Skip to main content
. 2019 May 2;23:101849. doi: 10.1016/j.nicl.2019.101849

Table 1.

Studies on segmentation of white matter lesion changes.

Study n MRI parameters, voxel size (mm) Description/comments Lesion-wise performance parameters (range)a
TPR FDR/FPR
(Elliott et al., 2010) 23 1.5 T; T1w, PD/T2w: 1 × 1 × 3 Bayesian classification framework on subtraction images (T2w), training dataset (n = 66); specificity not quantitatively evaluated 0.84 (n.i.) n.d.
(Sweeney et al., 2013) 5 1.5 T; 2D FLAIR, PD, T2w, 3D T1w: 1 × 1 × 1 (extrapolated) Logistic regression model using multiple sequences and subtraction images, ROC curve analysis 0.95 (voxel-wise) 0.01 (voxel-wise)
(Battaglini et al., 2014) 19 PD, T2w, T1w, FLAIR: 3 × 1 × 1 Based on subtraction images (PD); multicenter trial (Miller et al., 2012) 0.91 (n.i.) 0.21 (n.i.)
(Ganiler et al., 2014) 20 1.5 T; PD, T2w, T1w: 3 × 1 × 1 Based on subtraction images (PD) 0.77 (n.i.) 0.18 (n.i.)
(Cabezas et al., 2016) 36 3 T; PD/T2w: 0.8 × 0.8 × 3; FLAIR: 0.5 × 0.5 × 3 T1w: 1 × 1 × 1.2 Multichannel pipeline based on deformation fields 0.81 (n.i.) 0.18 (n.i.)
(Jain et al., 2016) 12 3 T; T1w, FLAIR: 1 × 1 × 1 Expectation-maximization framework 0.62 (0.53–0.69) 0.16 (0.00–0.51)
(Eichinger et al., 2017) 106 3 T; FLAIR: 1 × 1 × 1.5; T1w: 1 × 1× 1 Based on subtraction images (FLAIR); relating to a consensus reference, main focus on DIR subtraction images 0.79 (n.i.) 0.05(n.i.)
(patient-wise) (patient-wise)
(Salem et al., 2018) 60 3 T; PD/T2w: 0.8 × 0.8 × 3; FLAIR: 0.5 × 0.5 × 3; T1w: 1× 1× 1.2 Multichannel pipeline, use of intensities, subtraction images, and deformation fields; 36 MS patients, 24 controls 0.74 (+/− 0.29) 0.12 (±0.18)
a

Performance parameters (with ranges as given in the original publications) refer to lesions unless indicated by italic letters; FLAIR, fluid attenuated inversion recovery; FDR/FPR, false discovery/positive rate; MS, multiple sclerosis; MRI, magnetic resonance imaging; n.d., not determined; n.i., not indicated; PD, proton density; ROC, response operator characteristics; T, Tesla; TPR, true positive rate, i.e. detection rate or sensitivity; w, weighted.