongest connections in the brain, larger than intra-hemispheric or heterotopic inter-

hemispheric connections (see Fig 1.C), in agreement with previous studies17,18.

White matter microstructural signature

A range of microstructural features was derived from the dMRI data for the white matter 

pathway connecting each pair of homotopic grey matter regions. The diffusion tensor model 

describes the 3D water displacement profile at each voxel using an ellipsoid20. We extracted 

estimates of fractional anisotropy (FA), mean diffusivity (MD) and anisotropy mode (MO)21 

from this tensor fit. Neurite Orientation Dispersion and Density Imaging (NODDI)15 is a 

more biologically motivated model that aims to decompose the diffusion signal into an intra-

cellular volume fraction (ICVF) and an isotropic volume fraction (ISOVF), the latter 

representing interstitial and cerebrospinal fluids. In addition, NODDI estimates an 

Orientation Dispersion (OD) index that quantifies the spread of fibres within the intra-

cellular compartment. These dMRI-derived metrics represent an average across thousands of 

cellular components within each imaging voxel (2x2x2 mm3). Fig. 1.D depicts a brain map 

of each microstructural metric averaged across all subjects. The white matter pathway that 

connects a given homotopic region pair was identified using probabilistic tractography22 

performed on the dMRI data between the regions.

Predicting functional connectivity with microstructure

We performed a multiple regression analysis to test whether the microstructural features 

could predict cross-subject patterns of functional connectivity in the main cohort of 7,481 

subjects. For a given homotopic pair of regions, the functional connectivity for all subjects 

was represented as a vector (Nsubjects x 1). To model the spatial patterns of white matter 

microstructure in a given tract, we begin by constructing a matrix that contains the dMRI-

derived metric of interest for every subject (i.e., a Nsubjects x Nvoxels matrix). The included 

voxels are restricted to the centre of the tract of interest using a standard “skeletonization” 

procedure23. Because these microstructure matrices are too large to robustly perform a 

direct regression (Nvoxels = 5750±4000), we use principal component analysis to reduce the 

matrix dimensionality. The top 30 principal components (see Supplementary Fig. 1) were 

extracted to serve as a set of regressors, resulting in an Nsubjects x 30 regression matrix (see 

Fig. 2 for an overview). Seven linear models were created for each homotopic pair: one for 

each of the dMRI-derived metrics (FA, MD, MO, OD, ISOVF, ICVF) and a multimodal 

approach combining all these microstructural metrics in a single matrix. For the multi-modal 

analysis, the microstructural matrix for each metric was first normalized by its first singular 

value, and these normalized matrices were concatenated to form a single multimodal matrix 

(of size Nsubjects x 6Nvoxels) that was again reduced to include only the top 30 principal 

components.

We first test the hypothesis that dMRI-based microstructure can be used to predict cross-

subject variation in functional connectivity consistently across many brain regions. We 

assessed the statistical significance of each model using permutation testing, performed 

independently across the homotopic pairs and models, and then corrected for multiple 
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comparisons (see Methods section). The significance (p<0.05, corrected) is indicated per 

microstructural metric in Fig. 3, and in more detail in Supplementary Fig. 2 as Manhattan 

plots of corrected p-values (family wise error). The overall regression model was able to 

predict a statistically significant amount of cross-subject variance in 72-90% of the 

homotopic brain regions (depending on the dMRI metric). The multi-modal microstructure 

model combining the six dMRI metrics provided a prediction of functional connectivity for 

the largest number of regions (72, representing 90% of the total brain areas considered). This 

result is not trivially guaranteed given that this model had the same number of regressors 

(30) as the other models. These results suggest a general relationship between microstructure 

and functional connectivity. We can further consider individual regressors (i.e., specific 

principal components). The statistically significant regressors generally correspond to the 

top principal components (left-most columns in Fig. 3). This indicates that the highest cross-

subject modes of microstructural variation also explain the most cross-subject variation in 

functional connectivity. As the regressors reflect the primary modes of variation in the dMRI 

data but are used to model the fMRI data, this property is not trivially guaranteed. For some 

regions, no significant associations were found between homotopic functional connectivity 

and a given microstructure metric. The multi-modal microstructure model again resulted in 

the largest number of significant regressors.

Having established that a microstructure-function link exists in most brain regions, we now 

consider the apparent strength of this relationship. Effect sizes of the regression models were 

evaluated in terms of percentage variance explained (equivalent to r2) in functional 

connectivity by the microstructural metrics. The average variance explained across all 

significant model fits was 3.5% (r = 0.19) for the multi-modal model that combines all 

dMRI microstructure metrics. Substantial variation in variance explained was found across 

the different brain regions investigated (Fig. 4). In the multimodal regression, variance 

explained was lowest for the middle temporal gyrus (1.1%, r = 0.09) and largest in the 

posterior cingulate cortex (12.7%, r = 0.36). These effect sizes are mapped back to the 81 

homotopic region pairs to visualize how strongly functional connectivity is explained by the 

underlying microstructure across the cortex (Fig. 5A). In addition, Z-scores were computed 

to summarize the overall model fits. The multi-modal microstructure regression model 

yielded on average a higher score than the regressions with any single microstructural metric 

(Z = 12.0 Fig. 4), suggesting that the different microstructural metrics explain different 

variance in functional connectivity. The model incorporating FA shows the highest average 

Z-score of all individual metrics (Z = 10.5), although the different metrics perform overall 

fairly similar (Fig. 4). A list of all brain areas investigated with their corresponding effect 

sizes for the multimodal microstructure model is given in Supplementary Table 1.

Tensor-based features (FA and MD in particular) have been shown to provide sensitive 

indicators of changes to tissue microstructure in a broad range of contexts. However, these 

measures can be influenced by multiple aspects of tissue microstructure12, making 

interpretation difficult. We tested whether functional connectivity relates to a microstructure 

feature with greater biological specificity. We build on our previous work demonstrating 

quantitative agreement of OD estimates derived from dMRI data and with myelin stains in 

the same post-mortem human brain tissue24. The callosal OD profile correlated well 

between the ex-vivo imaging data (both MRI and microscopy) and the in-vivo dMRI 
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NODDI analyses presented above, with both methods indicating high dispersion on the 

midline and lower dispersion in the lateral aspects of the callosum (Supplementary Fig. 3C). 

Furthermore, OD estimates at the midline of the corpus callosum was able to explain 

significant variance in interhemispheric functional connectivity (Supplementary Fig. 3). 

While the explained variance, 0.21% on average, was much less than with the spatially-

extended microstructure models presented above, the validation against histology 

demonstrates biological specificity of this particular association.

Model replication

We further tested the validity of the above models by applying them to the replication cohort 

of 3,873 subjects. Each replication subject’s data was projected onto the 30 regressors and 

then multiplied by the regression coefficients estimated from the main cohort to predict that 

subject’s functional connectivity. That is, the models are applied directly and not retrained 

on the new subjects. This therefore constitutes a direct prediction of functional connectivity 

from dMRI data in unseen subjects. As shown in Fig. 5, percentage variance explained was 

quantitatively very similar from region to region (2.5% on average) in the previously unseen 

subjects as in the main cohort upon which the model was based.

Several medial regions demonstrate notably high effect sizes, with in particular the posterior 

cingulate cortex and the intra-calcarine cortex having over 10% variance explained. Regions 

in the temporal lobe, ventral parts of frontal lobe and lateral aspect of the occipital lobe 

demonstrate the lowest variance explained. In addition to the corpus callosum, temporal lobe 

regions are connected via the anterior commissure. For these regions, we performed 

additional analyses in which the microstructural signature from the anterior commissure was 

used to predict functional connectivity (see Supplementary Fig. 4). While the anterior 

commissure microstructure was able to predict functional connectivity, it did not explain the 

data better than callosal microstructure, nor did a model including both tracts.

Negative control analysis

Although the above analyses suggest a general microstructure-function relationship, it is not 

clear whether these associations are specific to the pathway connecting a given pair of 

regions, or whether functional connectivity reflects global variance in the microstructural 

metrics across subjects. A new series of regression analyses were performed similar to those 

depicted in Fig. 2, but instead of taking microstructure values from a different “wrong” 

callosal tract (Fig. 6.A). From the 81 callosal sub-regions defined above, we selected a 

subset of 30 distinct tracts with minimal spatial overlap (Supplementary Fig. 5) for use as 

control (“wrong”) tracts (Fig. 6.B). We then assessed whether any of the control tract 

regressions had similar or better performance compared to the correct tract (Fig. 6.C). For 

70% (60% in the replication cohort) of the homotopic areas, the highest Z-score was 

obtained when the model was performed with the anatomically correct tract; overall, for 

81% of brain areas the correct tract ranked among the top three models (Fig. 6.D).

Genome-wide associations

We studied the influence of genetics on the microstructure-function relationships identified 

above with a series of genome-wide association studies (GWASs). All subjects in this 
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analysis were selected based on recent British ancestry and availability of genotype data that 

passed the quality control procedures of UK Biobank25. The target phenotypes used in the 

GWASs were the cross-subject variation in functional connectivity predicted by the 

microstructure model (i.e., the model fits; see Methods section and Supplementary Fig. 6). 

For each homotopic region pair, the GWAS consisted of a series of univariate correlations of 

the model fit with 11,734,353 single-nucleotide polymorphisms (SNPs). These GWASs were 

fully multiple comparison corrected.

Figure 7 depicts the association across SNPs for the homotopic pair with the largest variance 

explained in the multi-modal microstructure model (i.e., the posterior cingulate cortex). A 

group of SNPs in chromosome 14 demonstrated a strong association with the 

microstructure-function phenotype. These SNPs were co-located with the DAAM1 gene 

(Dishevelled Associated Activator of Morphogenesis 1), some were also within DAAM1’s 

promoter region (regulating expression of the gene)26. The DAAM1-protein plays an 

important role in the Wnt signalling pathway inside the cell, indirectly regulating cell 

polarity and movement during development. In the central nervous system, this protein has 

been shown to facilitate the guidance of commissural axons at embryonic stage in mice and 

drosophila27,28. Expression of the JKAMP gene (Jun N-Terminal Kinase 1-Associated 

Membrane Protein) was also regulated by these SNPs, as demonstrated by 3D chromatin 

interaction data29 (Virtual 4C30). Furthermore, the GWAS revealed many SNPs within the 

LPAR1 gene (Lysophosphatidic Acid Receptor 1) located in chromosome 9. LPAR1 encodes 

one of the six receptors involved in the lysophosphatidic acid signaling pathway in the 

cell31. SNPs co-located with both DAAM1 and LPAR1 were found for the microstructure-

function association of multiple brain areas (Fig. 7 and Table 1). Detailed Manhattan plots at 

the location of LPAR1 and DAAM1 are given in Supplementary Figures 7 and 8, 

respectively. Manhattan plots depicting the GWAS for the microstructure-function model fits 

of each homotopic region pair in the discovery cohort can be found in Supplementary Figure 

9.

The GWAS was repeated for subjects in the replication cohort. Rather than using the model 

prediction approach described above, the multi-modal microstructure models were first re-

trained to better explain functional connectivity with microstructure for these subjects (see 

Supplementary Fig. 10 for the effect of re-training). This approach was motivated to make 

the genetic replication analysis more fully independent of the discovery dataset. Replication 

GWAS was performed on microstructure-function phenotypes from the homotopic regions 

showing an association in chromosome 9 and 14 in the original subjects. Following common 

practice for replication GWA studies32, only SNPs that demonstrated a significant 

association in the discovery GWAS were tested. For SNPs within the LPAR1 gene in 

chromosome 9, associations with three out of five brain areas were replicated. The SNPs in 

chromosome 14 corresponding to the DAAM1 were replicated in two out of three brain 

areas (Fig. 7).

The GWAS results described above used microstructure-function model fits as the target 

phenotype. These results could simply reflect correlations of these SNPs with both 

functional connectivity and microstructure. To test for specificity, two additional GWASs 

were run using the following target phenotypes for each homotopic pair: (i) the functional 
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connectivity that remains unexplained by white matter microstructure (i.e., the residuals 

from each multimodal microstructure-function model) and (ii) the first principal component 

of the multimodal microstructure for the corresponding callosal pathway (i.e. the first 

regressor in the microstructure model). SNPs that were significantly associated with either 

of these two phenotyes in the discovery cohort and in the replication cohort are listed in 

Supplementary Tables 2 and 3. These GWASs did not find any SNPs co-located with either 

DAAM1 or LPAR1 in any homotopic region. This suggests that the relationship to DAAM1 
and LPAR1 is specific to the component of functional connectivity that can be predicted by 

white matter microstructure. The GWAS associating with the first principal component of 

multimodal microstructure yielded SNPs within the VCAN gene, which were previously 

found to associate with ICVF throughout white matter in the brain16.

Discussion

Although basic principles relating axonal properties to neural signalling are well established, 

the degree to which functional connectivity is mediated by microstructural organization at 

the level of macroscopic tracts is largely unknown. Several studies have related the 

“strength” and topology of structural connections to functional activity based on fMRI and 

dMRI10,33, but these studies are uninformative about microstructure. Here we focused on 

commissural fibres through the corpus callosum, a set of connections which can be 

estimated using MRI both structurally and functionally. Our results are consistent with 

previous work17,18 in that connections between pairs of homotopic areas were the strongest 

functional connections in the brain. Furthermore, studies have demonstrated that severing 

the corpus callosum reduces or extinguishes interhemispheric functional connectivity, 

providing evidence that communication between these regions is primarily facilitated by 

axons running through the callosum34,35.

In this study, we have demonstrated that white matter microstructure is associated with 

functional connectivity at the macroscopic level probed by imaging. The majority of brain 

regions (90%) show statistical evidence for a relationship between white matter 

microstructure and functional connectivity. Replication in nearly 4000 subjects demonstrates 

that the regression models fit in the main cohort have predictive power in unseen subjects.

On average these models account for 3-4% of the cross-subject variance in a given brain 

region, with considerable variation across regions – ranging from 1% to 13% variance 

explained. It is likely that our results underestimate the true relationships due to 

methodological limitations. MRI provides indirect estimates of functional connectivity and 

microstructure. In addition, the model order (linear with 30 regressors), choice of confounds 

(Supplementary Table 4), and potential for remaining indirect connections (regions not 

included in the partial correlation) could all lead to unexplained variance. This could be one 

source of the inter-regional variation, although some true biological variation is also likely. 

Methodological improvements may well increase the strength of the observed effect sizes. 

The ability to identify subtle relationships on the order of 1% (r = 0.1) is directly related to 

our large sample size; indeed, it is common for even smaller effect sizes to be considered 

valuable in genetic studies, provided replication is demonstrated. The recent advent of 

population-level imaging requires particular caution in distinguishing between the statistical 
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significance and biological meaningfulness of a given result36. Nevertheless, the 

identification of small effects can be a first step toward aggregate measures with greater 

explanatory power; for example, polygenic risk factors for disease combining univariate 

GWAS outcomes with small effect sizes have been enabled by population-level genetics 

studies37.

In both the main and replication cohort, functional connectivity was best explained in 

regions close to the medial aspect of the brain, for example the intra-calcarine and posterior 

cingulate cortex (see Fig. 5). It should be acknowledged that some of these regions emerged 

as single contiguous nodes after spatial ICA, where more distal homotopic pairs were 

separated by other brain structures (see Fig. 1). This could reflect fMRI signal blurring 

between the hemispheres, driving up the apparent functional connectivity. However, it is 

unclear why this functional connectivity would be better predicted by a completely 

independent measure of white matter microstructure estimated from diffusion MRI. To 

investigate this effect further, we conducted a correlation of the white matter tract length 

with the variance explained across homotopic region pairs, finding no significant 

relationship (r = -0.04, p = 0.70).

For the majority of the considered homotopic pairs (70%), the strongest model prediction 

was derived from microstructure in the anatomically-correct pathway, compared to 

microstructure obtained from any of the 30 other callosal pathways. This negative control 

analysis is informative because it establishes that microstructure-function relationships have 

a degree of regional specificity and do not simply reflect global (brain-wide) inter-individual 

differences in microstructure and associated function. A similar result has been 

demonstrated for resting-state functional connectivity between posterior cingulate and 

medial-frontal cortices, with FA from the correct white matter pathway (cingulum) being 

more highly correlated than an unrelated tract13. Interestingly, for a minority of the brain 

areas investigated, functional connectivity was better explained by microstructure from a 

“wrong” white matter tract. Success of control tracts in predicting a given brain region could 

be driven by confounded microstructural estimates in the correct tract, partial overlap of tract 

segmentations, or global (brain-wide) variations in microstructure and functional 

connectivity.

A general and important confound in our models is “partial volume” (spatial overlap) of 

tracts. Ideally one would estimate the properties of each axon connecting two brain regions. 

Instead, dMRI averages within a voxel or region of interest (in our case, a white matter 

tract). As such, dMRI measurements often mix multiple different white matter bundles; for 

example, in the centrum semiovale, callosal fibres cross the corticospinal tract and superior 

longitudinal fasciculus. As a result, our regression models will have included microstructural 

estimates from other tracts. More advanced modelling to exclude or model these partial 

volume effects would be valuable to increase specificity without reducing sensitivity.

Frontotemporal regions were particularly prone to being explained by a control tract. These 

region also tend to have lower functional homotopic connectivity, in agreement with 

previous literature38. These regions may have fractionally less callosal input and be 

primarily connected to intra-hemispheric brain areas via associations fibres39. Many 
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temporo-polar regions also have interhemispheric connections via the anterior commissure. 

We therefore also constructed microstructural models from connections running through the 

anterior commissure; however, these models did not improve the explained variance in 

functional connectivity (see Supplementary Fig. 4). The effect sizes for models based on the 

anterior commissure and the corpus callosum varied similarly across brain regions. This may 

reflect spatial overlap in the defined tracts close to grey matter, image registration errors, or 

variation in non-relevant variance in functional connectivity across regions (providing a 

ceiling on the explainable variance). In addition to brain activity, other sources may also 

contribute to the resting-state signal (see refs 40–42 for some excellent reviews).

Imaging microstructure with dMRI is a rapidly evolving field, including many models that 

were only recently developed. The biological interpretation of microstructural metrics is 

challenging and it is therefore not trivial to decompose the specific contributions of each 

microstructure parameter in explaining functional connectivity. The microstructural metrics 

used here each explain some unique aspects of the dMRI signal, but also share some mutual 

information (e.g., both ICVF and OD correlate with FA). The results presented here 

demonstrate that combining these metrics yields a more comprehensive characterization of 

the underlying microstructure. In addition, having the rich representation of microstructure 

along the entire tract better explained functional connectivity than simply using the mean of 

the tract (Supplementary Fig. 11).

To gain further insight into the microscopic tissue features driving the dMRI-derived 

metrics, evaluation against reference measures such as histology is essential. As such, we 

demonstrated good correspondence between OD profiles derived from the corpus callosum 

in ex-vivo dMRI and myelin staining24, providing confidence in the biological meaning of 

this specific measure. In agreement with histology24,43, the dMRI data used in our study 

indicates that fibres are more dispersed at the centre of the corpus callosum as compared to 

its lateral aspects. In Supplementary Fig. 3, we use this validated measure of fibre dispersion 

for a simple (single regressor) model to predict functional connectivity. However, this model 

provided much lower explanatory power (0.21% on average) than the multivariate regression 

models described above. This is likely because these more comprehensive models capture 

the spatial richness of microstructure metrics across the white matter tract, demonstrating 

how pooling multiple white matter phenotypes can explain more variance in functional 

connectivity.

Data richness in the UK Biobank project allowed us to associate genetic variants with the 

imaging derived phenotypes in this study. Meta-analyses in the ENIGMA consortium 

previously revealed genetic variants that were associated to imaging markers such as 

hippocampal volume44 and other subcortical structures32 in over 30,000 subjects. ENIGMA 

pools a vast collection of imaging data from several studies acquired with heterogeneous 

protocols. It remains to be seen whether the inclusion of a large number of subjects in 

ENIGMA effectively mitigates this data heterogeneity. In contrast, the UK Biobank project 

aims to maximise data homogeneity in 100,000 subjects with a common protocol and 

imaging platform7, which may enable more efficient identification of associations between 

imaging phenotypes and genetic variants16. Combining datasets from the UK Biobank and 
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ENIGMA can be used to further boost statistical power or can be used separately to replicate 

discoveries.

We conducted a genome-wide association study (GWAS) for each homotopic region pair to 

associate SNPs with the fraction of functional connectivity that was predicted by 

microstructure. In chromosomes 9 and 14, a group of SNPs was found showing a strong 

association with the cross-subject pattern of functional connectivity predicted by 

microstructure for multiple brain areas (Fig. 7). As no SNPs associated with these same 

genes were found in GWASs relating solely to functional connectivity or microstructure, 

these associations appear to be unique to the microstructure–function relationship (see 

Supplementary Tables 2 and 3). For the replication cohort, the SNPs in chromosome 9 – co-

located with LPAR1 – were replicated for three of the five brain areas showing hits in the 

discovery GWAS. The SNPs in chromosome 14 were replicated in two out of the three brain 

areas.

The identified SNPs in chromosomes 9 and 14 are associated with genes that have 

previously been shown to be important for brain development. The DAAM1 gene is 

expressed in many tissue of the human body and plays an important role in the Wnt 

signalling pathway45. In neuronal tissue, the DAAM1 protein is primarily found in the shaft 

of neuronal dendrites46 and in the developing brain it aids axonal guidance in targeting 

distal brain regions47. Knock-out studies in mice and drosophila have shown deficits in the 

central nervous system when DAAM1 is not expressed27. In particular, the formation of 

commissural fibres at an embryonic stage was disturbed28. Previous work relating cortical 

thickness to genetic variants also reported SNPs co-located with DAAM1 in the cuneus 

area16 (http://big.stats.ox.ac.uk). 3D chromatin data revealed that the SNPs in chromosome 

14 also regulate expression of the JKAMP gene29. While diseases associated with JKAMP 
include medulloblastomas48, its exact mechanism in brain development is not well 

described in literature. For chromosome 9, several SNPs were located in the LPAR1 gene, 

encoding a receptor involved in the lysophosphatidic acid signalling pathway. These 

receptors are found on the membranes of most cell types in the central nervous system and 

have been linked to some neural processes including but not limited to neurogenesis, 

myelination, microglial activation, and astrocytes responses31,49.

The degree to which functional connectivity between brain regions is mediated by 

microscopic properties (microstructure) of the white matter pathways is a fundamental 

question in neuroscience. We demonstrated that a fraction of cross-subject variation in inter-

hemispheric functional connectivity can be predicted from white matter tract microstructure 

connecting two homotopic regions. Our results suggest that microstructure-function 

relationships are general (across many brain regions), specific (with the correct tract out-

predicting control tracts) and reproducible (as a prediction in a replication cohort). 

Furthermore, the microstructure-function association was underpinned by genetic variants 

and in particular with SNPs co-located with the genes DAAM1 and LPAR1. Attribution of 

these relationships to specific biological sources, ideally in a causal manner, cannot be 

achieved with this kind of observational study but would likely require interventional studies 

in animals50.
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Materials & Methods

Data acquisition and pre-processing

We used resting-state functional MRI and diffusion MRI data provided by the UK Biobank 

project. An extensive overview of the data acquisition protocols and image processing 

carried out on behalf of UK Biobank can be found elsewhere7,19. Description of post-

processing pipelines and acquisition protocols of MRI data in UK Biobank are available at 

http://biobank.ctsu.ox.ac.uk/crystal/docs/brain_mri.pdf. Unless stated otherwise, processing 

of the MR images was performed using FSL51. All imaging data was acquired on a 3T 

Siemens Skyra MRI scanner (software platform VD13) using a 32-channel receive head coil.

Resting-state fMRI data with 2.4 mm isotropic resolution and whole-brain coverage (field of 

view, 88x88x64 matrix) was acquired in a six-minute session (multiband acceleration 8, 

TR=0.735 ms, 490 time-points). The functional data was motion corrected 52 and FIX-

cleaned53 to remove physiological noise and image artefacts, before transforming the data to 

a 2 mm MNI-template.

Diffusion MRI data were acquired at 2 mm isotropic resolution achieving whole brain 

coverage (field of view, 104x104x72 matrix) with two b-values (b=1000, 2000 s/mm2), with 

100 unique gradient directions over the two shells (50 directions/shell). The total acquisition 

time was 7 minutes (multi-band acceleration 3, TE/TR was 92/3600 ms). After eddy current 

correction of all images54, tensor metrics (FA, MD, MO) were calculated from the lower 

shell (b=1000 s/mm2) using DTIFIT. Both shells were used to estimate the NODDI model15 

metrics (ICVF, ISOVF, OD) using the AMICO toolbox55.

While not being explicitly used in this study, the UK Biobank imaging protocol includes 

several structural acquisitions that informed quality control pipeline and served as 

registration references for the functional and diffusion data7,19. T1-weighted structural 

scans were acquired using a 3D MPRAGE protocol (1.0x1.0x1.0 mm resolution, matrix 

208x256x256, TI/TR = 880/2000 ms, in-plane acceleration 2). T2-weighted imaging using 

fluid-attenuated inversion recovery (FLAIR) contrast provides estimates of white matter 

hyperintensities (3D SPACE, 1.05x1.0x1.0 mm resolution, 192x256x56 matrix, TI/

TR=1800/5000 ms, in-plane acceleration 2).

Quality control

Quality control (QC) is applied at several stages in this study. First, all raw data is subject to 

a standard pre-processing pipeline19 that generates several QC measures. The starting point 

for QC is the T1-weighted structural scan, which is essential for further processing of the 

other modalities (e.g., the generation of brain masks, tissue segmentations and as a reference 

for registration). Subjects are excluded if registration to standard space fails, likely due to 

excessive head motion, atypical structure and/or anatomical abnormalities (e.g., large 

ventricles). The full list of QC measures relating derived from the T1-weighted images is 

given elsewhere19. Based on the T1-weighted anatomical, 98% of all subjects were deemed 

suitable for further analysis. Next, the volume of white matter hyperintensities, used as 

confound variable, derived from the T2-FLAIR images is characterized with BIANCA56. 

This feature detects atypical structures and individuals with overt pathology19. Subjects can 
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additionally be excluded from further analysis on the basis of their dMRI and fMRI data due 

to bad EPI distortions, failed registration to T1, extreme bias fields, unusable fieldmaps 

and/or severe motion artefacts. 87% of the dMRI datasets and 94% of the rfMRI datasets 

were considered suitable for further analysis based on these QC measures. The relatively 

large number of dMRI scans being excluded was caused by a change in processing protocol 

that deemed some early scans unsuitable.

All subjects selected in this study had both usable dMRI and rfMRI data in addition to 

suitable genetics data (see section UK Biobank genetics data for more information). This 

yielded a total of 11,354 subjects; 7481 in the main cohort and 3873 in the replication cohort 

(randomly assigned). Overall, 5393 females were included, the mean age was 62.8 (SD 7.4) 

years and all subjects had recent British ancestry. No power calculation was needed in 

advance and we used all samples available. UK Biobank is an observational prospective 

epidemiological study, and all analyses in our study use all available subjects that fulfil the 

criteria described above. Hence there is no equivalent process of randomization that comes 

into this analysis. For the exact same reason, no blinding step was involved.

Variations in white matter microstructure and/or functional connectivity may be influenced 

by some of the QC measures (e.g. head motion) in a subtle way that does not require subject 

exclusion, but which could confound associations. A set of variables of no interest 

(confounds) are listed in Supplementary Table 4 that are used to deconfound the data prior to 

modelling (see section Predicting functional connectivity from white matter microstructure).

fMRI processing

The resting-state fMRI data were fed into an Independent Component Analysis (ICA) using 

the MELODIC tool57 to identify resting-state networks present on average in the whole 

population. First, data was reduced to 100 dimensions using PCA and then fed into spatial 

ICA, from which 55 components corresponded to functional regions, and the other 45 

judged to reflect physiological noise or image artifacts (“noise”)7,19. A functional 

component was split if it consisted of non-contiguous brain regions, yielding 81 bilateral 

(homotopic) regions that were further split between the hemispheres to estimate 

interhemispheric connectivity (see Supplementary Table 1). Average time-series were 

generated for all ICA components (i.e., homotopic areas and noise components) by a spatial 

regression of the subject’s voxelwise resting-state fMRI time-series with the ICA spatial 

maps. Further analyses were performed using the FSLNets toolbox (https://

fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets). The average time-series within a homotopic area 

was demeaned and “cleaned” by regressing out the time-series from the 45 “noise” 

component time courses. Functional connectivity was estimated between all pairs of 

components (2x81) by means of partial correlation of the cleaned time-series using Ridge 

regression with a regularization factor ρ=1. Partial correlation aims to estimate direct 

connectivity between two areas by first regressing out all other regions’ time-series before 

calculating the correlation (i.e., established through inversion of the covariance matrix).
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dMRI tractography

White matter tracts between functional regions were delineated using tractography. Up to 

three fibre orientations were fitted at each dMRI voxel in a Bayesian approach using 

bedpostX58 modified for multi-shell data59. Probabilistic tractography was then performed 

with the probtrackx2 algorithm22 by generating streamlines from a seed region (5000/voxel) 

in one hemisphere and only saving streamlines that passed through the corpus callosum and 

terminated in the same region in the contralateral hemisphere. This process was repeated by 

switching the seed and the target area between the hemispheres. The overlap of the identified 

tracts in this two-step approach were used to generate the mask corresponding to the tract of 

interest. The tracts were generated for all 81 homotopic pairs (each representing either the 

seed or the target area) for 10 subjects drawn from the UK Biobank dataset. Tracts between 

a given homotopic pair were then averaged across these subjects and served as a tract mask 

for all subjects stored in 1 mm MNI-space.

Tract based spatial statistics

Tract-based spatial statistics23 (TBSS) was used to align white matter tracts between 

subjects and extract microstructural information from the tract centre (skeleton). The version 

of TBSS used here employs an optimised non-linear registration (FNIRT) that avoids the 

need for the projection step in the original version of TBSS60. This avoids misalignment 

problems in which voxels can be projected onto a different tract that is in close proximity, an 

issue that has been highlighted from the original method61. The choice of FNIRT-based 

registration was motivated by its performance compared to other registration algorithms, as 

described previously19. We also evaluated the use of DTITK registration, which 

incorporates the full diffusion tensor to further improve the alignment of dMRI scans61, 

finding equivalent performance between the two algorithms (Supplementary Fig. 12 and 13). 

The tract reconstructions obtained with probabilistic tracking were used to mask the white 

matter skeleton voxels for a given homotopic region pair. Microstructural features derived 

from the diffusion tensor and NODDI fits were extracted from this final tract mask.

Predicting functional connectivity from white matter microstructure

We used a multiple linear regression model to predict homotopic functional connectivity 

from a set of regressors describing the spatial pattern of microstructure along a white matter 

tract. A rank-based inverse normal transformation was applied to all data to ensure 

normality. The regression model was constructed for each pair of homotopic regions 

separately:

Yi = Xiβ + εi, with i = 1, …, n

Here Yi (Nsubjects x 1) is a vector that contains the functional connectivity values of all 

subjects derived from homotopic region i (over n = 81 regions). To build a model using p 
microstructural regressors, we need to estimate a set of regression coefficients β (p x 1) that 

describe the relative contribution from the microstructural metrics Xi (Nsubjects x p) along 

the white matter tract.
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The regressors are derived in two stages. First, the microstructural metrics were extracted 

from the TBSS-voxels (white matter skeleton) corresponding to the tract of interest for every 

subject, yielding a matrix X°i (Nsubjects x Nvoxels). As the matrix X°i is very large, a direct 

regression with functional connectivity is ill conditioned. We therefore perform a 

dimensionality reduction on X†
I to derive a set of regressors reflecting the primary modes of 

variation of a given microstructural metric across space for the cohort of subjects. The 

microstructural matrices were first demeaned, and then a singular value decomposition was 

computed from matrix X°i. The top p components were retained, yielding matrix Xi 

(Nsubjects x p). In practice, p was set to 30 principal components, which approximately 

corresponded to a transition in the spectrum of singular values in terms of variance 

explained. This provides a somewhat conservative model order below the point around 

p=100 at which variance explained roughly tracked noise singular vectors (Supplementary 

Fig. 1) and linear regression is prone to overfitting.

Matrices Xi were constructed for each of the microstructure metrics separately, yielding six 

single-metric linear regression models per homotopic region. In addition, a multimodal 

regression model was created that combined across all microstructure metrics. For the 

multimodal regression, all raw microstructure matrices (X†
i) were demeaned and normalized 

through division by their first singular value to ensure comparable range of values. The six 

normalized matrices were then concatenated along the voxel dimension (Nsubjects x 6Nvoxels) 

and this matrix was reduced to the top 30 principal components as described above.

We defined a set of 64 confound variables of no interest that might bias the estimated 

regressors by correlating with the estimated microstructural measures (e.g. through artefacts 

such as partial volume). An overview of all confound variables is given in Supplementary 

Table 4. The confound variables were regressed out of the functional and microstructural 

data before fitting the regression models.

Statistical analysis

Statistical significance of the regression models was assessed by means of permutation 

testing, evaluating each regressor using a t-statistic. A null distribution was constructed for 

each model t-statistic by randomly permuting the functional connectivity values across 

subjects (100,000 permutations). Because multiple models were evaluated, correction for the 

family wise error (FWE) is also essential, where we corrected along three different 

dimensions of multiple comparison, as follows. First, we test multiple hypotheses in each 

model, i.e., which of the 30 microstructural principal components explains a significant 

amount of functional connectivity. Second, the models were applied to each of the 81 

homotopic region pairs. Finally, a total of seven models (six individual microstructural 

models and one multimodal model) were evaluated for each homotopic pair. Following the 

approach demonstrated by Winkler et al62, a maximum t-statistic null-distribution across all 

dimensions (regressor, regions and models) was generated from the permuted t-statistics. 

From this maximum t-statistics null-distribution, a corrected p-value was estimated for each 

of the non-permuted t-statistics. Furthermore, an F-statistic was computed to judge the 

overall performance of each regression model (degrees of freedom model and error, 30 and 

7450, respectively). The F-statistics were converted to Z-scores. Finally, the effect size of the 
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regression models was expressed in terms of percentage variance explained (equivalent to 

r2), describing the strength of the relationship between microstructure and functional 

connectivity.

Negative control analysis

The statistical tests described above test whether there is a relationship between functional 

connectivity in a given brain region and the microstructure in the white matter pathway that 

connects them. However, this does not provide any insight into whether these relationships 

are specific: for example, microstructure and function could correlate at the whole-brain 

level. In this case, a regression model could indicate a statistically significant relationship 

even when using a white matter pathway that does not connect a given homotopic pair. Such 

a relationship could still be biologically meaningful, but the interpretation would change 

(e.g., demonstrating that individual brains vary globally from hypo- to hyper-connected).

To test this, a negative control analysis was performed to evaluate the uniqueness of the 

microstructure-function relationships. From the 81 tracts in our study, a subset of 30 tracts 

with minimal mutual overlap were selected as canonical control (“wrong”) tracts. To identify 

the set of canonical control tracts, the Dice similarity index was computed among all tracts 

to quantify spatial overlap. Using k-means clustering (k=3 clusters), a cluster of tracts with 

the lowest average similarity indices was selected (Supplementary Fig. 5).

The regression models were then re-evaluated for each homotopic area using the control 

tracts, rather than microstructure from the anatomically correct tract for the homotopic pair 

of interest. If, for a homotopic area, the anatomically correct tract was among the control 

tracts, an additional control tract was selected. To summarize, the regression models of the 

homotopic regions were performed once for microstructure from the correct tract and 30 

times for the control tracts. Comparison between the correct and control tract analyses was 

conducted using the F-statistic converted to Z-scores.

UK Biobank genetics data

The GWASs were performed using the BGENIE software25. Acquisition and processing 

steps of the genetics dataset for all subjects in the UK Biobank project can be found in25. 

For the discovery cohort, we began with the set of 12,623 brain imaged UK Biobank 

subjects for whom data were released in July 2017. As in Elliott et al16, to avoid 

confounding effects that may arise from population structure or environmental effects, we 

selected a subset of 11,354 unrelated subjects with recent British ancestry. Ancestry was 

determined using sample quality control information provided by UK Biobank25. We then 

filtered the genetic data to remove SNPs with minor allele frequency < 0.01% or a Hardy-

Weinberg equilibrium p-value of less than 10-7, yielding a total of 11,734,353 SNPs 

distributed across the 22 autosomes. Not all of the UK Biobank subjects who underwent 

brain imaging have usable data with a given MRI modality. All the 11,354 unrelated 

samples, were subjects which had usable dMRI and fMRI data according to previous quality 

control19. Subjects were assigned to the discovery and replication cohorts in a similar 

fashion as for the MRI analyses.
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Ex-vivo MRI and histology data

MRI and microscopy data from three ex-vivo corpus callosum specimens were acquired and 

processed as described previously24. In brief, formalin fixed human brain tissue sections 

were scanned on a preclinical 9.4 T Varian MRI system. Diffusion MRI was performed with 

a spin-echo sequence with TE = 29 ms and TR = 2.4 s. Two shells were acquired (b = 2500 

s/mm2 and b = 5000 s/mm2), each with 120 gradient directions and 0.4 mm isotropic 

resolution. Eight images with no diffusion weighting were acquired. A parametric model 

was fit to the dMRI signals from the b = 5000 s/mm2 dataset to obtain orientation dispersion 

(OD) estimates63.

Following MR scanning, the specimens were histologically sectioned and 

immunohistochemically stained for myelin (proteo-lipid-protein). The sections were 

digitized and we obtained fibre orientation estimates at each pixel using structure tensor 

analysis64. From a 2D local neighbourhood (0.4 x 0.4 mm) corresponding to the size of an 

MRI voxel, a fibre orientation distribution was computed from which orientation dispersion 

(OD) was derived. After registration of dMRI and microscopy data to the same image 

space65, dispersion estimates were compared against each other in the corpus callosum.

Ethics and informed consent

All participants in the UK Biobank project signed an informed consent which is controlled 

by a dedicated Ethics and Guidance Council (http://www.ukbiobank.ac.uk/ethics). The 

Ethics and Governance Framework can be found at http://www.ukbiobank.ac.uk/wp-content/

uploads/2011/05/EGF20082.pdf. IRB approval, also from the North West Multi-center 

Research Ethics Committee, was obtained for the Ethics and Governance Framework.

Reporting Summary

Further information on research design is available in the Life Sciences Reporting Summary 

linked to this article.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Definition of homotopic brain regions and dMRI derived microstructural maps. A) 
Functional “nodes” were defined by applying independent component analysis to the 

resting-state fMRI data, splitting between the hemispheres, and isolating contiguous regions. 

These were then matched between hemispheres into 81 homotopic pairs, most automatically 

identified from the same independent component but 10 manually identified from different 

components. B) Connectivity between homotopic pairs was estimated by partial correlation 

of the average time-series of each node as shown in the connectome (matrix entries are 

sorted first by hemisphere and then by node number). C) Strength (partial correlation) of 

different functional connections in the brain, sorted by type. The centre line depicts the 
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median correlation coefficient for a specific type of connection; box limits, the 25th and 75th 

percentiles of the correlation coefficients; the whiskers extend to the most extreme data 

points excluding outliers (marked with a + symbol). Group-average estimates from n = 

11,354 subjects for n = 3240 connections evaluated. D) Group-averaged microstructure 

maps derived from the dMRI data.

Mollink et al. Page 22

Nat Neurosci. Author manuscript; available in PMC 2019 November 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 2. 
Prediction of functional homotopic connectivity from white matter microstructure. Between 

a pair of functionally defined homotopic areas (shown in orange in the brain), probabilistic 

tractography was performed to delineate the neuronal tract (shown in blue). The white 

matter skeleton voxels within a tract were stored as rows in a matrix for each subject. To 

extract the highest cross-subject variance among the TBSS voxels for a given microstructure 

metric, we performed a dimensionality reduction on this matrix using a principal 

components analysis. The top principal components (n = 30) were fed into a linear 

regression model as explanatory variables for the functional connectivity between a 

homotopic pair.
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Figure 3. 
Significant associations between functional connectivity and microstructure of the 

connecting white matter tract. Each row in the matrices represents a homotopic region pair 

with each entry a regressor (on the microstructural principal components) of the linear 

model. Significance of the regressors is color-coded. The graphs depict the number of 

regions for which a particular rank order principal component yielded a significant regressor 

(so for example, in the multimodal models, the first principle component was significant for 

28 brain regions). The percentage of homotopic region pairs demonstrating at least one 
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significant regressor is given in the label of each matrix. Statistical significance was 

determined using permutation testing (two-sided, n = 100,000 permutations, Puncorrected < 

2.9 x10-6, Pcorrected < 0.05, corrected for multiple comparisons).
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Figure 4. 
Percentage variance explained (r2) in the functional connectivity of each homotopic region 

pair by the microstructural metrics derived from the connecting white matter tract in the 

training cohort (n = 7481 subjects). The box-and-whisker plots on the bottom right depicts 

the model performance of each metric in terms of an F-to-Z transformed score. The centre 

line depicts the median Z-scores across the homotopic region pairs; box limits, the 25th and 

75th percentiles of the Z-scores; the whiskers extend to the most extreme data points 

excluding outliers (marked with a + symbol).
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Figure 5. 
Total variance explained (TVE) by the multimodal regression model in the training and 

replication cohorts. A) Variance explained mapped onto the brain surface. The maps were 

smoothed with 2 mm Gaussian kernel to aid visualization. A similar pattern across the brain 

was found for the regression models incorporating the individual microstructural metrics. B) 
Graph reporting percentage variance explained for each homotopic region. The model was 

trained on the main cohort of 7481 subjects. By applying the regression models trained on 

the main cohort, we could predict functional connectivity in the replication cohort of 3873 

unseen subjects. The homotopic region numbers on the horizontal axis correspond to the 

brain areas listed in Supplementary Table 1.
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Figure 6. 
Negative control analysis. A) In the wrong tract approach, the GLM-analysis was performed 

with a tract (shown in blue) that does not directly connect between a homotopic pair of 

interest (shown in orange). B) A total of 30 distinct tracts (12 shown here) were chosen 

based on minimal spatial overlap between them. C) For each GLM, an F-statistic (across the 

whole model, with the degrees of freedom for model and error, 30 and 7450, respectively) 

was calculated and transformed to a Z-score to compare between the correct tract and 30 

wrong tracts. All GLMs in this analysis were derived from the multimodal microstructural 

information. D) Rows from the matrix in C were sorted in descending order of Z-score and 
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labelled according to whether they represent the correct pathway or a different tract. The 

highest Z-scores (left-most column) correspond to the anatomically correct tract in 70% of 

cases, and overall the correct tract was in the top three models in 81% of cases.
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Figure 7. 
Genome-wide associations with the microstructure-function phenotype (i.e. the pattern of 

functional connectivity that can be predicted from white matter microstructure). The 

Manhattan plot depicts the associations with each SNP across all chromosomes expressed as 

the -log10 p-value. A) As an example, the genome-wide Manhattan plot is given for the 

homotopic brain region showing the highest variance explained by the microstructure – 

function model (n = 7481 subjects). The strongest association is with a SNP (rs74826997) in 

chromosome 14 (linear regression, two-sided). B) Single chromosome Manhattan plots are 

Mollink et al. Page 30

Nat Neurosci. Author manuscript; available in PMC 2019 November 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



shown for brain regions that associate with SNPs in either chromosome 9 or 14 that co-

located with the genes LPAR1 and DAAM1, respectively (linear regression, two-sided). The 

-log10 p-value of the SNPs in the discovery GWAS (7481 subjects) are depicted by the blue 

dots. In an additional cohort of 3873 subjects, we aimed to replicate the significant hits 

(black dots in single chromosome Manhattan plots). The ICA spatial maps of these brain 

areas are given for each of Manhattan plot. The brain area (posterior cingulate cortex) 

highlighted with max r2 corresponds to the genome-wide Manhattan plot in (A). A 

significance threshold is given for a -log10(p-value) equal to 7.5 corresponding to a p-value 

of ~3 x 10-8. Significance threshold for the replication GWAS was determined using 

Bonferroni correction (p < 1.47x10-4).

Mollink et al. Page 31

Nat Neurosci. Author manuscript; available in PMC 2019 November 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Mollink et al. Page 32

Table 1

Genome-wide associations (linear regression, two-sided) with the microstructure-function phenotype (i.e. the 

pattern of functional connectivity that can be predicted from white matter microstructure). Listed are rsids of 

the SNPs showing the most significant association that were replicated in the replication cohort. Some SNPs 

were associated with the microstructure-function model fits of multiple homotopic region pairs (highlighted in 

gray). The nearest gene of each SNP is reported with its possible function in the human central nervous 

system. Furthermore, the base-pair position, the SNP alleles, minor allele frequency (maf) and the p-values of 

the discovery (n = 7481 subjects) and the replication GWAS (n = 3873 subjects) are given. A significance 

threshold is given for a -log10(p-value) equal to 7.5 corresponding to a p-value of ~3 × 10-8. Significance 

threshold for the replication GWAS was determined using Bonferroni correction (p < 1.47x10-4)

chr node rsid nearest gene function in 
central nervous 
system

position ref allele minor allele maf discovery p-value replication p-value

9 60 rs10980625 LPAR1 Lysophosphatidic 
Acid Signaling in 
central nervous 
system

113665018 C C 0.11 7.24E-09 5.56E-06

62 rs34860245 LPAR1 113709884 T T 0.14 8.29E-10 3.76E-05

67 rs4556147 LPAR1 113651161 A A 0.22 1.09E-08 7.12E-08

14 1 rs76341705 DAAM1 Wnt signaling 
pathway, axonal 
growth and 
guidance

59628679 G G 0.12 1.28E-11 7.15E-08

35 rs74826997 DAAM1 59628609 T T 0.12 8.15E-16 1.63E-05

15 33 rs1080066 C15orf54 Associated with 
spinal cord tumor

39634222 A A 0.09 3.48E-13 3.18E-11
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