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Summary

Bidirectional changes over time in the estimated glomerular filtration rate and in urine protein 

content are of interest for the treatment and management of patients with lupus nephritis. Although 

these processes may be modelled by separate multistate models, the processes are likely to be 

correlated within patients. Motivated by the lupus nephritis application, we develop a new 

multistate modelling framework where subject-specific random effects are introduced to account 

for the correlations both between the processes and within patients over time. Models are fitted by 

using bespoke code in standard statistical software. A variety of forms for the random effects are 

introduced and evaluated by using the data from the Systemic Lupus International Collaborating 

Clinics.
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1 Introduction

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that affects multiple 

aspects of a person’s health, including skin condition, joint function and internal organs such 

as the kidney and neuropsychiatric systems. Because lupus nephritis (LN) is a cardinal 

feature of SLE, a recent study conducted by the Systemic Lupus International Collaborating 

Clinics (SLICC) aimed to investigate the bidirectional change over time in estimated 

glomerular filtration rate eGFR (the volume of blood that passes through the glomeruli of 

the kidney per minute) and proteinuria (urine protein content) in patients diagnosed with LN 

(Hanly et al., 2016). Since multistate models are well known as an approach to modelling 

processes with many discrete states that change over time (Hougaard, 1999; Andersen and 
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Keiding, 2002; Meira-Machado et al., 2009), Hanly et al. (2016) separately modelled the 

eGFR and proteinuria processes in the SLICC data with two multistate models. The results 

of their analyses, such as the time spent in the different eGFR and proteinuria states, are 

useful in subsequent health economic analyses to inform decisions in managing LN for SLE 

patients in practice (Barber et al., 2018).

However, because both eGFR and proteinuria processes reflect patients’ renal function over 

time with different aspects for measurement, it is desirable to account for the within-subject 

correlation that is induced by the underlying kidney function when modelling these two 

processes. In this paper, motivated by the LN study on the SLICC data, we develop a 

correlated multistate model approach for multiple processes by incorporating subject level 

random effects (REs) in the modelling framework. The method that is developed allows the 

incorporation of REs in models where some or all states are recurrent.

RE models have been considered in survival data analysis methods, where they are 

commonly known as frailty models (Hougaard, 1984, 1995; Aalen, 1988). Usually, a subject 

level RE is introduced to act multiplicatively on the hazard functions in the survival models. 

For multistate models, REs have also been used to account for subject level heterogeneity 

(Aalen, 1987; Satten, 1999; Cook et al., 2004; Sutradhar and Cook, 2008; Yen et al., 2010; 

O’Keeffe et al., 2011, 2013; Joly et al., 2012). However, existing works have considered 

only specific and relatively simple progressive multistate models that do not contain cycles; 

in other words, they are for non-reversible processes where there is zero probability of 

returning to each non-absorbing state in the model. We are not aware of works on reversible 

multistate models with subject level random effects. This is partly because of the 

computational burden in fitting such complicated multistate models. In this paper, we aim to 

address this challenge and also consider more complex models for multiple processes.

Specifically, we develop a new class of correlated multistate models with subject level 

random effects for multiple reversible processes. Assuming a gamma distribution for the 

subject level random effects, the within-subject correlation over time for each of the multiple 

processes is taken into account in our models, which, to some extent, relaxes the Markov 

assumption that is taken in the ordinary reversible multistate models without random effects. 

Moreover, we allow for the within-subject correlation across multiple processes at fixed 

times, which is sensible in the LN study context because the underlying renal function 

induces such correlation for the observed processes of eGFR and proteinuria. On the basis of 

the scientific context of the LN study, we further explore different forms of the REs in 

modelling the eGFR and proteinuria processes and assess these models by comparing the 

empirical Bayes estimates of REs and other summary estimates (e.g. the time spent in 

different states in a fixed time period). The results of our analyses are useful to the 

subsequent economic modelling for the LN study.

The remainder of the paper is organized as follows. In Section 2 we describe the motivating 

SLICC data. The new class of multistate models with REs is introduced in Section 3. 

Section 4 describes the likelihood function and estimation procedure for fitting these 

models. The analysis results for the SLICC data are presented in Section 5 and we conclude 

with a discussion in Section 6.
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2 The Systemic Lupus International Collaborating Clinics data

The SLICC comprise 32 academic medical centres across 11 countries and were established 

as an inception cohort for the long-term study of several outcomes in patients with SLE in 

October 1999 (Isenberg and Gladman, 2001). We focus on 568 patients from the SLICC 

inception cohort who have been diagnosed with LN and have at least two complete clinic 

visits before diagnosis of end stage renal disease or death up to December 2012. The clinic 

visits in the SLICC cohort are scheduled approximately annually. We calculated the mean 

time between consecutive visits for each of the 568 patients (a within-patient visit time 

summary measure) and the mean of these 568 within-patient values is 1.2 years with 

standard deviation 0.55 and interquartile range 1.00–1.24 years. As such, the time between 

visits does not vary considerably from patient to patient. In addition, the mean and standard 

deviation of the duration of follow-up are 5.2 and 3.1 years respectively. At each clinic visit 

several patient measurements are recorded, which include prescribed medications, lupus-

related variables such as American College of Rheumatology classification criteria for SLE, 

the SLE disease activity index 2000, SLEDAI-2K, and the SLICC–American College of 

Rheumatology damage index, together with eGFR (in millilitres per minute per 1.73 m2) and 

proteinuria level PU (in grams per litre per day).

As in Hanly et al. (2016), we are interested in the change in the eGFR and PU levels over 

time for the SLICC patients. At any time point, each SLICC patient is assumed to stay in 

one of three states based on clinical categorizations of their eGFR and proteinuria level 

(Hanly et al., 2016). These states are numbered from 1 (the least severe category of eGFR or 

PU) to 3 (the most severe category of eGFR or PU). Table 1 shows the definitions of the 

eGFR and PU states and Table 2 presents some example data for eGFR and PU states 

recorded at clinic visits during the SLICC LN study.

Table 3 shows the observed transition matrices for the eGFR and PU states in the SLICC 

data. In general, there are fewer transitions between different states for eGFR than for PU at 

two consecutive clinic visits. The numbers of patients in each state at the start of observation 

are eGFR state 1, 504, eGFR state 2, 58, eGFR state 3, 6, and PU state 1, 244, PU state 2, 

239, and PU state 3, 85, reflecting a range of disease severity at cohort entry across patients. 

We now consider the multistate models that will be used for the modelling of these eGFR 

and PU processes for the SLICC LN patient cohort.

3 Multistate models for eGFR and proteinuria

Movement by patients among the eGFR and PU states over time can be modelled by using 

multistate models (Hanly et al., 2016). Fig. 1 shows a pair of multistate models for eGFR 

and PU processes, with arrows showing permitted transitions between states. For each 

model, transitions between states are governed by a 3 × 3 matrix of ‘transition intensities’ 

and, for each model, the state space is {1, 2, 3} (since there are three states in each model). 

We define λrs(t) and μrs(t) to be the state r to state s transition intensities for the eGFR and 

PU models respectively ((r, s) ∊ {1, 2, 3} × {1, 2, 3}). Corresponding 3 × 3 matrices of 

transition intensities are denoted Λ(t) and M(t) where the (r, s) matrix entries are defined as 

λrs(t) and μrs(t) respectively.
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In these multistate models, movements among eGFR and PU states are governed by 

underlying stochastic processes {XeGFR(t)} and {XPU(t), with corresponding filtrations 

ℱt −
eGFR and ℱt −

PU on some time interval 𝒯 ⊆ [0, ∞) . Then, the state r to state s transition 

intensities are defined as

λrs t |ℱt −
eGFR = lim

δt 0

1
δt ℙ{XeGFR(t + δt) = s | XeGFR(t) = r, ℱt −

eGFR}, (1)

μrs t |ℱt −
PU = lim

δt 0

1
δt ℙ{XPU(t + δt) = s | XPU(t) = r, ℱt −

PU} . (2)

These transition intensities define the instantaneous rate of transition from eGFR or PU state 

r to state s and these may depend generally on states occupied by the system in the past 

through the dependence on ℱt −
eGFR or ℱt −

PU .

3.1 The Markov assumption

As in Hanly et al. (2016), we make the common assumption that eGFR or PU states 

represent the states of two continuous time Markov chains. With this assumption, the future 

evolution of the eGFR process depends only on the current eGFR state (and likewise for the 

PU process) so that the dependences on past histories ℱt −
eGFR and ℱt −

PU may be removed from 

the transition intensities (1) and (2). This allows a likelihood function to be formulated 

easily for model fitting and facilitates calculations, such as times spent in states and 

predicted transition paths over time. To fit the multistate models for eGFR and PU, we 

consider the state r to state s transition probabilities, i.e., for some time t2 >t1, the probability 

that the eGFR or PU process is in state s at time t2, conditionally on that process having been 

in state r at time t1, denoted

prs
eGFR(t1, t2) = ℙ XeGFR(t2) = s | XeGFR(t1) = r ;

prs
PU(t1, t2) = ℙ XPU(t2) = s | XPU(t1) = r .

We then make an additional assumption that these Markov multistate models are time 

homogeneous, where a transition probability between times t1 and t2 depends on the length 

of the time interval t2 − t1 rather than the specific time values (t1, t2). As such, transition 

intensity matrices may be considered constant within a given time interval. For example, in 

an interval [0, t) we may define the eGFR and PU transition intensity matrices as Λ and M, 

with corresponding transition intensity matrices at time t given by exp (Λt) and exp(Mt) 
respectively (Jackson, 2011). Here ‘exp’ denotes the matrix exponential for square matrices 

such that, for a square matrix A,
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exp(A) = ∑
k = 0

∞ Ak

k! .

R packages (R Development Core Team, 2008), e.g. mstate (Putter et al., 2006) and msm 

(Jackson, 2011), may be used to fit separate, uncorrelated, models for the eGFR and PU 

processes. As discussed in Section 1, in this paper we aim to introduce subject level random 

effects into this general multistate modelling framework, that includes reversible multistate 

models, to relax the Markov assumption, to reflect patient level heterogeneity better and to 

account for correlation between multiple processes.

3.2 Inclusion of random effects

We have defined two matrices that contain transition intensity parameters for each of the 

eGFR and PU processes, Λ(t) and M(t), where the (r, s) element of the corresponding matrix 

denotes the eGFR or PU state r to state s transition intensity at time t. Assuming that there 

are N subjects in the data (for the SLICC data N = 568), then for each subject we define an 

RE Ui (for i ∊ {1, … , N}), where Ui could be interpreted as an underlying propensity of the 

ith subject to move through the states of the models over time. Here, Ui is a continuous 

random variable with support on (0, ∞).

In addition, we may define bijective functions of Ui with the form grs
( j) Ui

grs
( j):Ui [0, ∞), j ∈ {1, 2} .

For simplicity of notation, j = 1 refers to the eGFR model and j = 2 refers to the PU model. 

Then, multiplying the (r, s) element of Λ (t), λrs(t), by grs
(1)(Ui), we form a set of subject-

specific transition intensities

λrs(Ui, t) = grs
(1)(Ui)λrs(t)

such that the subject-specific transition intensity matrix for the eGFR process is

Λ (t |Ui) =

−λ12(Ui, t) λ12(Ui, t) 0

λ21(Ui, t) −λ21(Ui, t) − λ23(Ui, t) λ23(Ui, t)

0 λ32(Ui, t) −λ32(Ui, t)
.

Similarly, we can specify

μrs(Ui, t) = grs
(2)(Ui)μrs(t)

such that the subject-specific transition intensity matrix for the PU process is
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M(t |Ui) =

−μ12(Ui, t) μ12(Ui, t) 0

μ21(Ui, t) −μ21(Ui, t) − μ23(Ui, t) μ23(Ui, t)

0 μ32(Ui, t) −μ32(Ui, t)
.

grs
( j) Ui  can differ between the two processes and/or specific transitions, which enables a 

flexible approach to incorporating the subject-specific RE into the transition intensities. For 

example, it is probably sensible to assume that the SLICC patients who had higher 

deterioration transition intensities to move into more severe eGFR states (from state 1 to 2, 

and from state 2 to 3) were less likely to improve by moving from state 3 to state 2 or from 

state 2 to state 1. In other words, they tended to have lower improvement transition 

intensities. Therefore, we could specify grs
(1) Ui  to reflect such an inverse relationship 

between subject-specific deterioration and improvement transition intensities.

Incorporation of REs Ui introduces both within-subject correlation over time for each 

individual process and the within-subject correlation across the two processes at fixed time 

points. This first correlation is useful to account for the remaining serial correlation after 

taking the Markov assumption for individual processes, whereas the second correlation, 

which is arguably more important, is reflecting the association of the eGFR and PU 

processes that is induced by the underlying renal function of the patients. In addition, as with 

other mixed effects models, the inclusion of REs accounts for unobserved heterogeneity 

between patients. This could be important when comparing this class of models with those 

without REs, especially if included explanatory variables have not truly reflected differences 

in the outcome processes between patients or differences in the number of observations 

made per patient.

In the next section, we outline the models that will be considered for the SLICC LN data by 

highlighting the different forms of grs
(1) Ui  and grs

(2) Ui  for REs. Throughout, for simplicity 

of notation, we assume that the fixed effects part of the transition intensity is time 

homogeneous, i.e.

λrs(t) = λrs,

μrs(t) = μrs .

3.3 Different forms of random effects

3.3.1 Model without random effects—First, a multistate model without REs can be 

used to model the eGFR and PU processes separately. Here we set grs
(1)(Ui) = grs

(2)(Ui) = 1 and 

transition intensities for the eGFR and PU processes are given by λrs(Ui) = λrs and μrs(Ui) = 

μrs respectively. As discussed earlier, this model does not take into account the correlation 

between the eGFR and PU processes and the Markov assumption might not be sufficient to 

account for all within-subject serial correlations for each of the two processes.
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3.3.2 Simple random-effects model—Simple REs can be incorporated such that Ui 

acts multiplicatively in the same manner on each baseline transition intensity by choosing 

grs
1 Ui = Ui and grs

2 Ui = Ui . This simple RE model can be useful to characterize the 

phenomenon that the patients who had higher deterioration transition intensities would also 

have higher improvement intensities, i.e. patients were homogeneous in terms of how 

quickly they moved between states.

3.3.3 Inverse random-effects model—As mentioned earlier, there could be an inverse 

relationship between subject-specific deterioration and improvement transition intensities. 

Therefore, in the inverse RE model, we assume that the RE Ui acts differently on 

deterioration and improvement transition intensities. Specifically, Ui acts multiplicatively on 

deterioration transitions, whereas the inverse 1/Ui acts multiplicatively on improvement 

transitions, i.e. for r ∊ {1, 2}

λr, r + 1 Ui = Uiλr, r + 1,

λr + 1, r Ui = 1
Ui

λr + 1, r,

μr, r + 1 Ui = Uiμr, r + 1,

μr + 1, r Ui = 1
Ui

μr + 1, r,

Here gr, r + 1
1 Ui = Ui and gr, r + 1

2 Ui = Ui, whereas gr + 1, r
1 Ui = 1/Ui and gr + 1, r

2 Ui = 1/Ui .

3.3.4 Power inverse random-effects model—It is very possible that the RE acts on 

the eGFR and PU processes through the same functional forms but with different 

variabilities on the log-scale. Therefore, we relax the assumption in the inverse RE model 

and introduce the power inverse RE model, where a power transformation indexed by a new 

parameter α is applied to the RE when incorporated in the model for the PU process. 

Specifically, we choose 

gr, r + 1
(1) (Ui) = Ui and gr, r + 1

(2) (Ui) = Ui
α, and gr + 1, r

(1) (Ui) = 1/Ui and gr + 1, r
(2) (Ui) = 1/Ui

α for r ∈
{1, 2} .

Note that the parameter α ∊ ℝ needs to be estimated.

3.3.5 Separate random-effects model—Finally, we could ignore the correlation 

between the eGFR and PU processes, and fit separate inverse RE models to the two 

processes. Specifically, for each patient we define two independent REs 

Ui
(1) and Ui

(2) i ∈ 1, …, N . For r ∊ {1, 2}, we choose 

gr, r + 1
1 Ui = Ui

(1) and gr, r + 1
2 Ui = Ui

(2), and gr + 1, r
1 Ui = 1/Ui

(1) and gr + 1, r
2 Ui = 1/Ui

(2) .

As discussed earlier, ignoring the correlation between the eGFR and PU processes that is 

introduced by the underlying renal function may not be desirable. In Section 5, we shall 

compare the results from different RE models fitted to the SLICC LN data and examine the 

model likelihoods as well as the corresponding empirical Bayes estimates of REs to evaluate 

the plausibility of different models based on the evidence from observed data.
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4 Likelihood and estimation

4.1 Likelihood function

In the SLICC LN data, we have measurements over time on the eGFR and PU processes for 

each of 568 patients. We denote ti = (ti1, … , tini)T to be the discrete time points at which the 

eGFR and PU states are recorded for the ith patient (with ni > 1). Let λ and μ be the vectors 

of fixed baseline transition intensities for the eGFR and PU processes, where

λ = λ12,λ21,λ23,λ32
T,

μ = μ12,μ21,μ23,μ32
T .

In addition, we assume that the distribution of the RE of the ith patient is parameterized by θ 
with probability density function fUi(ui, θ). In this paper, we shall assume that Ui has a 

Γ(1/θ, 1/θ) distribution for some θ > 0, which is a common choice for a frailty distribution 

in survival models (Clayton, 1978; Vaupel et al., 1979; Oakes, 1982; Henderson and 

Shimakura, 2003). Let ϕ = (λ, μ)T denote the collection of parameters that need to be 

estimated.

For each subject, we consider the states of each multistate model in continuous time as states 

of a Markov chain. The movement between states over time may be represented 

diagrammatically as a transition path of the form

Xi
( j)(ti1) … Xi

( j)(tini
)

where Xi
( j)(t) is the random variable that is the state, for the ith patient in the jth multistate 

model (j = 1, eGFR model; j = 2, PU model) at time t. Under the Markov assumption, the 

probability of observing a particular transition path (xi
( j)(ti1), …, xi

( j)(tini
)) in the jth multistate 

model, for the ith subject, is

∏
k = 1

ni − 1
ℙ{Xi

( j)(tik + 1) = xi
( j)(tik + 1) | Xi

( j)(tik) = xi
( j)(tik), ϕ, ui} .

The joint likelihood for the ith patient for both the eGFR and the PU processes, given the RE 

ui, can be written as

Li(ϕ | ti, ui) = ∏
j = 1

2
∏
k = 1

ni − 1

ℙ{Xi
( j)(tik + 1) = xi

( j)(tik + 1) | Xi
( j)(tik) = xi

( j)(tik), ϕ, ui} . (3)
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The inclusion of ui allows a dependence between probabilities in the product (3). Integrating 

over the RE distribution, the overall contribution to the model likelihood function, from the 

ith patient, is

Li(ϕ, θ | ti) = ∫
0

∞
Li(ϕ | ti,ui) f Ui

(ui, θ )dui . (4)

Finally, the likelihood function to be maximized for estimation is

L(ϕ, θ | t) = ∏
i = 1

N
Li(ϕ, θ | ti) (5)

where t = (t1
T, …, tN

T )T .

4.2 Estimation

The maximization of the likelihood function requires integration with respect to the RE ui. 

For some multistate models, usually where the state space is small and all states of the 

model are transient, it may be possible to perform this integration analytically. However, in 

general, it is necessary to use numerical integration to evaluate equation (4), especially in 

reversible multistate models.

To compute and maximize the likelihood function (5), we used the statistical software R (R 

Development Core Team, 2008). In particular, the msm package (Jackson, 2011) was used to 

compute the contributions from single subjects to the model likelihood function, given the 

REs Ui (i.e. the expressions in equation (3)). Numerical integration in equation (4) was 

performed by using the integrate command. We considered a gamma-distributed RE and, 

when performing numerical integration, we transformed the RE by defining vi = exp (−ui) so 

that numerical integration could be performed over (0, 1] rather than [0, ∞), making the 

numerical integration step easier to implement.

Maximum likelihood estimates for model parameters, together with a numerically derived 

Hessian matrix, were obtained by using the Broyden–Fletcher–Goldfarb–Shanno 

optimization method (Broyden, 1970), implemented by using the optim command. The 

speed of the computation process is increased through the use of multicore programming via 

the parallel package. An outline of the R code that was used for the maximization of the 

likelihood function is provided in the on-line supporting information for this paper. In the 

next section, we fit previously described multistate models to the SLICC LN data and 

compare the inferences concerning the eGFR and PU processes over time in the SLICC LN 

patients.
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5 Modelling renal disease progression in systemic lupus erythematosus 

patients

Using the models that were described in Section 3, we analysed the SLICC LN data and 

examined the bidirectional change over time in the eGFR and PU processes.

5.1 Model comparison

Table 4 summarizes estimated transition intensities as well as variance component estimates 

for REs from various fitted models.

It is not surprising that the transition intensities from the marginal model without REs are all 

smaller than those from the models with REs, because of the attenuation of marginal 

transition intensities in a similar manner to the difference between marginal and conditional 

covariate effects in the longitudinal data analysis literature (Diggle et al., 2002). There is a 

marked increase in the maximized log-likelihood between the marginal model and all RE 

models, which suggests that the introduction of REs into the multistate models leads to a 

better fit to the SLICC LN data.

Among the RE models, the inverse and power inverse RE models have the largest 

maximized likelihoods (−2367.93 and −2367.46 respectively) and smallest Akaike’s 

information criterion values. This suggests that the assumption of the inverse relationship 

between the deterioration and improvement transition intensities is better supported by the 

data. Moreover, the improvement of the fits of both inverse RE models compared with the 

separate RE model also indicates that there is evidence of underlying correlation between 

the eGFR and PU processes.

The power inverse RE model is an extended version of the inverse RE model, where the RE 

on the PU part of the model has the form Ui
α . In Table 4 we see that the estimate of α is 

1.221 with corresponding 95% confidence interval (0.733, 1.708), which implies that α = 1 

is a plausible value. This is also supported by the very similar maximized log-likelihoods 

from these two models. As a result, it is reasonable to assume that REs are not acting 

differently on the log-scale for the eGFR and PU processes. The transition intensity 

estimates and associated 95% confidence intervals are also very similar when comparing the 

inverse RE and power inverse RE models.

For the separate RE model, that assumes independence between the eGFR and PU 

processes, the PU transition intensity estimates (μ12, μ21, μ23, μ32) and RE variance estimate 

θ(2) are very similar to the corresponding estimates in the inverse RE model. However, this 

is not so for the eGFR transition intensity estimates (λ12, λ21, λ23, λ32), which differ 

substantially from corresponding estimates in the inverse RE model. This can probably be 

explained by the different variance component estimates for the REs in the eGFR process. In 

the separate RE model, the estimate of θ(1) is 1.213 whereas in the inverse RE model the 

estimate of θ is 0.549. Therefore, the eGFR transition intensity estimates and the 

corresponding confidence intervals in the separate RE model are inflated by the larger 

estimate of θ(1). In contrast, the variance component estimate for the REs in the PU process, 
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θ(2), is 0.599, which is close to θ = 0.549 in the inverse RE model. Thus, the PU transition 

intensity estimates are similar between the two models. However, note that the variance 

component θ(1) also has very wide 95% confidence interval (0.149, 9.85), probably because 

fewer transitions around the model space are observed for the eGFR process than for the PU 

process (see Table 3). In addition, a likelihood ratio test comparing this separate RE model 

with a separate RE model where the RE variances are constrained to be the same leads to a 

χ2 test statistic of 2.10 on 1 degree of freedom. Hence there is insuficient evidence to 

support different variances for the two RE distributions.

Overall, for the inverse RE model the maximized log-likelihood value is greater and the 

Akaike information criterion value is smaller when compared with the corresponding values 

for the separate RE models. As a result, although parameter estimates—particularly for PU 

transition parameters—do not differ substantially between these models, it is reasonable to 

assume that there is a level of dependence between the eGFR and PU processes and that a 

model with shared REs is preferable to either a model that includes separate REs or the 

marginal models (without REs) for eGFR and PU when modelling these data.

5.2 Empirical Bayes estimates of random effects

To compare different RE models further, we examined the empirical Bayes estimates of the 

REs from these models. The empirical Bayes estimates of the REs are given by

ui = 𝔼 (Ui |ϕ, θ)

=
∫0

∞
ui f Ui

(ui, θ)Li(ϕ; ui, ti)dui

∫0
∞

f Ui
(ui, θ)Li(ϕ; ui, ti)dui

.

Here Li ϕ; ui, ti  denotes the contribution to the model likelihood function from the ith patient 

in the SLICC LN data, evaluated at the corresponding model parameter estimates ϕ . Fig. 2 

shows histograms of the empirical Bayes estimates of the REs from each of the RE models 

(simple RE, inverse RE, power inverse RE and separate RE). Corresponding summary 

statistics are given in Table 5.

From Fig. 2 and Table 5, it is clear that the empirical Bayes estimates in the simple RE 

model, which assumes that REs act in the same manner on forward and backward 

transitions, are less variable than those in the inverse RE model. This is expected since the 

estimated RE variance (Table 4) is higher for the inverse RE model than for the simple RE 

model. The empirical Bayes estimates are very similar for the inverse RE and power inverse 

RE models. This is also not surprising, given the similarity of the fits of these two models in 

Table 4. Finally, when considering the separate RE model, Fig. 2 shows that the empirical 

Bayes estimates for the REs in the PU process are very similar to the overall empirical 

Bayes estimates in both the inverse and the power inverse RE models. In contrast, the 

histogram of empirical Bayes estimates for the REs in the eGFR process in the separate RE 

model (Fig. 2(d)) has a very different shape in which much of the mass occurs below 1 with 

much more right skewness. This suggests, consistent with estimated RE variances for these 
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separate models, that variability between patients for the eGFR process is higher than for the 

PU process. However, as indicated earlier, the observed data also support a common level of 

variability because of the limited information that is available for the eGFR process.

Examining the data more closely, we find that, for the eGFR process, 451/568 patients 

(79.4%) are observed to stay in their initial eGFR state during the entire study follow-up. 

Conversely, for the PU process, 189/568 patients (33.3%) are observed to stay in their initial 

PU state at all clinic visits. This implies that patients tended to move frequently with respect 

to PU states rather than eGFR states, which was also noted in the recent analysis of the 

SLICC LN data using marginal multistate models by Hanly et al. (2016).

As a further assessment of the level of within-subject correlation between the eGFR and PU 

processes, Fig. 3 shows a scatter plot of the empirical Bayes estimates of the REs for the 

separate RE eGFR and PU models. The Pearson estimate of linear correlation between these 

empirical Bayes estimates was calculated as 0.282. Although Fig. 3 does not show an 

obvious linear relationship between the estimated REs for all subjects, there is a clear cluster 

of points where smaller eGFR empirical Bayes RE estimates (typically values below 1) seem 

to coexist with smaller PU empirical Bayes RE estimates (also values below 1). We note that 

these models do not contain subject level explanatory variables and it is likely that, after the 

inclusion of extra variables, the variability in the empirical Bayes estimates would be 

reduced. Overall, it seems likely that there is a correlation between the eGFR and PU 

processes, in line with other results seen in this work and in Hanly et al. (2016).

5.3 Time spent in states in a fixed time period

Following Hanly et al. (2016), we also estimated the expected time spent in each state (for 

both eGFR and PU) over a fixed time period, which can feed into the subsequent economic 

modelling of the SLICC LN data.

Because the inverse RE model provides the best fit among all models that are under 

consideration, we shall use the fitted inverse RE model to generate the expected time spent 

in the eGFR and PU states in a 5-year period. For comparison, we also provide the results 

based on the marginal model, which was used in the analysis in Hanly et al. (2016).

On the basis of the fitted inverse RE model, we present two versions of the estimated 

expected time in states. One is by conditioning on REs Ui = 1, which can be interpreted by 

the estimated expected time in eGFR and PU states for a typical patient in 5 years. Let 

Xi
(1)(t) = r denote the current eGFR state for a given subject at time t. Conditionally on being 

in state r1, at time t1, the expected time spent in the state r over the period of time from t1 to 

t1 + 5 for a typical patient with Ui = 1 is given by

∫t1

t1 + 5
ℙ {Xi

(1)(t) = r | Xi
(1)(t1) = r1, ui = 1}dt .

The second version is obtained by calculating
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∫t1

t1 + 5
∫0

∞
ℙ {Xi

(1)(t) = r | Xi
(1)(t1) = r1, ui} f Ui

(ui; θ ) dui dt .

This double integration can be performed by using the adaptIntegrate command in the R 

package cubature (Narasimhan and Johnson, 2013). Alternatively, it can be done as 

follows:

(a) sample REs from the Γ (1/θ , 1/θ ) distribution given the point estimate θ ,

(b) estimate the expected time in eGFR states given the sampled REs and

(c) calculate the sample averages of all expected times in the eGFR states across the 

RE samples.

The first version can be considered as the conditional estimates, whereas the second version 

is the marginal (population-averaged) estimates by averaging over the RE distribution. In 

this sense, the second version can be compared with the estimates from the marginal model 

without REs. Similar calculations can be done for the PU process as well.

Table 6 shows estimated times spent in the various states for eGFR and PU, conditional on 

initial states over a 5-year period, calculated by using these methods and beginning at some 

arbitrary time, owing to the assumption of time homogeneity (here, for specificity, t1 = 0). 

Examining Table 6, we see that, for patients who start at eGFR state 1, the marginal 

expected times in different eGFR states are similar for the inverse RE model and the 

marginal model. However, for patients who start at eGFR states 2 and 3, they have longer 

expected times in eGFR state 1 and shorter expected times in eGFR states 2 and 3 on the 

basis of the inverse RE model than for the marginal model (for initial state 2: 3.10 versus 
2.66 years spent in state 1, 1.61 versus 1.94 years spent in state 2 and 0.29 versus 0.40 years 

spent in state 3; for initial state 3, 2.07 versus 1.19 years spent in state 1, 1.08 versus 1.23 

years spent in state 2 and 1.85 versus 2.58 years spent in state 3). For the PU process, the 

expected times in the states are broadly similar between the two models, although we also 

note that the inverse RE model provides longer expected time in the PU state 1 when the 

initial state is 3 (2.52 versus 1.94 years).

Overall, the inverse RE model estimates suggest that patients were more likely to improve 

over time in terms of eGFR, compared with the estimates from the marginal model without 

REs. These results will lead to different cost estimates related to the eGFR states in the 

subsequent economic modelling, which suggests the significance in characterizing the 

heterogeneity between patients and accounting for correlation when modelling multiple 

processes of renal disease progression in SLE as developed in this paper. Indeed, for further 

health economic or cost-effectiveness analysis, including REs in multistate models to reflect 

heterogeneity could be advantageous in accounting for variation that is induced by this 

heterogeneity when compared with marginal models. This is in line with other approaches 

that incorporate uncertainty and patient level heterogeneity in such multistate models, e.g. 

model averaging (Jackson et al., 2009), probabilistic sensitivity analysis (Baio and Dawid, 

2015) or Bayesian approaches (Baio, 2012).
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Examination of the expected occupancy times for combinations of eGFR and PU states can 

also be done. Let (Xi
(1)(t), Xi

(2)(t)) = (r, s) denote the current joint eGFR and PU state for a 

given subject at time t. Conditionally on being in state (r1, s1) at time t1, the expected time 

spent in the state (r, s) over the period of time from t1 to t1 + 5 is given by

∫t1

t1 + 5
ℙ{Xi

1 t = r | Xi
1 t1 = r1}ℙ{Xi

2 t = s | Xi
2 t1 = s1}dt

from the marginal model and

∫t1

t1 + 5
∫0

∞
ℙ {Xi

1 t = r | Xi
1 t1 = r1, ui} ℙ {Xi

2 t = s | Xi
2 t1 = s1, ui} f Ui

(ui;θ ) dui dt

from the inverse RE model. This double integration was performed by using the 

adaptInteg rate command in the R package cubature (Narasimhan and Johnson, 

2013).

Table 7 presents estimated expected times for the combined states based on the marginal 

model and the inverse RE model. In contrast with the expected times for each process 

separately (Table 6), estimating the time spent in the joint eGFR and PU state can lead to 

more detailed cost comparisons when the costs can be further categorized on the basis of the 

joint eGFR and PU state (Williams et al., 2017). This highlights the flexibility of our joint 

modelling approach as expected times spent in both joint and marginal (individual) states 

over a given period can be obtained to inform cost analyses. We also note that other common 

measures that are considered when fitting multistate Markov models, such as expected first-

passage times, expected number of visits to a particular state within a given time period and 

mean sojourn times, can be easily computed within our modelling framework.

5.4 Further examination of the eGFR and PU processes

As a further comparison and examination of the relationship between the eGFR and PU 

processes, we fitted an inverse RE multistate model for the eGFR process, but with the PU 

state as an explanatory variable acting on eGFR transitions. Likewise, an inverse RE 

multistate model for the PU process was fitted with the eGFR state as an explanatory 

variable. The results from these fitted models are shown in Table 8.

In Table 8, for the eGFR model we see that deterioration transitions (eGFR state 1 → eGFR 

state 2 and eGFR state 2 → eGFR state 3) occur at a faster rate for subjects in higher PU 

states. Specifically, the estimated eGFR state 1 → eGFR state 2 transition intensities are, on 

average, exp(0.928) = 2.53 and exp(1.556) = 4.74 times higher for subjects in PU state 2 and 

PU state 3 respectively, when compared with those in PU state 1. Similarly, the estimated 

eGFR state 2 → eGFR state 3 transition intensities are, on average, exp(1.581) = 4.86 and 

exp(2.401) = 11.03 times higher for subjects in PU state 2 and PU state 3. The estimated 

log-intensity ratios do not suggest significant differences between subjects in different PU 

states on improvement eGFR state transitions.
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In contrast, the log-intensity ratio estimates for the effect of eGFR state on the model for PU 

do not suggest that the eGFR state is significantly associated with PU state transitions. We 

note that the baseline PU state transition intensity estimates (μ12, μ21, μ23, μ32)T in Table 8 

are similar to those given in the separate RE model in Table 4. This may be expected since, 

for most subjects, the eGFR process is less variable over time when compared with the PU 

process. Therefore there are fewer changes in the eGFR state explanatory variable and less 

power to detect its relationship with the PU process. In addition, in these separate models 

dynamic covariates are assumed to be piecewise constant over time, which reflects a lagged 

relationship between the processes, whereas, in our joint model, the common RE reflects a 

cross-sectional correlation. Overall, consistent with the findings in Hanly et al. (2016), there 

is some evidence to suggest that the PU and eGFR processes are associated after accounting 

for other patients’ heterogeneities.

6 Discussion

In this paper, motivated by the application of modelling renal disease progression in patients 

with LN, we have developed methodology using subject-specific REs for correlated 

multistate models of multiple processes in continuous time. Data on related but different 

multiple processes are frequently collected in longitudinal studies but, within the multistate 

model framework, relatively little progress has been made on the use of REs to model such 

multiple processes, particularly for reversible processes. Motivated by the SLICC LN data, 

we developed multistate models with various forms of subject-specific REs for a pair of 

processes. This could be generalized to more than two processes and also to situations where 

the models are of different forms and do not contain the same numbers of states or transition 

patterns.

We have explored four different RE multistate models in the context of the SLICC LN data. 

When possible, the choice of forms of REs should be guided by the substantive knowledge 

regarding the disease processes of interest. In addition, the evidence based on the model 

likelihood and information criteria such as the Akaike information criterion and the 

Bayesian information criterion can be used for model selection.

A primary motivation for our work is to provide expected times in the eGFR and PU states 

in a fixed time period and to feed into subsequent economic modelling. Simple methods for 

calculating expected lengths of stay in various states are not applicable when dynamic 

covariates are included in the multistate modelling and, as such, much of the work in this 

paper was focused on models that did not explore associations between explanatory 

variables and renal disease progression, as was done in the clinical work of Hanly et al. 
(2016). However, in Section 5.4, we fitted two reversible multistate models that included 

dynamic explanatory variables to explore possible correlations between the eGFR and PU 

processes further. This also demonstrated that patient level and time varying explanatory 

variables can be easily incorporated in our modelling framework, as in standard multistate 

models without REs. We note that the computational time will be significantly longer when 

a large number of explanatory variables are included in the multistate models with REs. This 

is a common challenge which is shared by different non-linear models with REs in the 

literature. For multistate models particularly, care should be taken to ensure that the 
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correlated models do not contain a large number of states, which introduces many 

parameters to be estimated. In addition, effects of explanatory variables could be constrained 

to be the same for different transitions if appropriate. We note that the numerical integration 

approach that we took for estimation may make it difficult to include more than one RE per 

patient, although different forms of a single RE are allowed as in this paper. In addition, the 

use of one RE for each patient facilitates the fitting of correlated multistate models to many 

processes by using our approach, where higher dimensional multivariate RE distributions 

may be difficult to consider computationally. This computational challenge is shared by 

other joint models for longitudinal data with REs (Rizopoulos, 2012).

The models that were considered in this paper can be implemented by using bespoke code 

run in standard statistical software and the code could easily be extended to other 

longitudinal or panel studies where multistate models accounting for subject heterogeneity 

are desirable given the context.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Diagram showing the paired multistate models for (a) the eGFR and (b) the PU processes: 

→, ←, possible transitions between states of the models
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Fig. 2. 
Histograms of the empirical Bayes estimates of the REs for the various RE models fitted to 

the SLICC LN data: (a) simple RE; (b) inverse RE; (c) power inverse RE; (d) separate RE, 

eGFR; (e) separate RE, PU
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Fig. 3. 
Scatter plot of the empirical Bayes estimates of the REs for the separate RE eGFR and PU 

models
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Table 1

Clinical definitions of the eGFR and PU states

State eGFR
(ml min−11.73 m−2)

PU
(g l−1 day−1)

1 >60 <0.25

2                30–60           0.25–3.0

3 <30 >3.0
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Table 2

Example SLICC data for the eGFR and PU states.

ptno t (years) eGFR state PU state

001 0.00 1 2

001 1.14 1 2

001 2.17 2 2

001 3.05 2 3

 ⋮ ⋮ ⋮ ⋮

002 0.00 1 1

002 1.54 1 1

002 2.97 1 2

 ⋮ ⋮ ⋮ ⋮
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Table 3

Numbers of observed transitions for eGFR and PU states between two consecutive clinic visits for the SLICC 

patients

From state Numbers of transitions to the following states:

eGFR state 1 eGFR state 2 eGFR state 3

eGFR state 1 2303   95     5

eGFR state 2   86 136   21

eGFR state 3     1   10   26

PU state 1 PU state 2 PU state 3

PU state 1 1167 257 20

PU state 2   355 547 56

PU state 3 45   85 59
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Table 4

Estimated transition intensities (with corresponding 95% confidence intervals), variance component estimates 

for REs, maximized likelihood and Akaike information criterion values from fitted models for the SLICC LN 

data

Parameter Results for the following models:

Marginal Simple RE Inverse RE Power inverse RE Separate RE

eGFR parameters λ12  0.051
(0.041, 0.062)

 0.058
(0.046, 0.074)

 0.053
(0.042, 0.066)

 0.052
(0.042, 0.065)

 0.068
(0.041, 0.112)

λ21  0.461
(0.371, 0.573)

 0.558
(0.421, 0.741)

 0.496
(0.380, 0.649)

 0.493
(0.382, 0.637)

 0.682
(0.361, 1.288)

λ23  0.112
(0.072, 0.174)

 0.134
(0.082, 0.221)

 0.073
(0.047, 0.116)

 0.079
(0.049, 0.126)

 0.052
(0.015, 0.181)

λ32  0.346
(0.183, 0.652)

 0.456
(0.212, 0.981)

 0.453
(0.216, 0.952)

 0.436
(0.212, 0.893)

 0.775
(0.231, 2.600)

PU parameters μ12  0.272
(0.239, 0.311)

 0.332
(0.277, 0.398)

 0.468
(0.385, 0.569)

 0.464
(0.381, 0.567)

 0.498
(0.401, 0.619)

μ21  0.565
(0.504, 0.632)

 0.679
(0.575, 0.801)

 0.653
(0.551, 0.773)

 0.687
(0.562, 0.839)

 0.682
(0.572, 0.814)

μ23  0.158
(0.120, 0.208)

 0.239
(0.165, 0.346)

 0.127
(0.091, 0.176)

 0.119
(0.083, 0.170)

 0.117
(0.084, 0.162)

μ32  1.224
(0.988, 1.517)

 1.916
(1.363, 2.693)

 2.111
(1.550, 2.877)

 2.291
(1.601, 3.278)

 2.063
(1.513, 2.814)

RE variance θ  0.462
(0.309, 0.690)

 0.549
(0.417, 0.722)

 0.415
(0.217, 0.793)

θ(1)  1.213
(0.149, 9.850)

θ(2)  0.599
(0.433, 0.830)

Power RE model parameter α  1.221
(0.733, 1.708)

Maximized log-likelihood     −2448.96     −2418.42     −2367.93     −2367.46     −2382.88

    Akaike information criterion value       4913.92       4854.84       4753.86       4754.92       4785.76
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Table 5

Summary statistics of empirical Bayes estimates of the REs from the fitted RE models.

Model Mean Median Standard deviation Minimum Maximum

Simple RE 1.00 0.96 0.33 0.19 2.58

Inverse RE 1.00 0.82 0.55 0.22 3.78

Power inverse RE 1.00 0.85 0.48 0.27 3.39

Separate RE: eGFR 1.00 0.79 0.62 0.27 3.90

Separate RE: PU 1.00 0.81 0.56 0.29 3.89

J R Stat Soc Ser C Appl Stat. Author manuscript; available in PMC 2019 May 15.



 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

O’Keeffe et al. Page 26

Table 6

Expected times spent in each of the eGFR and PU states, conditionally on the starting state over a 5-year 

period

Starting state Expected time (years) spent in the following states:

eGFR state 1 eGFR state 2 eGFR state 3

Marginal model (without REs)

eGFR state 1 4.67 0.29 0.04

eGFR state 2 2.66 1.94 0.40

eGFR state 3 1.19 1.23 2.58

PU state 1 PU state 2 PU state 3

PU state 1 3.70 1.18 0.12

PU state 2 2.44 2.30 0.26

PU state 3 1.94 2.02 1.04

eGFR state 1 eGFR state 2 eGFR state 3

Conditional on Ui = 1

eGFR state 1 4.67 0.30 0.03

eGFR state 2 2.85 1.93 0.23

eGFR state 3 1.50 1.39 2.11

PU state 1 PU state 2 PU state 3

PU state 1 3.24 1.67 0.09

PU state 2 2.33 2.53 0.14

PU state 3 2.06 2.34 0.60

eGFR state 1 eGFR state 2 eGFR state 3

Marginal—averaged over RE distribution

eGFR state 1 4.65 0.30 0.05

eGFR state 2 3.10 1.61 0.29

eGFR state 3 2.07 1.08 1.85

PU state 1 PU state 2 PU state 3

PU state 1 3.44 1.39 0.17

PU state 2 2.72 2.05 0.23

PU state 3 2.52 1.83 0.65
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Table 7

Expected times spent in each of the joint eGFR and PU states, conditionally on the starting state over a 5-year 

period.

Starting state Expected time (years) spent in the following states (r,s) over a 5-year period:

(1, 1) (1, 2) (1, 3) (2, 1) (2, 2) (2, 3) (3, 1) (3, 2) (3, 3)

Marginal model (without REs)

(1, 1) 3.47 1.09 0.11 0.21 0.08 0.01 0.03 0.01 0.00

(1, 2) 2.26 2.17 0.24 0.16 0.12 0.02 0.02 0.02 0.00

(1, 3) 1.78 1.88 1.00 0.14 0.12 0.04 0.02 0.02 0.00

(2, 1) 1.88 0.71 0.08 1.54 0.37 0.03 0.29 0.10 0.01

(2, 2) 1.46 1.06 0.14 0.77 1.07 0.10 0.21 0.17 0.02

(2, 3) 1.23 1.09 0.34 0.54 0.76 0.64 0.17 0.17 0.06

(3, 1) 0.82 0.34 0.04 0.88 0.31 0.03 2.00 0.53 0.05

(3, 2) 0.69 0.43 0.06 0.65 0.51 0.07 1.10 1.35 0.13

(3, 3) 0.61 0.47 0.11 0.53 0.52 0.19 0.80 1.03 0.75

Inverse RE model (averaged over RE distribution)

(1, 1) 3.30 1.22 0.13 0.13 0.14 0.03 0.01 0.03 0.01

(1, 2) 2.60 1.87 0.19 0.11 0.16 0.03 0.01 0.03 0.01

(1, 3) 2.41 1.65 0.59 0.10 0.15 0.05 0.01 0.03 0.01

(2, 1) 2.30 0.74 0.07 1.03 0.51 0.07 0.11 0.14 0.03

(2, 2) 2.09 0.93 0.08 0.55 0.96 0.10 0.08 0.16 0.04

(2, 3) 2.01 0.94 0.15 0.43 0.74 0.43 0.07 0.15 0.06

(3, 1) 1.64 0.40 0.03 0.67 0.36 0.04 1.14 0.62 0.10

(3, 2) 1.57 0.46 0.03 0.54 0.49 0.06 0.61 1.10 0.14

(3, 3) 1.54 0.48 0.05 0.48 0.48 0.11 0.49 0.87 0.49
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Table 8

Estimated transition intensities, RE variance and log-intensity explanatory variable effect estimates for eGFR 

and PU inverse RE multistate models with PU and eGFR states (respectively) acting as explanatory variables 

on model transition intensities.

Base transition intensity Estimate (95% confidence interval)

eGFR inverse RE model with PU states as explanatory variables

λ12 0.035 (0.024, 0.050)

λ21 0.666 (0.437, 1.014)

λ23 0.016 (0.008, 0.030)

λ32 0.383 (0.104, 1.419)

Log-intensity ratio

PU state 2 on eGFR 1 → eGFR 2 0.928 (0.493, 1.364)

PU state 3 on eGFR 1 → eGFR 2 1.556 (0.890, 2.221)

PU state 2 on eGFR 2 → eGFR 1 −0.139 (−0.682, 0.405)

PU state 3 on eGFR 2 → eGFR 1 −0.141 (−1.012, 0.730)

PU state 2 on eGFR 2 → eGFR 3 1.581 (0.885, 2.277)

PU state 3 on eGFR 2 → eGFR 3 2.401 (1.354, 3.447)

PU state 2 on eGFR 3 → eGFR 2   0.913 (−0.554, 2.379)

PU state 3 on eGFR 3 → eGFR 2   0.266 (−1.897, 2.429)

RE variance θ.(1) 0.800 (0.710, 0.901)

PU inverse RE model with eGFR states as explanatory variables

μ12 0.478 (0.383, 0.598)

μ21 0.688 (0.572, 0.827)

μ23 0.126 (0.089, 0.178)

μ32 2.121 (1.508, 2.983)

Log-intensity ratio

eGFR state 2 on PU 1 → PU 2   0.255 (−0.396, 0.905)

eGFR state 3 on PU 1 → PU 2   1.856 (−2.308, 6.019)

eGFR state 2 on PU 2 → PU 1 −0.132 (−0.665, 0.402)

eGFR state 3 on PU 2 → PU 1   1.498 (−2.683, 5.680)

eGFR state 2 on PU 2 → PU 3   −1.293 (−2.550, −0.036)

eGFR state 3 on PU 2 → PU 3   1.655 (−2.003, 5.313)

eGFR state 2 on PU 3 → PU 2 −0.215 (−0.883, 0.453)

eGFR state 3 on PU 3 → PU 2   0.114 (−3.825, 4.053)

RE variance θ(2) 0.587 (0.428, 0.806)

J R Stat Soc Ser C Appl Stat. Author manuscript; available in PMC 2019 May 15.


	Summary
	Introduction
	The Systemic Lupus International Collaborating Clinics data
	Multistate models for eGFR and proteinuria
	The Markov assumption
	Inclusion of random effects
	Different forms of random effects
	Model without random effects
	Simple random-effects model
	Inverse random-effects model
	Power inverse random-effects model
	Separate random-effects model


	Likelihood and estimation
	Likelihood function
	Estimation

	Modelling renal disease progression in systemic lupus erythematosus patients
	Model comparison
	Empirical Bayes estimates of random effects
	Time spent in states in a fixed time period
	Further examination of the eGFR and PU processes

	Discussion
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5
	Table 6
	Table 7
	Table 8

