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In silico prediction of housekeeping 
long intergenic non-coding RNAs 
reveals HKlincR1 as an essential 
player in lung cancer cell survival
Danish Memon1,2, Jing Bi1 & Crispin J. Miller1

Prioritising long intergenic noncoding RNAs (lincRNAs) for functional characterisation is a significant 
challenge. Here we applied computational approaches to discover lincRNAs expected to play a critical 
housekeeping (HK) role within the cell. Using the Illumina Human BodyMap RNA sequencing dataset 
as a starting point, we first identified lincRNAs ubiquitously expressed across a panel of human tissues. 
This list was then further refined by reference to conservation score, secondary structure and promoter 
DNA methylation status. Finally, we used tumour expression and copy number data to identify 
lincRNAs rarely downregulated or deleted in multiple tumour types. The resulting list of candidate 
essential lincRNAs was then subjected to co-expression analyses using independent data from ENCODE 
and The Cancer Genome Atlas (TCGA). This identified a substantial subset with a predicted role in DNA 
replication and cell cycle regulation. One of these, HKlincR1, was selected for further characterisation. 
Depletion of HKlincR1 affected cell growth in multiple lung cancer cell lines, and led to disruption of 
genes involved in cell growth and viability. In addition, HKlincR1 expression was correlated with overall 
survival in lung adenocarcinoma patients. Our in silico studies therefore reveal a set of housekeeping 
noncoding RNAs of interest both in terms of their role in normal homeostasis, and their relevance in 
tumour growth and maintenance.

The catalogue of known genes has expanded considerably since the publication of the first draft of the human 
genome1, not only through the detection of additional protein-coding loci2–4, but also through the identification 
of ~22,500 noncoding RNAs (ncRNAs) that do not encode proteins3. Of these, approximately two thirds are 
classified as long intergenic noncoding RNAs (lincRNAs) – a class of transcripts defined solely by their length 
(>200 nt) and lack of coding potential.

lincRNA function arises directly from the ability to hybridise to specific nucleotide sequences. When bind-
ing occurs between molecules, this allows precise targeting of a lincRNA to a given DNA or RNA locus, often 
through repeat sequences5,6. Alternatively, when hybridisation occurs within the same molecule, it supports the 
establishment of stable structures that lend specificity to interactions with specific proteins7,8. Together, these 
properties allow lincRNAs to perform diverse scaffolding and targeting roles throughout the cell. The primacy of 
sequence in driving lincRNA function typically results in rapid evolution: a substitution of one base can often be 
compensated for by a complementary substitution at its binding partner. This differs from protein coding genes, 
which are under stronger constraints that arise from the need to maintain the complex biochemical properties of 
a given arrangement of amino acids. Thus, the majority of lincRNAs are less well-conserved than proteins, and 
undergo only weak positive or neutral selection6. This rapid evolution often prohibits the use of phylogenetics for 
functional annotation, and, when combined with the relative paucity of annotated noncoding genes, means that 
the majority of lincRNAs have yet to be assigned a function.

The protein coding complement of the genome includes a substantial number of genes that encode basal cel-
lular functions required for cell survival, irrespective of the tissue type or functional role of the cell in question9. 
Here, we refer to these tissue-type and cell-status independent essential genes as ‘housekeeping genes’, following 

1RNA Biology Group, CRUK Manchester Institute, The University of Manchester, Alderley Park, Manchester, SK10 
4TG, UK. 2Present address: European Bioinformatics Institute (EMBL-EBI)/Cancer Research UK Cambridge Institute, 
The University of Cambridge, Cambridge, UK. Danish Memon and Jing Bi contributed equally. Correspondence and 
requests for materials should be addressed to C.J.M. (email: crispin.miller@cruk.manchester.ac.uk)

Received: 28 January 2019

Accepted: 29 April 2019

Published online: 14 May 2019

Corrected: Publisher Correction

OPEN

https://doi.org/10.1038/s41598-019-43758-7
mailto:crispin.miller@cruk.manchester.ac.uk
https://doi.org/10.1038/s41598-019-55753-z


2Scientific Reports | (2019) 9:7372 | https://doi.org/10.1038/s41598-019-43758-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

the definition of Eisenberg and Levanon. Housekeepers are important both in terms of their fundamental contri-
bution to the mechanisms that sustain life, but also from the more pragmatic perspective of their utility as exper-
imental controls9. Multiple studies have sought to identify housekeeping protein-coding genes9–19. These provide 
significant steps towards more detailed functional characterisation, but work to date has focused primarily on the 
protein complement of the cell.

With the rapid emergence of lincRNAs as a functionally important and often overlooked class of molecule, 
an important and unanswered question is the degree to which lincRNAs also serve a critical housekeeping role. 
Here we use in silico methods to generate, and then annotate, an initial list of candidate housekeeping lincRNAs 
(cHK-lincRNAs). Downstream validation of one such transcript, HKlincR1 (AC093323.3), confirmed its pre-
dicted role in cell survival, thus demonstrating the validity of the approach.

Results
Identification of ubiquitously expressed lincRNAs.  The Illumina Human BodyMap 2.0 (HBM) RNA-
Seq dataset (ArrayExpress: E-MTAB-513) provides a comprehensive catalogue of gene expression encompassing 
16 distinct human tissues (adipose, adrenal gland, brain, breast, colon, heart, kidney, liver, lung, lymph node, 
ovary, prostate, skeletal muscles, testes, thyroid and white blood cells). The comprehensive nature of the dataset 
makes it particularly valuable when seeking previously uncharacterised noncoding RNAs, particularly in combi-
nation with existing annotation databases20.

We first re-annotated the HBM data using Cufflinks to generate de novo transcript assemblies and mappings to 
the reference genome (hg19), with existing gene annotation taken from Ensembl release (v74). A total of 107,651 
known transcripts (28,660 unique genes) were detected (FPKM > 0.5; Fig. 1A), including 15,637 protein-coding 
loci and 4,770 lncRNA genes (2,343 antisense and 2,427 lincRNAs). Since the data were not strand specific, 
expression measurements for antisense transcripts were less reliable. These were discarded: only lincRNAs > 1 kb 
from the nearest protein-coding gene were retained for subsequent analysis. In total, 2,427 lincRNAs were con-
sidered further.

As expected, lincRNA levels were substantially lower than those at protein coding loci (Supplementary 
Fig. S1A)6. The coefficient of variation (CV) of the normalised transcript levels formed a bimodal distribution, 
irrespective of gene type (Fig. 1B). While the majority of the protein-coding genes exhibited low CV (over 60% 
with CV < 1.5), lincRNAs were considerably more variable (less than 25% with CV < 1.5; Fig. 1B).

We reasoned that genes with core essential functions (i.e. housekeepers) would be ubiquitously expressed 
across human tissues, irrespective of cell type. To test this, we first identified all protein coding genes detected 
in at least 75% tissues with a CV < 1.5. This set included many genes involved in core essential functions (Gene 
Ontology (GO) terms: ncRNA metabolic process, protein catabolic process, establishment of protein localization of 
organelle, posttranscriptional regulation of gene expression, DNA repair, oxidative phosphorylation and regulation of 
cell cycle phase transition), and overlapped significantly (Fisher’s exact test p-value < 0.05) with a set of previously 
identified housekeeping genes9 (Fig. S1B,C). Median CVs for both datasets were similar (Eisenberg: 0.534; HBM: 
0.645; data not shown).

Since the behaviour of the protein encoding subset of the data behaved as expected, we then applied the same 
strategy to lincRNAs. In total, 55 candidate housekeeping lincRNAs (cHK-lincRNAs) were detected in >75% of 
tissues with a CV < 1.5. Both NEAT1 and NEAT2/MALAT1 were identified by this strategy, in keeping with their 
critical role in paraspeckle maintenance in the nucleus21,22, thus lending further confidence to the strategy. A con-
trasting set of 721 tissue-specific lincRNAs (TS-lincRNAs; present in <25% of tissues; CV > 3.5) was also defined 
(Fig. 1A,C; Supplementary Table S1). While cHK-lincRNAs were detected across the tissue panel, many were 
found at higher levels in ovary (median expression ~4 FPKM) and at lower levels in liver (median expression = ~2 
FPKM). The majority of TS-lincRNAs were specific to testis. cHK-lincRNAs also had significantly higher expres-
sion levels compared to TS-lincRNAs in ENCODE23 cell line data (Fig. S2A), and were more likely to feature CpG 
islands in their promoters (45% vs. 15%), mirroring previous observations for protein coding housekeepers12,14.

HK-lincRNA sequence and expression patterns are more conserved in mammals than 
TS-lincRNAs.  We next compared the PhyloP conservation score24 of lincRNA exons derived from a 46-way 
alignment of mammalian genomes for cHK-lincRNAs and TS-lincRNAs. Sequence conservation was signif-
icantly higher for cHK-lincRNAs (mean conservation score HK: 0.135 vs TS: 0.065; p-value < 0.01; Fig. 2A). 
Mutation rates derived from dbSNP (v137)25 were also considered; cHK-lincRNAs exhibited a marginally lower 
SNP density (18.5 vs. 19.7 SNPs per gene per kb; p-value < 0.05; Fig. 2B).

We then used nucleotide-BLAST26 to identify conserved lincRNAs in de novo assembled transcriptomes 
from five other vertebrates (rhesus, cow, rat, mouse, chicken) generated using the same annotation pipeline as 
before.  Since repeats are an inherent part of lincRNA transcript identity and structure, and thus play a significant 
role in their function27,28, data were not repeat-masked prior to the search. Importantly, since comparisons were 
performed against transcriptome sequence, repeats in intronic space would not impact upon the scores. Of the 
776 human cHK-lincRNAs and TS-lincRNAs, 517 orthologues were found with at least 30% identity. The number 
of predicted orthologues also decreased progressively with phylogenetic distance, as expected (Fig. 2C). While 
54/55 cHK-lincRNAs were expressed in at least one other species, only 64.2% (463/721) of TS-lincRNAs were 
detected. Further, 81% (44/54) of cHK-lincRNAs exhibited little variation in their expression profiles in all spe-
cies analysed (median CV = 1; Supplementary Fig. S2B). In contrast, 60% (278/463) of TS-lincRNAs also showed 
tissue-specific expression profiles in the other vertebrates (median CV = 2). Thus human TS- and cHK-lincRNA 
are not only conserved, but also display similar expression patterns in other species.

HK-lincRNAs are enriched for repeat elements with more stable secondary structures than 
TS-lincRNAs.  LincRNA secondary structure is a major determinant of function27. Secondary structure 
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stability can be affected by multiple factors including the presence of repeat elements. Since lincRNAs are particu-
larly enriched for repeat elements5,28, we compared the repeat distribution of cHK-lincRNAs and TS-lincRNAs. 
SINE/Alu elements constitute ~7.7% of nucleotides in cHK-lincRNA exons vs. ~2.4% of nucleotides in 
TS-lincRNA exons (Fig. 2D). This is consistent with previous reports of a positive association between the num-
ber of SINE/Alu elements and ubiquitous expression5. Next, we used minimum free energy (MFE) to assess the 
stability of lincRNA secondary structures, computed using Randfold29. cHK-lincRNA sequences exhibit signif-
icantly lower MFE values (median MFE = −375.18 kcal/mol) than TS-lincRNA (median MFE = −140.93 kcal/
mol; p-value < 2.9e−16). In order to mitigate for the effect of sequence length on MFE values, we compared the 
MFE value of each lincRNA with a null distribution of MFEs generated by permuting the lincRNA sequence, 
while maintaining dinucleotide composition. 22% (12/55) of cHK-lincRNAs had significantly lower MFE 
values than expected (FDR < 0.05; Fig. 2E). No TS-lincRNA was found significant using this approach. Thus 
cHK-lincRNAs have more stable secondary structures and feature increased representation of repeat elements, 
in keeping with an active mechanistic role arising from targeted interactions with other molecules in the cell5,8.

HK-lincRNAs are rarely down-regulated or deleted in tumour progression.  Recent work has used 
RNA interference (RNAi) and CRISPR screens to identify a set of “core fitness” protein coding genes, essential 
for cell viability30,31. We hypothesised that these “core fitness” genes would be unlikely to be down-regulated 
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Figure 1.  Identification of HK-lincRNAs and TS-lincRNAs from Human BodyMap 2.0 data (A) Schematic 
overview of the computational approach. Cufflinks-assembled transcripts were classified as housekeeping 
(HK-lincRNA) or tissue specific long intergenic noncoding RNA (TS-lincRNA) according the coefficient of 
variance (CV) and expression level across 16 different human tissues. (B) Distributions of CV for protein coding 
transcripts and lincRNAs. (C) Heatmap of HK-lincRNA and TS-lincRNA expression across 16 tissues. Colours 
correspond to log10 RPKM values. LincRNAs (rows) were ordered by CV of expression across tissues while 
tissues (columns) were ordered by unsupervised clustering of the expression data.
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or deleted in human tumours, since loss of expression would negatively impact on growth and/or viability. 
We first considered mRNA expression levels, interrogating these loci in RNA sequencing data from 13 differ-
ent tissue types, obtained from the Cancer Genome Atlas (TCGA)32. 93% (1497/1580) of these core-fitness 
genes were expressed in matched normal tissues. Of these, only 19.7% (295/1497) were downregulated rela-
tive to the remaining set of “non-core fitness” protein coding genes (58%; 10858/18675) (Wilcoxon rank-sum, 
p-value < 0.001), while 73.7% (1104/1497) were up-regulated in at least one tumour type (absolute fold change 
(|FC|) > 2; q-value < 0.05; Supplementary Fig. S3A). Thus their expression levels were consistent with the expec-
tation that they would be ubiquitously expressed. We therefore applied the same approach to further refine the 
set of cHK-lincRNA genes.

Only 2.3% (212/9142) of lincRNAs were detected across all sample types (FPKM > 0.5). Importantly, 
these included 72.7% (40/55) of the cHK-lincRNAs identified from the HBM data. Expression levels of 28/55 
HK-lincRNAs were significantly altered in one or more tumour type (Cuffdiff |FC| > 2; q-value < 0.05; Fig. 3A). 
The remaining 27 cHK-lincRNAs were consistently unchanged across all samples. These include JPX, a lincRNA 
crucial for orchestrating the essential process of X chromosome inactivation during female cell differentiation33.

We next tested whether core essential protein-coding genes were less likely to be deleted, using genome-wide 
copy number data from TCGA representing 31 tumour types. This revealed a small but significant difference in 
the proportion of core-fitness genes appearing in homozygous deletions (Wilcoxon rank-sum, p-value < 0.001). 
107/1580 (6.77%) core essential genes and 1,647/17,375 (9.47%) non-core essential genes underwent recurrent 
homozygous deletions in at least 1% of samples. In contrast, similar proportions of core essential (704/1580; 
44.5%) and non- core essential (7651/17375; 44.03%) genes were amplified (homozygous) (Supplementary 
Fig. S3A).

Having established that previously defined core-fitness protein coding genes were less likely to appear in 
focal deletions, we then applied the same strategy to cHK-lincRNAs. Beroukhim et al.34 previously described 
76 focal amplifications and 82 focal deletions identified from pooled analysis of copy number alterations across 
12 different tumour types. Only 6 cHK-lincRNAs mapped to these focal deletions, providing further evidence 
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Figure 2.  Characterisation of HK-lincRNA and TS-lincRNAs (A) Mean PhyloP24 conservation scores across 
exonic nucleotides only, for each lincRNA transcript. (B) SNP density (total number of mutations/total length 
of the exonic region) in HK-lincRNAs and TS-lincRNAs. Mutation data were obtained from dbSNP (v137)25. 
(C) Variability of HK-lincRNA and TS-lincRNA homologues. Homologues to human HK- and TS-lincRNAs 
were identified using nucleotide-BLAST26, and expression levels calculated across nine different tissues in five 
vertebrate species60. Heatmap represents an unsupervised clustering of CV values for each lincRNA (columns: 
orange: HK-lincRNAs; grey: TS-lincRNAs) in each species (rows). (D) Annotations of 11 major repeat elements 
were obtained from Repbase74 database to calculate coverage of repeat elements in exonic regions of lincRNA 
transcripts. (E) Minimum free energy (MFE) for each lincRNA was calculated using Randfold29 as an indicator 
of secondary structure stability. Histogram represents distribution of likelihood that each HK-linRNA or TS-
lincRNA is more stable than expected by chance. p-values were estimated by comparing to a null distribution 
generated by permuting the sequences (n = 1000), whilst preserving dinucleotide compositions.
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in support of their role as bona fide housekeeping genes. Together, these stringent analyses identified a list of 34 
cHK-lincRNAs that were neither downregulated nor deleted in tumours (Supplementary Table S2). Henceforth 
we refer to these genes as ‘core’ HK-lincRNAs.

HK-lincRNAs are less likely to be silenced via DNA methylation.  A key mechanism by which 
cells regulate gene expression is through the methylation of CpG islands in promoter regions. Promoter CpG 
hyper-methylation is strongly associated with transcriptional repression35 and a critical epigenetic mechanism 
for the transcriptional inactivation of tumour suppressor genes in cancer cells36. Reasoning as before, that tran-
scriptional repression of essential genes would negatively impact on cell viability, we compared the methylation 
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Figure 3.  Detection of essential HK-lincRNAs in cancer (A) Heatmap showing fold changes of HK-lincRNA 
expression levels in tumour samples, relative to matched normal samples. Data derived from 13 tumour 
types from The Cancer Genome Atlas (TCGA)32. (B) Methylation levels for candidate HK-lincRNAs and 
TS-lincRNAs. Methylation β values were obtained for 63 Encode cell lines. The median methylation β value 
per sample was calculated for each group of genes separately. (C) Methylation levels for ‘core’ HK-lincRNAs, 
all candidate HK-lincRNAs and TS-lincRNAs. Methylation β values were obtained for 9,269 TCGA tumour 
samples. The median methylation β value per sample was calculated for each group of genes separately.

https://doi.org/10.1038/s41598-019-43758-7


6Scientific Reports | (2019) 9:7372 | https://doi.org/10.1038/s41598-019-43758-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

levels of cHK-lincRNA and TS-lincRNA in Encode Cell line data (Fig. 3B). cHK-lincRNAs exhibited significantly 
lower median methylation β values than TS-lincRNAs (p-value < 0.01), indicating that cHK-lincRNAs are rarely 
hyper-methylated.

Having established that these candidate HK-lincRNAs were consistently subject to patterns of reduced meth-
ylation in cancer cell lines, we next investigated their methylation profiles in human tumours. To do this we 
considered the methylation levels of core-essential protein coding genes in 9,269 TCGA tumour samples pro-
filed using 450 K DNA methylation arrays32. Core essential protein coding genes exhibited significantly lower 
median methylation β values than the non-core subset (p-value < 1e−16; Supplementary Fig. S3B), indicating that 
core essential protein coding genes are rarely hyper-methylated. We then examined candidate HK-lincRNAs. As 
expected, both candidate HK-lincRNAs and the restricted subset of ‘core’ HK-lincRNAs filtered by expression 
and copy number, exhibited significantly lower median methylation β values than the non-core subset (p < 10−16; 
Fig. 3C), confirming that core HK-lincRNAs are less likely to undergo transcriptional repression as a consequence 
of epigenetic regulation of promoter-CpG patterns in tumours.

Functional prediction of candidate housekeeping lincRNAs.  Many lincRNA genes bear a strong 
resemblance to canonical protein-coding loci, with similar chromatin marks37, PolII mediated transcription, 
well-defined intron-exon structures, and similar downstream processing including splicing, 5′-capping and 3′ 
polyadenylation6. Together these patterns suggest that lincRNAs are under active regulatory control. We rea-
soned that lincRNAs with expression profiles similar to sets of functionally related protein-coding genes would 
be controlled by similar regulatory systems, and thus be involved in similar biological processes. Previous work 
has successfully used TCGA data as a source of correlative patterns with which to infer noncoding RNA func-
tion20. We therefore used the TCGA Lung Adenocarcinoma (LUAD) Dataset38 comprising 601 samples (542 
tumour and 59 normal samples) to calculate gene expression correlations between protein-coding genes and the 
cHK-lincRNA set. Proteins with significant positive or negative correlations to cHK-lincRNAs were subjected to 
Gene Set Enrichment Analysis (GSEA)39 to identify Gene Ontology Biological Processes showing strong asso-
ciations to each cHK-lincRNA (Fig. 4A). In an unsupervised analysis, cHK-lincRNAs clustered into two major 
sub-groups, comprising 30 and 22 HK-lincRNAs, respectively. In the 22 HK-lincRNA cluster, the majority of lin-
cRNAs showed significant positive association with cell cycle phase transition, DNA Dependent DNA replication, 
ATP dependent Chromatin Remodeling, Macromolecular Complex Assembly and other fundamental processes. 
Finally, applying the same methodology to an Affymetrix Exon array dataset representing 182 ENCODE cell 
lines23,40,41 revealed a striking correspondence in the enriched terms for each cHK-lincRNA (Fig. 4B).

Taken together, these data demonstrate that in these two independent tumour derived cohorts, cHK-lincRNAs 
are significantly correlated in expression with protein coding genes involved in core essential processes, not only 
suggesting potential biological roles for these transcripts, but also further corroborating their status as bona fide 
housekeeping genes.

Loss of HKlincR1 leads to global changes in transcriptional regulations that are enriched from 
in silico functional prediction.  To test the robustness of our computational approaches, we next selected 
one of the cHK-lincRNAs, HKlincR1 (AC093323.3), from the 22 HK-lincRNA cluster for further characterisa-
tion. HKlincR1 is located at 4p16.1 (Fig. 5A). HKlincR1 had relatively high (mean FPKM~3.9) and stable expres-
sion (CV~0.59) in the human bodymap dataset. It was neither down-regulated nor deleted across the 13-tissue 
TCGA tumour cohort, thus belonging to the sub-group of ‘core’ HK-lincRNAs. It also had a very stable secondary 
structure (MFE = −974.4; FDR < 1%) and was found to have detectable expression in multiple organs of rhesus. 
HKlincR1 exhibited strong positive association with the expression of cell-cycle related pathways, and negative 
association with the stress response, including MAPK signaling (Fig. 4A,B), thus implicating it in key pathways 
that impact upon proliferation.

We first measured HKlincR1 levels across 20 different normal human tissues, confirming consistent expres-
sion, as expected from the HBM data, and in keeping with its predicted role as a housekeeping lincRNA 
(Fig. 5B,C). We then used RNA-Seq to profile gene expression changes following a reduction of HKlincR1 levels 
in H460 non-small-cell lung cancer cells. siRNA mediated depletion of HKlincR1 led to a mean 80% reduction 
in HKlincR1 across independent triplicate samples and altered expression for a significant number of transcripts 
(223 up-regulated and 96 down-regulated; Fold change >1.5 and FDR < 0.05; Supplementary Table S3).

Gene set enrichment analysis (GSEA) of REACTOME pathways affected by HKlincR1 knockdown identified 
a significant loss of expression in DNA elongation, DNA replication, and cell cycle related pathways (FDR < 0.05; 
Supplementary Fig. S4A), in keeping with its in silico predicted functions from the TCGA and ENCODE datasets 
(Fig. 4A,B). We next built a protein-protein interaction network capturing known and predicted relationships 
between the protein-products of the 319 genes differential expressed (DE) following reduced HKlincR1 expres-
sion (STRING database; interactions satisfying a medium confidence cutoff of 400) (Fig. 5D). The network was 
significantly more connected than expected by chance (p-value < 0.01). Functional enrichment analysis of indi-
vidual modules within the network confirmed functional relationships between adjacent proteins within the 
network, and revealed similar terms (highlighted in Fig. 5D) to the GSEA REACTOME analysis39,42 (Fig. S4A). 
Finally, we validated a subset of down-regulated genes involved in DNA replication and cell cycle regulation 
(SASS6, CDC6, and E2F8). In all cases qRT-PCR following HKlincR1 depletion by siRNA confirmed the RNA-seq 
results in H460, as well as two other non-small-cell lung cancer cell lines, A549 and H1755 (Fig. 5E–G). Given the 
considerable overlap between the pathways perturbed following HKlincR1 depletion and those identified from 
the TCGA and ENCODE correlation analyses (Fig. 4A,B) thus demonstrates the utility of using in silico correla-
tive analyses for functional inference.
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Figure 4.  Functional prediction of HK-lincRNAs (A) HK-lincRNA function prediction using TCGA lung 
adenocarcinoma (LUAD)38 samples. Rows represent non-redundant Gene Ontology (GO) ‘biological process’ 
terms. Columns represent each HK-lincRNA. Coloured cells correspond to a significant positive (red) or negative 
(blue) association between an HK-lincRNA and a biological process. Associations were established based on 
correlation of expression level of each lincRNA with protein-coding genes. Significance was determined using 
Gene Set Enrichment Analysis (GSEA)39 of protein-coding genes ranked by Pearson correlation to each HK-
lincRNA. (B) Functional prediction of HK-lincRNA using Encode cell lines. Rows represent non-redundant Gene 
Ontology (GO) biological processes terms and columns represent HK-lincRNAs. Cells are coloured as red or blue 
based on significant positive or negative association between HK-lincRNA and a biological process. Significant 
biological processes (<5% FDR) were identified for each HK- lincRNA using Gene Set Enrichment Analysis 
(GSEA) of protein-coding genes pre-ranked by the Pearson correlation of gene expression. Only non-redundant 
biological processes identified using the GOSemSim package are shown.
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Figure 5.  Functional characterisation of HKlincR1 (AC093323.3) (A) Genomic location of HKlincR1. 
Representative image of H460 RNA-seq track encompassing 50 kb up and downstream of HKlincR1 was plotted 
using the UCSC genome browser. Non-targeting control track (siNT) was shown in black and siHKlincR1 
track was shown in red. (B) RT-PCR and qRT-PCR (C) of HKlincR1 transcript levels across 20 different normal 
human tissue types. β-actin was used as a positive control. Cropped gel images for HKlincR1 and β-actin 
were shown in (A). Full length gels are presented in Supplementary Fig. S4C. (D) Protein-protein interaction 
network of differentially expressed genes following HKlincR1 knockdown. Significant functional modules were 
identified using ClusterONE72 in Cytoscape71 (p-value < 0.01; Minimum cluster size >4). Biological processes 
significantly enriched in each cluster were identified using BiNGO73 in Cytoscape (Adjusted p-value < 0.05). 
(E–G) qRT-PCR analysis of HKlincR1-dependent genes relative to β-actin following HKlincR1 knockdown in 
H460, H1755 and A549 lung cancer cells. Non-targeting (NT) siRNA was used as a control.
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Loss of HKlincR1 leads to reduced cell viability and is associated with improved patient out-
come in lung adenocarcinomas.  We then asked whether the expression of HKlincR1 is essential for cell 
survival. Decreased cell viability was observed in H460, A549 and H1755 cells following HKlincR1 knockdown 
using two independent siRNAs (Fig. 6B). Furthermore, all three cell lines exhibited impaired proliferation follow-
ing loss of HKlincR1 expression (Fig. 6C–E). Given the association between HKlincR1 and cell survival, we asked 
whether altered HKlincR1 levels were associated with overall survival in the TCGA LUAD data. HKlincR1 levels 
were significantly correlated with poor outcome (Fig. 6F).

A B

H460 H1755 A549
0.0

0.4

0.8

1.2

R
el

at
iv

e 
E

xp
re

ss
io

n

siNT

siHKlincR1_1

siHKlincR1_2

H460 H1755 A549
0

20

40

60

80

%
 C

ol
on

y 
A

re
a 

siNT

siHKlincR1_1

siHKlincR1_2

++++++++++++++++++++++++++++++++++++++++++++++++++
++ +

+ ++++++++
++

+
+

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++++ +++++++++++ +

++ +

+
p = 0.042

0.00

0.25

0.50

0.75

1.00

0 2.5 5 7.5 10
Time

S
u

rv
iv

al
 p

ro
b

ab
ili

ty

Strata + +High Low

111 26 4 2 2

334 74 20 5 2Low

High

0 2.5 5 7.5 10
Time

S
tr

at
a

Number at risk

F

0 20 40 60 80
0

20

40

60

80

Time (hours)

%
 C

on
flu

en
cy

siNT

siHKlincR1_1

siHKlincR1_2

A549E

0 20 40 60 80
0

20

40

60

80

Time (hours)

%
 C

on
flu

en
cy

siNT

siHKlincR1_1

siHKlincR1_2

H460C

0 20 40 60 80 100 120
0

10

20

30

Time (hours)

%
 C

on
flu

en
cy

siNT

siHKlincR1_1

siHKlincR1_2

H1755D

Figure 6.  Loss of HKlincR1 leads to reduced E2F8 levels and altered cell cycle in H460 (A) qRT-PCR analysis 
of HKlincR1 expression relative to β-actin following HKlincR1 knockdown in H460, H1755 and A549 using two 
independent siRNAs. Non-targeting (NT) siRNA was used as a control. (B) Cell viability measured by crystal 
violet assay following HKlincR1 knockdown using two different siRNAs vs siNT control, in H460, H1755 and 
A549. (C–E) Incucyte proliferation assays for H460, H1755 and A549 lung cancer cells. (F) Kaplan-Meier plot 
of overall survival in TCGA LUAD38 cohort (N = 464) stratified by HKlincR1 expression levels, partitioned 
on the 75th percentile. Blue: upper quartile. Orange: lower 3 quartiles. Kaplan-Meier plot was generated using 
survival65 and survminer packages (based on ggplot2) in R.
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Discussion
Given their emerging importance in regulating multiple functions across the cell, it is not surprising that deregu-
lation of lincRNA expression is linked to many diseases including cancer20,43–45, however, despite rapid progress in 
the field, a fundamental question that remains unclear is how many are required for growth and viability.

Here we present a systematic study of these housekeeping lincRNAs. We identify lincRNA genes conserved 
both in sequence and tissue expression patterns across 6 vertebrate species (human, rhesus, cow, rat, mouse, 
and chicken). Subsequent analyses were then used to refine this set by reference to human tumour data, since 
loss of bona fide housekeepers would be expected to negatively impact on growth and/or viability, and thus be 
selected against in tumours. In parallel, we were able to validate each analytical step by reference to protein coding 
genes: applying the same filtering method to the protein coding transcriptome successfully enriched for known 
housekeepers, as expected. These analyses produced a set of candidate housekeeping lincRNAs (cHK-lincRNAs) 
ubiquitously expressed and rarely deleted, downregulated, or subject to epigenetic repression across a multitude 
of tumour tissue types.

We were then able to use tumour expression data from two independent datasets to infer biological roles for 
each candidate housekeeper, by exploiting the fact that co-expression is often indicative of common patterns of 
regulation and control, and thus, of common function46–49. This strategy has recently been used successfully to 
characterize lincRNAs with an inferred role in cancer20. As expected, HK-lincRNAs were significantly associated 
with protein coding genes involving core essential tasks including DNA replication, metabolism and cell cycle 
control.

These correlation analyses are also valuable because the rapid evolution of ncRNA sequence places particular 
demands on genome annotators50, since approaches that attempt to predict function by establishing orthology or 
parology between lncRNA genes are generally thwarted by the rate at which sequences diverge. These challenges 
are further exacerbated by the fact that the vast majority of lncRNAs have yet to be assigned a function. Thus, even 
if a relationship can be established in silico, it is unlikely that either gene will have a known function or mecha-
nism associated with it. This paucity of annotation is therefore a major barrier to progress, since without knowing 
broad mechanism, it is hard to predict which experimental techniques are most likely to yield dividends, and 
which pathways and phenotypes are most likely to be effected by loss- and gain of function assays.

In order to ascertain the validity of our in silico annotations we selected one candidate, HKlincR1, for down-
stream validation. As well as passing the series of filters described above, HKlincR1 was not only detected across 
normal human tissue array but its expression is essential for the cell survival and high expression levels were 
also predictive of poor outcome in TCGA lung cancer samples. Depletion of HKlincR1 led to altered expression 
of several cell growth and division related genes including CDC6, SASS6 and E2F8, however, the mechanism of 
regulation of these genes is unclear. Bioinformatics analysis using iRegulon51 to search for potential regulators of 
HKlincR1 dependent genes indicates E2F transcription factor 8 (E2F8) as a significant candidate (p-value < 0.01). 
In addition, E2F8 target genes which include CDC6, SASS6 and E2F8 itself, were significantly enriched among 
differentially expressed genes following HKlincR1 knockdown (Gene Set Enrichment NES Score = −1.41; 
p-value < 0.005) in an independent E2F8 ChIP-Seq dataset from lung cancer cell lines52 (Supplementary Fig. S4B). 
These preliminary analyses may thus indicate a direct or indirect relationship between the E2F8 transcription fac-
tor and downstream targets of HKlincR1 in H460. In addition, the significant association between HKlincR1 and 
overall survival confirms the association between HKlincR1 expression and human disease. It therefore serves to 
highlight the importance of considering lincRNAs when seeking candidate tumour suppressors and oncogenes 
with a direct impact upon disease progression.

Recently, it has been shown that lincRNAs can express short peptides52. While many of these are unlikely to 
be functional, some do perform a mechanistic role (e.g.)53, thus further elevating the importance of lincRNA 
genes as critical effectors within the genome. Interestingly, despite the fact that HKlincR1 has low coding poten-
tial (Table S2) it has been identified as a ribosome associated lincRNA54. In addition, there is also some evidence 
in the most recent version of ENSEMBL (v95) that the HKlincR1 locus includes a transcript with the potential 
to encode a protein product55, in keeping with the possibility that it is also a microprotein-expressing lincRNA. 
Similarly, the candidate housekeeping lincRNA LINC00116 (Table S2) has recently been shown to express a 56 
amino-acid mitochondrion-associated microprotein, Mtln56, implicated in respiratory chain assembly, and thus 
of fundamental importance. Together these data demonstrate the value of in silico analyses, not only for the 
identification and annotation of noncoding RNAs, but also as means by which to infer biological function. This is 
particularly useful given the relatively small number of lincRNAs that have so far been characterised.

Materials and Methods
Cell culture and siRNA transfections.  Non-small-cell lung cancer cell lines, including H460, H1755 and 
A549 were purchased from ATCC. The cells were cultured in RPMI-1640 supplemented with 10% fetal bovine 
serum, passaged every three days, and tested routinely for mycoplasma contamination. For knockdown experi-
ments, 50 nM siRNAs were transfected using the Lipofectamine RNAiMAX transfection reagent (ThermoFisher, 
13778075) for 48 hours before sample collection. siRNAs were purchased from Dharmacon with ON-TARGETplus 
modification. siRNA sequences used were as follows: siHKlincR1_1, GCGGAUGACUUCAGCAUUA; siH-
KlincR1_2, GAAGUAUACUCGUGUGCUU. ON-TARGETplus Non-targeting (NT) siRNA #1 (Dharmacon, 
D-001810-01-05) was used as a negative control. As the two siRNAs achieved similar knockdown efficiency in 
H460 cells, only one of the siRNA (siHKlincR1_2) was used in the RNA-seq experiments.

Cell viability and proliferation assay.  Cell viability was measured by crystal violet assay 48 hours after 
the siRNA transfection. In brief, the plate was washed with PBS, fixed with ice-cold methanol, stained with 2% 
crystal violet solution in 25% methanol and photographed. The areas covered by stained cells were quantified by 
Image J. The proliferation assay was performed using the IncuCyte® S3 live-cell analysis platform. 48 hours after 
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the siRNA transfection, the cells were collected and 800 cells (H460 and A549) or 2000 cells (H1755) were seeded 
in 96-well plates. Cell confluence was measured every two hours and quantified by the IncuCyte® imaging system 
(Essen Bioscience).

Quantitative RT-PCR analysis.  Total RNA from cell lines were extracted using the RNeasy mini 
kit (QIAGEN, 74104) and reverse transcribed using the M-MLV reverse transcriptase (Promega, M1701). 
Human total RNA from 20 different tissue sites was purchased from Clonetech, 636643. Expressions were 
quantified by semiquantitative and quantitative PCR (Fast start SYBR green, Roche, 04673484001) and 
shown as normalised expression relative to beta-actin. Error bars represent the standard deviations of the 
average expression based on three biological replicates. The primers used were as follows: HKlincR1 (FW  
5′-GCCTGCGTTTTCTCCACATT-3′; RE 5′-GCAGCAGCGTACGTACTGTA-3′), SASS6 (FW 5′ –CCC 
TCATGATTTTCAGGTGTTGA-3′; RE 5′-ACTAAAACCTGCTCATAACCTCA-3′), CDC6 (FW 5′-AACCTA 
TGCAACACTCCCCA-3′; RE 5′-TTGTTTTGGTGAACTTTGGCT-3′), E2F8 (FW 5′-TTTGGAACCACT 
GTCCTCGA-3′; RE 5′-ACAGATGCCACCACTGAGAA-3′).

Dataset description.  LincRNA expression measurements were obtained from the publically available 
Illumina Human Body Map (HBM) RNA-seq set generated from the Human BodyMap 2.0 Project. This dataset 
comprises of RNA-seq data obtained from 16 human tissues: adipose, adrenal gland, brain, breast, colon, heart, 
kidney, liver, lung, lymph node, ovary, prostate, skeletal muscles, testes, thyroid and white blood cells with an 
average of 160 million reads sequenced from each tissue. High read depth is critical for non-coding RNAs, which 
tend to be more lowly expressed as compared to their coding counterparts.

Processing of BAM files.  The BAM files for the HBM Dataset, comprising of 50mer paired reads aligned to 
the human genome (hg19) using TopHat (v2)57, were downloaded from the UCSC Browser58. Transcript models 
were derived for each sample independently using Cufflinks59 (v2.2.0; with default parameters). Resultant models 
were then merged using Cuffmerge to provide a global model and to classify transcripts as novel, or known, when 
they mapped to ENSEMBL3 (v74). For each gene, we identified the most abundant (highest mean expression) 
‘known’ transcript and thus ended up with only 28,660 transcripts.

LincRNA Conservation, Mutation and Secondary Structure.  The nucleotide-level repeat masked 
conservation scores24 for human (hg19) were obtained from the ‘phyloP46wayPrimates’ track in the UCSC data-
base (http://genome.ucsc.edu/index.html). Mutation data was obtained from dbSNP25 database (http://www.ncbi.
nlm.nih.gov/snp). Both the conservation and mutation data was intersected with lincRNA exon annotations 
in Ensembl (v74) using bedtools (http://code.google.com/p/bedtools/), which allowed us to make inferences 
about differences between HK-lincRNA and TS-lincRNA in terms of conservation rates and mutation density. 
Calculation of minimum free energy from lincRNA transcript sequences and estimation of p-value from MFE 
distribution was performed using Randfold29. For each sequence the MFE value was compared against a null 
distribution generated by repeated shuffling of the sequence without changing the dinucleotide composition. For 
lincRNA conservation in other species, raw expression data from nine organs (brain, colon, heart, kidney, liver, 
lung, muscle, spleen, testes) of five species (rhesus, mouse, rat, cow, chicken)60 were downloaded and subjected 
to de novo transcript assembly and quantification using Cufflinks and the corresponding Ensembl (v74) genome 
annotation as guide.

Gene set enrichment analysis (GSEA) for lincRNA function prediction.  HK-lincRNA function pre-
diction was performed using publically available TCGA LUAD dataset comprising of expression measurements 
from 542 tumour samples and 59 normal lung samples. For each HK-lincRNA, we calculated correlation to all 
protein coding genes. Protein coding genes were rank-ordered according to these correlation coefficients and 
GSEA analysis was then performed using the Pre-Ranked tool in javaGSEA3.1 to seek enriched GO biological 
processes (c5 category from MSigDB). The gene ontology terms list was subject to a number of filtration steps. 
We selected terms that were found to be significant in at least 10% of HK-lincRNAs. For ease of analysis, the 
significant gene ontology terms list was further refined to retain only non-redundant terms. GO term similarity 
was calculated using the GOSemSim61 package in R. The GO semantic similarity matrix was used to construct 
a tree, which was cut at level (h = 0.85) to define GO clusters. From each GO cluster, we randomly selected one 
from each of the many similar GO terms. GSEA based function prediction was also performed using a publically 
available Exon Array dataset (GSE19090) comprised of expression measurements from 182 ENCODE cell lines 
(tier 1, tier 2 and tier 3 cell types). The Affymetrix GeneChip Human Exon 1.0 ST Array features reliable probe-
sets targeting 50 out of 55 HK-lincRNAs. Reliable probesets were then mapped to the ENSEMBL human genome 
annotation (v74) using the annmap Bioconductor package62 and expression for each gene was calculated based 
on the median expression levels of all probesets mapped to the gene. Non-redundant gene ontology terms were 
identified using the same approach as that for the TCGA LUAD Dataset.

Analysis of TCGA data.  Raw RNA-seq data with matched normal and tumour samples were obtained from 
TCGA for 13 different tumour types (BLCA – Bladder Urothelial Carcinoma, BRCA – Breast invasive carci-
noma, COAD – Colon Adenocarcinoma, HNSC – Head and Neck squamous cell carcinoma, KICH – Kidney 
Chromophobe, KIRC – Kidney renal clear cell carcinoma, KIRP – Kidney renal papillary cell carcinoma, LIHC – 
Liver Hepatocellular Carcinoma, LUAD – Lung adenocarcinoma, LUSC – Lung squamous cell carcinoma, PRAD 
- Prostate Adenocarcinoma, THCA – Thyroid carcinoma, UCEC - Uterine Corpus Endometrial Carcinoma). 
These data was used to estimate gene and transcript abundance based on human genome annotations in 
Ensembl (v74) following the same steps as the HBM Dataset. Differential expression analysis was performed 
using Cuffdiff57,59,63. Genes/transcripts were considered as differentially expressed if they showed at least 2-fold 
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differences in expression between the normal and tumour samples, with a q-value < 0.05. Copy number analysis 
was performed using 10,654 samples from 31 tumour types currently available in TCGA. Processed copy number 
data was obtained from cBioPortal database64. For each sample, these data comprise of gene-level assignment of 
copy number values into one of 5 categories: homozygous deletion, heterozygous deletion, diploid, heterozygous 
amplification and homozygous amplification. The proportion of copy number aberrations was compared between 
core essential and other (non-core essential) protein–coding genes. For survival analysis, clinical annotations 
were obtained for 446 lung adenocarcinoma samples from TCGA with overall survival data. Kaplan-Meier anal-
ysis was performed and plotted using the survival65 and survminer packages in R.

RNA sequencing.  Total RNA from three biological replicates of siNT and siHKlincR1 using H460 cells were 
sent for PolyA sequencing. Indexed PolyA libraries were prepared using 200 ng of total RNA and 14 cycles of 
amplification with the Agilent SureSelect Strand Specific RNA Library Prep Kit for Illumina Sequencing (Agilent, 
Cat No: G9691A). Libraries were quantified by qPCR using a Kapa Library Quantification Kit for Illumina 
sequencing platforms (Kapa Biosystems Inc., Cat No: KK4835). Paired-end 75 bp sequencing was carried out by 
clustering 1.9 pM of the pooled libraries on a NextSeq. 500 sequencer (Illumina Inc.).

Analysis of differential expression in knockdown samples.  All statistical analysis including t-tests 
and Wilcoxon’s tests, were performed in R. Gene-level counts of HK-lincRNA-knockdown and scrambled siRNA 
treated samples generated as biological triplicates were obtained using the gene models in Ensembl (v74) (4) and 
Rsubread package66. edgeR was used to identify differentially expressed transcripts between HKlincR1 knock-
down samples relative to the NT siRNA control67,68. An FDR threshold of 0.05 was used for differential expression 
analysis, with a relatively permissive fold change threshold of 1.5 chosen in order to better support subsequent 
Gene Set Enrichment Analysis (GSEA). GSEA39 was performed on the control vs treatment samples using jav-
aGSEA3.1 and GO REACTOME gene sets (c2.cp.reactome.v6.1.symbols.gmt: c2 category from MSigDB69). 
Gene sets with absolute NES score > 1.7 and FDR < 10% were considered significant. Interactions between 
differentially expressed protein-coding genes were obtained from the STRING database70. Network analysis of 
protein-protein interactions was performed using Cytoscape71. The network was searched for significant func-
tional modules with high intra-module interactions using ClusterONE72 in Cytoscape. Modules with at least 5 
proteins and p-value < 0.01 were considered significant. Biological processes significantly enriched in each mod-
ule were then identified using BiNGO73 in Cytoscape (Adjusted P-value < 0.05). Significant upstream regulators 
(p-value < 0.01) of differentially expressed genes were predicted using the iRegulon tool51, which investigates 
known transcription factor (TF) motifs in upstream regions of genes and genome binding regions of TFs from 
previously published ChIP-Seq datasets. ENSEMBL v74 and v95 gene symbols in Table S2, were resolved against 
ENSEMBL stable gene and transcript IDs using BioMart.

Methylation data analysis.  ENCODE data.  Processed ENCODE/HAIB DNA Methylation data were 
obtained for 63 cell lines (GSE40699) from UCSC portal. The dataset comprised of Methylation Beta values 
for nearly 450 K probes generated using the Illumina 450 K array. For each sample, gene level methylation was 
estimated by taking the mean of the probe-level signal for all probes falling within the promoter region and 
beginning of gene body (−2000 bp to 200 bp) based on gene models in Ensembl (v74). Probe annotations were 
obtained using FDb.InfiniumMethylation.hg19 R package. The gene-level Methylation Beta values were used to 
make comparisons between different categories of genes.

TCGA data.  Processed probe-level DNA methylation Illumina 450 K array data for 9,269 tumour samples 
belonging to 33 tumour types was obtained using GDC Data Portal Legacy Archive in TCGA on 20/09/2018. The 
dataset analysis pipeline was as described above for the Encode Methylation dataset.

Data Availability
H460 cell line RNA sequencing data is available from the Gene Expression Omnibus (GEO Accession: 
GSE115659).

Permission was obtained to use the raw data from TCGA under the project #8211: “Identification of noncoding 
tumour suppressors and oncogenes”. The results published here are part based upon data generated by TCGA 
managed by the NCI and NHGRI. Information about TCGA can be found at http://cancergenome.nih.gov.
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