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ABSTRACT Understanding adipogenesis, the process of adipocyte development,
may provide new ways to treat obesity and related metabolic diseases. Adipogenesis
is controlled by coordinated actions of lineage-determining transcription factors and
epigenomic regulators. Peroxisome proliferator-activated receptor gamma (PPAR�)
and C/EBP� are master “adipogenic” transcription factors. In recent years, a growing
number of studies have reported the identification of novel transcriptional and epig-
enomic regulators of adipogenesis. However, many of these novel regulators have
not been validated in adipocyte development in vivo and their working mechanisms
are often far from clear. In this minireview, we discuss recent advances in transcrip-
tional and epigenomic regulation of adipogenesis, with a focus on factors and
mechanisms shared by both white adipogenesis and brown adipogenesis. Studies
on the transcriptional regulation of adipogenesis highlight the importance of investi-
gating adipocyte differentiation in vivo rather than drawing conclusions based on
knockdown experiments in cell culture. Advances in understanding of epigenomic
regulation of adipogenesis have revealed critical roles of histone methylation/dem-
ethylation, histone acetylation/deacetylation, chromatin remodeling, DNA methyl-
ation, and microRNAs in adipocyte differentiation. We also discuss future research di-
rections that may help identify novel factors and mechanisms regulating
adipogenesis.
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Obesity, characterized by an excessive accumulation of adipose tissue (AT), is a
major risk factor for type II diabetes and other metabolic diseases. There are two

main types of adipose tissue with distinct functions in human body. White adipose
tissue (WAT) stores excess energy in the form of triglycerides, while brown adipose
tissue (BAT) burns energy through thermogenesis (1, 2). Promoting BAT development
and suppressing WAT development may offer approaches for treating obesity. There-
fore, understanding the molecular mechanisms behind adipocyte differentiation (adi-
pogenesis) could provide new insights into a therapeutic strategy for combating
obesity.

Adipocytes, which primarily compose adipose tissue, are derived from multipotent
mesenchymal stem cells (MSCs). Two phases of adipogenesis are well characterized:
commitment of MSCs to preadipocytes and terminal differentiation of preadipocytes
toward mature adipocytes (3). Over the last few decades, there has been progress in
understanding transcriptional and epigenomic regulation of adipogenesis. The major
adipogenic transcription factors (TFs) peroxisome proliferator-activated receptor gamma
(PPAR�) and C/EBP� work with other TFs and epigenomic regulators to activate genes
required for terminal differentiation of preadipocytes (Fig. 1 and 2).

Many important findings in the adipogenesis field were obtained using immortal-
ized cell lines such as 3T3-L1 preadipocytes for studying terminal differentiation (4) and
C3H10T1/2 MSCs for studying adipogenic commitment (5). These cell lines cannot fully
represent adipogenesis in vivo, as differentiation in culture is induced by a chemical
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cocktail that is not present in physiological settings. To overcome this limitation, in vivo
studies involving crossing conditional knockout mice with tissue-specific Cre-
expressing mice are necessary. These Cre-expressing mouse lines include Myf5-Cre (6),
Adipoq-Cre (7, 8), and Fabp4-Cre (9–11). Myf5-Cre deletes floxed genes in progenitor
cells of BAT and a subset of skeletal muscles. It is particularly useful for studying
adipogenesis during embryonic development. Adipoq-Cre and Fabp4-Cre delete floxed
genes in mature adipocytes. However, Fabp4-Cre recombinase activity was also ob-
served in nonadipose tissues such as heart, skeletal muscle, and testis and in multiple
cell populations within adipose tissues (12, 13).

In this review, the focus is primarily on TFs and epigenomic regulators implicated in
the terminal differentiation process that is common to white adipogenesis and brown
adipogenesis (summarized in Tables 1 and 2). The factors that specifically regulate
brown adipocyte functions such as Irf4, Zfp516, Jmjd3, and Jmjd1a have been exten-
sively reviewed elsewhere (14–16).

TRANSCRIPTIONAL REGULATION OF ADIPOGENESIS
PPAR� and C/EBPs are required for adipogenesis. PPAR� and C/EBP� are con-

sidered master regulators of adipogenesis and have been shown to be essential for
adipogenesis both in culture and in vivo (17–21). PPAR�, which has been extensively
reviewed, controls terminal differentiation of adipocytes (1, 22–25) and is required for
maintaining their differentiated state (26, 27). C/EBP� acts in concert with PPAR� to
establish phenotypes of mature adipocytes (28, 29). It is generally accepted that
adipogenesis is controlled by a transcriptional cascade (1, 22, 30) initiated through
chromatin opening by C/EBP� (31, 32). C/EBP� and C/EBP� are expressed in the early
stage of adipogenesis in culture (33) and induce PPAR� and C/EBP� expression (34).
However, C/EBPs cannot function efficiently without PPAR�.

C/EBP� and C/EBP� are essential for adipose tissue development, but their role in
adipogenesis is not fully understood. C/EBP� and C/EBP� regulate adipogenesis syn-
ergistically as evidenced by lack of lipid droplets in BAT and significantly reduced
epididymal WAT levels in double knockout (Cebpb�/� Cebpd�/�) mice (35). Despite the
reduced fat mass, Cebpb�/� Cebpd�/� mice express normal levels of PPAR� and
C/EBP�, suggesting the presence of factors that enable cells to bypass the requirement
for C/EBP� and C/EBP� in vivo (1). To clarify the role of C/EBP� and C/EBP� in
adipogenesis, further studies using tissue-specific knockout mice will be necessary. In
3T3-L1 preadipocytes, opening on Pparg and other adipogenic genes occurs within 4 h
after treatment with an adipogenic cocktail. Knockdown of C/EBP� impairs chromatin

FIG 1 Activation or induction of TFs during adipogenesis in culture. The chemical cocktail of IBMX
(3-isobutyl-1-methylxanthine), fetal bovine serum (FBS), and dexamethasone (Dex) has been routinely used
to induce adipogenesis in culture. This cocktail induces expression of TFs KLF4 and Krox20 and activates
CREBs and GR, which cooperate to activate C/EBP� and C/EBP�. It is generally accepted that C/EBP� and
C/EBP� induce the expression of master adipogenic TFs PPAR� and C/EBP�, which directly activate
adipocyte gene expression (highlighted by a rectangle). Recent studies indicated that induction of KLF4 and
Krox20 and activation of GR are artifacts in cell culture. Neither KLF4 nor Krox20 nor GR is required for
adipogenesis in culture and in mice. The role of CREBs in adipogenesis in vivo is unclear.
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FIG 2 Transcriptional and epigenomic regulators enriched on Pparg locus in adipogenesis. A genome browser view
of the Pparg locus before (day zero [D0]) and after (D7) adipogenesis of brown preadipocytes is shown. Published
data were obtained from the GEO database and reanalyzed (NFIA data are from GSE83764, Brd4 data are from
GSE99101, and all other data are from GSE74189) (41, 49, 97). CTCF, CCCTC-binding factor; RNA-Seq, transcriptome
sequencing.
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opening on these adipogenic gene loci (32). Whether C/EBP� functions as a pioneering
factor working upstream of PPAR� and C/EBP� in vivo needs to be validated.

EBF family TFs. Early B-cell factor (EBF) family TFs, including EBF1, EBF2, and EBF3,
were initially suggested to be early regulators of adipogenesis. Ectopic expression of
EBF1/2/3 stimulates adipogenesis in NIH 3T3 fibroblasts, while knockdown of EBF1/2 or
expression of dominant-negative EBF1 represses 3T3-L1 adipogenesis (36, 37). EBF2 was
recently shown to play a critical role in maintaining brown adipocyte identity (38–40).
EBF2 recruits PPAR� to brown adipocyte-selective genes (39). Additionally, EBF2 regu-
lates the expression of Dpf3, a gene encoding a brown adipocyte-specific subunit of
chromatin remodeling complex, to activate thermogenic gene expression (40).

Although recent works focused primarily on the role of EBF2 in maintaining brown
adipocytes, several lines of evidence suggest that EBF2 regulates adipogenesis and
common adipogenic gene expression as well. It has been shown that knockdown of
EBF2 in 3T3-L1 preadipocytes and in brown preadipocytes impairs adipogenesis (37, 39)
and that Ebf2-null mouse embryos have reduced BAT mass compared with wild-type
littermates at embryonic day 18 (E18) (39). In addition, reanalysis of published EBF2
chromatin immunoprecipitation sequencing (ChIP-Seq) data showed that EBF2 binding
sites are enriched with motifs of adipogenic TFs C/EBPs and PPAR� (Fig. 3A) (41).
Furthermore, EBF2 colocalizes with C/EBPs and PPAR� as well as with enhancer
epigenomic regulators MLL4 and CBP on Pparg and Cebpa loci in addition to brown
adipocyte marker Ucp1 and Prdm16 loci (Fig. 2 and 3B) (41). Therefore, it is possible that
EBF2 cooperates with other adipogenic TFs to activate both general adipogenic gene
expression and brown adipocyte-specific gene expression. There might be functional
redundancy among EBF family members in regulating adipogenesis in vivo. For in-
stance, Ebf1-null mice have reduced WAT mass but not reduced BAT mass, suggesting
that EBF1 and EBF2 may have overlapping function in brown adipogenesis (42). Future
studies using tissue-specific Ebf family knockout mice will be helpful to clarify their roles
in general adipogenesis and fat depot-specific function. It would be informative to
determine genomic localizations of EBF1 and EBF3 during adipogenesis.

There is some evidence to suggest that EBF family members may function as
lineage-specific pioneering TFs. In B cell differentiation, EBF1 was suggested to be a
pioneering TF that binds to naive chromatin and induces chromatin opening (43). In
preadipocytes, EBF2 premarks a subset of adipogenic superenhancers prior to adipo-
genesis (41). Future study on whether EBF family members function as lineage-specific
pioneering TFs and open chromatin during adipogenesis cooperatively and/or distinc-
tively with C/EBP� is necessary.

Atf4. ATF4 has been identified as a positive regulator of adipogenesis in human
MSCs (hMSCs) (44). The enhancers with RNA polymerase II (Pol II) binding in confluent
hMSCs are enriched with hybrid motifs of C/EBPs and ATF half-sites. While C/EBP� binds
to canonical C/EBP motifs upon induction with adipogenic cocktail, it binds to nonca-
nonical hybrid motifs forming heterodimers with ATF4 in undifferentiated hMSCs.
Therefore, ATF4 appears to play a role in the adipogenic commitment stage. ATF4
expression peaks in the confluent hMSCs and gradually decreases upon adipogenic
induction. Knockdown of ATF4 reduces C/EBP� and Pol II binding on enhancers and
impairs adipogenesis in hMSCs.

A separate study using 3T3-L1 preadipocytes has shown that levels of ATF4 expres-
sion are very low in preadipocytes and peak at a later stage of differentiation and that
knockdown of ATF4 inhibits adipogenesis (45). The difference between hMSCs and
3T3-L1 cells in ATF4 expression levels is likely a consequence of the fact that these two
cell lines represent distinct stages of adipogenesis. Whole-body Atf4-null mice are lean
and resistant to obesity (46). However, it remains unclear whether the leanness of
Atf4-null mice is due to failure of adipogenesis or is secondary to growth retardation
(47). Lineage-specific knockout of Atf4 will provide insights on the role of ATF4 in
adipogenesis in vivo. To understand how ATF4 regulates adipogenesis, genomic local-
ization of ATF4 needs to be determined.
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FIG 3 Genomic binding of EBF2 during brown adipogenesis. (A) Lists of significantly enriched motifs in EBF2 binding sites on
enhancers at day �3 (D-3), D0, D2, and D7 of adipogenesis of brown preadipocytes. (B) EBF2 directly regulates expression of both
common adipogenic genes Pparg and Cebpa and BAT-specific genes Ucp1 and Prdm16. Highlighted regions indicate active enhancers
bound by EBF2 at D2. Published ChIP-Seq data sets of adipogenic TFs EBF2, C/EBPs and PPAR�, and enhancer epigenomic writers MLL4
and CBP, as well as chromatin opening (formaldehyde-assisted isolation of regulatory element sequencing [FAIRE-Seq]) data sets, were
obtained from GSE74189 (41) and reanalyzed.
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NFI family TFs. Nuclear factor I (NFI) family TFs were initially identified as positive
regulators of adipogenesis by motif analysis of open chromatin regions in differentiated
3T3-L1 cells (48). Knockdown of either NFIA or NFIB inhibits 3T3-L1 adipogenesis, while
forced expression of NFIA induces adipogenic genes, including Pparg, Cebpa, and
Fabp4, in undifferentiated 3T3-L1 cells. These data suggest that NFIs promote adipo-
genesis and adipogenic gene expression, although it was not shown whether they are
required for adipogenesis in vivo.

A follow-up study using comparative genomic profiling showed that NFI motifs are
enriched in BAT-specific open chromatin regions, suggesting that NFIs may play a role
in regulating BAT-specific genes (49). Among the four members of NFI family, NFIA
expression shows strong induction during adipogenesis of brown preadipocytes, while
the expression levels of the others are comparable in brown and 3T3-L1 preadipocytes
and remain steady during differentiation. In constrast to previous results in 3T3-L1 cells
(48), knockdown of NFIA in brown preadipocytes had no effect on adipogenesis and
adipogenic gene expression but decreased the levels of expression of BAT-specific
genes. Furthermore, whole-body Nfia-null mouse embryos have normal BAT mass but
show decreased expression of Ucp1 and other thermogenic genes (49). In addition,
PPAR� binding to the Ucp1 enhancer is impaired in Nfia-null BAT, suggesting a role of
NFIA in brown adipocyte-specific gene expression in vivo. Since genomic binding of
NFIA is observed with enhancers of adipogenic genes, including Pparg, it is also
possible that NFIs redundantly regulate adipogenesis and adipogenic gene expression
(Fig. 2).

Krox20, KLF4, and glucocorticoid receptor are dispensable for adipogenesis in
vivo. Our understanding of adipogenesis comes mainly from studies using preadi-
pocyte cells such as 3T3-L1 (50). Adipogenesis is induced by adding chemical cocktail
to confluent preadipocytes (Fig. 1). These chemicals activate the TFs CREB and gluco-
corticoid receptor (GR) and induce expression of Krox20, KLF4, C/EBP�, and C/EBP�

within hours (51). Activation or ectopic expression of these TFs has been shown to
promote adipogenesis in culture (1, 52, 53). However, it was unclear whether endog-
enous Krox20, KLF4, and GR are essential for adipogenesis in vivo.

A recent study demonstrated that endogenous Krox20 and KLF4 are dispensable for
adipogenesis in culture and BAT development in mice (54). Deletion of Krox20 or Klf4
has little effect on either the induction of early adipogenic TFs, including C/EBP�,
C/EBP�, KLF5, and KLF9, or the expression of adipogenesis markers, including PPAR�,
C/EBP�, and Fabp4. Consistent with data determined in vitro, Myf5-Cre-mediated
knockout of Krox20 or Klf4 does not affect BAT development in mice. Therefore, the
adipogenesis defects observed in the previous knockdown experiments were likely due
to off-target effects (52, 53). These recent findings on Krox20 and KLF4 caution us that
we cannot solely rely on the knockdown approach and highlight the importance of
studying adipogenesis in vivo. Whether Krox20 and KLF4 play specific roles in WAT
development remains unclear.

It was believed that GR is critical for adipogenesis, since dexamethasone, a synthetic
GR ligand, is commonly used to induce adipogenesis in mouse preadipocytes (Fig. 1),
although it is not required for adipogenesis of rat preadipocytes (55, 56). Either
knockdown or knockout of GR impairs adipogenesis of 3T3-L1 and primary or immor-
talized white and brown preadipocytes using a standard 7- to 8-day differentiation
protocol (31, 57). Unexpectedly, GR-deficient preadipocytes eventually catch up to
wild-type cells and fully differentiate in 3 weeks. In addition, mice that lack GR in Myf5�

progenitors develop normal levels of BAT and are cold tolerant (57). Therefore, even
though dexamethasone-bound GR accelerates adipogenesis in culture, endogenous GR
is largely dispensable for adipogenesis in culture and BAT development in mice. GR
expedites differentiation by recruiting histone acetyltransferase (HAT) CBP to activate
C/EBP�-primed enhancers in culture. An independent study further confirmed that GR
is dispensable for adipogenesis in vivo using several approaches (58). First, both
wild-type and GR-deficient mouse embryonic fibroblasts (MEFs) can form de novo fat
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pads in mice. Second, using adipocyte-specific luciferase reporter mice, early inguinal
white and brown adipocytes can be detected in GR-deficient embryos, demonstrating
that GR is not required for embryonic development of WAT and BAT. Although GR is not
required for adipogenesis, it is expressed and involved in lipogenesis in adipocytes (59).

Zfp423. A quantitative analysis of the transcriptome in clones of Swiss 3T3 fibro-

blasts identified Zfp423 as a determinant of preadipocytes (60). Compared to nonadi-
pogenic sublines, adipogenic clones highly express Zfp423. Forced expression of
Zfp423 in NIH 3T3 fibroblasts induces Pparg2 expression and adipogenesis, while
knockdown of Zfp423 in 3T3-L1 inhibits adipogenesis. Whole-body Zfp423 knockout
mouse embryos have been shown to have reduced levels of WAT and BAT mass at
E18.5, although it is unclear whether this was due to the failure of adipogenesis or
secondary to growth defects.

Studies using several tissue-specific Zfp423 knockout mice identified a key role of
Zfp423 in maintaining white adipocyte identity by antagonizing EBF2 and repressing
thermogenic gene expression (61, 62). Data from a recent study using Adipoq-Cre-
mediated Zfp423 knockout mice suggest that Zfp423 is required for the later stage of
fetal inguinal WAT development (63). It is worth noting that although Adipoq-Cre is
mainly active in mature adipocytes in adult mice, it may target a subset of adipose
stromal vascular cells, which likely represent actively differentiating or highly commit-
ted preadipocytes, in fetal inguinal WAT (64). It remains unclear whether Zfp423
regulates adipogenesis in general or in a fat depot-specific manner. To understand how
Zfp423 regulates adipogenesis, profiling of Zfp423 genomic binding before and after
adipogenesis is necessary.

Other TFs implicated in adipogenesis. Several additional TFs have been impli-

cated in regulating adipogenesis (1, 3, 23). CREB (65), KLF5 (66), KLF15 (67), and STAT5a
(68) have been suggested to be positive regulators of adipogenesis based on the
finding that expression of dominant-negative form or RNA interference (RNAi)-
mediated knockdown of these TFs inhibited adipogenesis in culture. GATA2/3 (69, 70)
and KLF2 (71) have been suggested to be negative regulators of adipogenesis, as
overexpression of these TFs inhibits 3T3-L1 adipogenesis and Pparg promoter activity
in reporter assays. However, most of these TFs have not been validated in physiological
settings using animal models and their direct target genes are largely unknown.

Mice with adipose-specific expression of A-ZIP/F, a dominant-negative protein that
inhibits C/EBPs and AP-1 family TFs, have no WAT and severely reduced levels of BAT,
indicating that either or both of C/EBPs and AP-1 are essential for adipose tissue
development in mice (72). Since the AP-1 family includes Jun, Fos, ATF, and JDP, it
remains unclear which specific TFs are important for adipogenesis in vivo.

SREBPs (including SREBP-1a, SREBP-1c, and SREBP-2) are key TFs that regulate fatty
acid and cholesterol synthesis (73). In culture, SREBP-1c has been shown to promote
adipogenesis by providing lipid ligands that mediate PPAR� activation (74). However,
whole-body Srebp1-null mice showed no defects in adipose tissue development and
adipocyte gene expression (75). Compensatory mechanisms may exist in Srebp1-null
mice, as the majority of knockout mice show embryonic lethality. Therefore, pheno-
types observed in surviving Srebp1-null mice may not reveal the roles of SREBP-1 in
adipose tissues. Future studies using tissue-specific knockout mice are required to
better evaluate the roles of SREBPs in adipogenesis.

Transcription coactivators in adipogenesis. Transcriptional coactivators, such as

Mediator proteins and steroid receptor coactivator (SRC) family proteins, function as
adaptors that connect TFs to Pol II or histone acetyltransferases to activate gene
expression (76, 77). Several components of the Mediator complex, including Med1 (78),
Med14 (79), and Med23 (80), and several components of the SRC family, including
SRC-2 (81) and SRC-3 (82), have been shown to be required for adipogenesis in culture.
However, cell-autonomous roles of these coactivators in adipogenesis have not been
demonstrated using tissue-specific knockout mice.
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Groucho family member TLE3 has been identified as a white adipocyte-selective
PPAR� cofactor. TLE3 inhibits brown adipocyte-enriched gene expression by binding to
Prdm16, a brown adipocyte-selective cofactor, and by competing for interactions
between Prdm16 and PPAR�, while it promotes white adipocyte-selective gene expres-
sion (83). Fabp4 promoter-driven expression of TLE3 in mice leads to an increase in WAT
mass (84) and whitening of BAT (83). Adipoq-Cre-mediated knockout of Tle3 induces
thermogenic gene expression and improves the thermogenic function of BAT. Genomic
binding of TLE3 during white adipogenesis and brown adipogenesis needs to be
determined to better understand the fat depot-specific roles of TLE3.

EPIGENOMIC REGULATION OF ADIPOGENESIS

Epigenomic factors play important roles in regulating cell-type-specific gene expres-
sion during cell differentiation (85, 86). Key epigenomic regulators include but not
limited to the following: histone methyltransferases (MTs)/demethylases, histone acety-
lases/deacetylases, epigenomic readers, chromatin remodeling factors, DNA methyl-
ases/demethylases, and microRNAs (miRNAs) (87, 88).

Lysine methyltransferases. Lysine residues on histone tails are modified by site-
specific methyltransferases (Fig. 4). Histone methylation can be correlated with either
gene activation or repression, depending on the methylation sites (89, 90). For example,
methylation of histone H3 on lysine 4 (H3K4), lysine 36 (H3K36), or lysine 79 (H3K79) is
correlated with gene activation, but methylation on lysine 9 (H3K9) or lysine 27 (H3K27)
is correlated with gene repression. Studies have identified distinct roles of H3K4
methyltransferases MLL3 and MLL4 (MLL3/MLL4); H3K9 methyltransferases G9a,
Setdb1, and Ehmt1; H3K27 methyltransferase Ezh2; and H3K36 methyltransferase Nsd2
in adipogenesis.

MLL3/MLL4 are members of the mammalian Set1-like H3K4 methyltransferases, a
family which also includes MLL1, MLL2, SET1A, and SET1B (91–93). MLL3/MLL4 are
major H3K4 monomethyltransferases enriched on enhancers and required for enhancer
activation (91, 94). MLL3/MLL4 and associated PTIP and Ncoa6 have been shown to be
required for induction of PPAR� and C/EBP� and subsequently for adipogenesis (91, 95,
96). MLL3/MLL4 are recruited by a pioneering TF C/EBP� to activate the enhancers of
Pparg and Cebpa and induce PPAR� and C/EBP� expression during adipogenesis. Once
induced, PPAR� and C/EBP� recruit MLL3/MLL4 to further activate enhancers of down-
stream target genes (91). Deletion of Mll3 and Mll4 in preadipocytes impairs recruit-
ment of histone acetyltransferases CBP/p300 and the epigenomic reader Brd4 on
enhancers, thereby inhibiting induction of adipogenic genes (41, 97). Myf5-Cre-
mediated knockout of Mll4 in progenitor cells leads to severe defects in BAT develop-
ment in mice (91). However, Adipoq-Cre-mediated knockout of Mll4 in differentiated

FIG 4 Epigenomic writers and erasers implicated in adipogenesis. A number of site-specific histone lysine
methyltransferases, histone demethylases, and histone acetyltransferases play important roles in adipo-
genesis by adding or removing active (green) or repressive (red) histone marks on lysine residues. The
resulting combination of epigenomic marks contributes to activation or repression of downstream target
genes regulating adipogenesis. Enzymes that are responsible for methylation/demethylation and acet-
ylation on histone H3 tail are shown.
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adipocytes does not affect adipose tissue mass or gene expression (94). Therefore,
MLL3/MLL4 act as major enhancer writers during adipogenesis, while they are largely
dispensable for maintaining differentiated adipocytes. The roles of other H3K4 meth-
yltransferases such as MLL1/MLL2 (MLL1/2) or SET1A/B in adipogenesis have not been
reported (51).

H3K9 methyltransferases G9a and Setdb1 have been shown to repress adipogenesis,
while Ehmt1 has been shown to promote brown adipogenesis (98, 100, 103). G9a is a
major enzyme responsible for the repressive histone mark H3K9 dimethylation
(H3K9me2) (101). In preadipocytes, the entire Pparg locus is covered by H3K9me2,
where another repressive mark, H3K27me3, is absent (98). During adipogenesis, both
H3K9me2 levels and G9a levels decrease, inversely correlating with PPAR� induction.
Deletion of G9a in preadipocytes upregulates PPAR� expression by reducing H3K9me2
levels. Fabp4-Cre-mediated G9a knockout mice show increased adipose tissue mass. In
addition, G9a promotes expression of Wnt10a, an inhibitor of adipogenesis, indepen-
dently of its enzymatic activity. Therefore, G9a represses adipogenesis through both
enzymatic activity-dependent and enzymatic activity-independent mechanisms. It re-
mains unclear which DNA binding TFs are responsible for G9a recruitment to the Pparg
locus. A recent study reported that AP-2� recruits G9a to the Cebpa promoter through
sequential chromatin immunoprecipitation (ChIP-reChIP) assays (102). Future studies
will be needed to assess whether AP-2� is also responsible for G9a recruitment to Pparg
locus. In contrast to G9a, which represses both white and brown adipogenesis, Ehmt1
promotes brown adipogenesis (100). Myf5-Cre-mediated deletion of Ehmt1 impairs BAT
development and BAT-selective gene expression in mice. The role of Ehmt1 in white
adipogenesis remains unclear. Setdb1, an H3K9 trimethyltransferase, has been shown
to poise Pparg and Cebpa expression in preadipocytes by maintaining noncanonical
H3K4me3/H3K9me3 bivalent domains (103). Lineage-specific DNA methylation on
Pparg and Cebpa recruits the Setdb1-MBD1-MCAF1 complex to establish H3K4me3/
H3K9me3 domains. Knockdown of Setdb1 inhibits H3K9me3 deposition on Pparg and
Cebpa promoters, allows release of paused Pol II, and induces Pparg and Cebpa
expression, which in turn facilitates adipogenesis. However, it remains to be deter-
mined whether Setdb1 represses adipogenesis in vivo.

Ezh2 is the catalytic subunit of the dominant H3K27 trimethyltransferase Polycomb
repressive complex 2 (PRC2) in mammalian cells (104). PRC2 regulates development by
repressing genes that need to be silenced during cell differentiation (105, 106). Se-
creted Wnt proteins activate the Wnt/�-catenin signaling pathway to inhibit adipogen-
esis (107). Ezh2 directly represses Wnt genes in a methyltransferase activity-dependent
manner to facilitate adipogenesis (108). Deletion of Ezh2 leads to decreases in
H3K27me3 levels on Wnt genes and derepression of Wnt expression in preadipocytes
and during adipogenesis. This is accompanied by an increase of global acetylation on
H3K27 (H3K27ac) (108). With such a dramatic increase in H3K27ac levels, it is possible
that other genes in addition to Wnt are activated in Ezh2 knockout cells, contributing
to the phenotypes. Determining the genomic binding of Ezh2 or other subunits of PRC2
will be useful to identify genes directly repressed by H3K27me3. Future studies will be
needed to identify TFs that recruit the Ezh2-containing PRC2 complex to Wnt genes. In
addition, the roles of Ezh2 in adipogenesis in vivo have not been reported.

A recent study has identified Nsd2, an H3K36 dimethyltransferase, as a positive
regulator of adipogenesis, based on findings showing that ectopic expression of K36M
mutant form of histone H3 (H3K36M) inhibits Nsd2 enzymatic activity, depletes endog-
enous H3K36 dimethylation, and inhibits adipogenesis by increasing the levels of
repressive H3K27me3 on Cebpa and other target genes of PPAR� (109). Knockout or
knockdown of Nsd2, but not of other H3K36 methyltransferases (Nsd1 or Setd2),
phenocopies the effect of H3K36M expression in adipogenesis. While H3K36M expres-
sion in Myf5� progenitor cells leads to failure of BAT development in mice, Fabp4
promoter-driven H3K36M expression results in whitening of BAT and induces insulin
resistance in WAT, indicating that Nsd2-mediated H3K36me2 plays critical roles in
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adipose tissue development and function. Future work will be needed to validate
important roles of Nsd2 in adipogenesis and adipocyte function in vivo.

Lysine demethylases. Lsd1 is an H3K4 and H3K9 demethylase that has been
implicated in both transcriptional activation and repression, depending on the biolog-
ical context and the associated protein complex. Studies have identified Lsd1 as a
positive regulator of adipogenesis, as knockdown or knockout of Lsd1 in preadipocytes
inhibits adipogenesis (110, 111). Knockdown of Lsd1 increases the levels of the repres-
sive histone mark H3K9me2 on the Cebpa promoter and impairs the induction of
C/EBP� (110). A recent study suggested that Lsd1 is critical for BAT development and
function (112). Knockout of Lsd1 in Myf5� progenitor cells leads to defects in BAT
development in mice by increasing H3K9me2 on the Ucp1 promoter and inhibiting
Ucp1 expression. Ucp1-Cre-mediated Lsd1 knockout in mice results in increased whole-
body adiposity and cold intolerance, suggesting that Lsd1 is required for BAT function.
Treating preadipocytes with a chemical inhibitor of Lsd1 prevents adipogenesis, sug-
gesting that Lsd1 enzymatic activity is required for adipogenesis (111). These studies
suggested that Lsd1 promotes Cebpa and Ucp1 expression during adipogenesis by
demethylating H3K9me2. The role of Lsd1 in WAT development in vivo remains to be
determined.

A recent study reported that knockdown of the Kdm5 family of H3K4 demethylases
in preadipocytes inhibits adipogenesis (113). Specifically, Kdm5A binds to and activates
promoters of genes involved in cell cycle and proliferation. As a result, knockdown of
Kdm5 impairs mitotic clonal expansion, which in turn leads to defects in adipogenesis.
Reconstitution experiments suggested that the enzymatic activity of Kdm5A is required
for the activation of cell cycle genes. Although mitotic clonal expansion is required for
adipogenesis in culture, its role in adipose development in vivo is not clear. To better
understand the role of Kdm5 family in adipogenesis in vivo, further study using
conditional knockout mice will be necessary.

Arginine methyltransferases. Arginine methylation is mediated by nine protein
arginine methyltransferases (PRMTs) in mammals (114). Among these PRMTs, Carm1
and Prmt5 have been implicated in regulating adipogenesis.

Carm1 is a transcriptional coactivator for PPAR� and is required for adipogenesis
(115). Transcriptome analysis of whole-body Carm1 knockout mouse embryos suggests
that Carm1 is required for adipogenic and lipogenic gene expression downstream of
PPAR�. Moreover, E18.5 Carm1 knockout embryos have reduced lipid in BAT compared
with wild-type littermates. In vitro, knockdown of Carm1 impairs 3T3-L1 adipogenesis.
To prove a cell-autonomous role of Carm1 in adipogenesis, tissue-specific knockout
mouse studies are needed. Although reporter assays suggest that Carm1 is a PPAR�

coactivator, it needs to be determined whether Carm1 colocalizes with PPAR� on target
gene loci. Carm1 has been shown to cooperate with other epigenomic factors, in
particular, the enhancer regulators CBP and p300 (116, 117), suggesting the possibility
that Carm1 regulates adipogenesis by participating in enhancer activation. Future
studies are needed to determine whether the methyltransferase activity of Carm1 is
required for adipogenesis.

Prmt5 has also been implicated in regulating adipogenesis (118). Knockdown of
Prmt5 inhibits adipogenesis and adipogenic gene expression in 3T3-L1 and C3H10T1/2
cells. A recent study used chromosome conformation capture assay and identified a
differentiation-dependent and Prmt5-dependent interaction between Pparg2 promoter
and kb �10 enhancer regions in C3H10T1/2 cells after differentiation (119). Prmt5 is
also required for Med1 and Brg1 binding at the Pparg2 promoter and the kb �10
enhancer. Given that Prmt5 is essential for cell growth (120), it remains unclear whether
Prmt5 directly regulates adipogenic gene expression and whether the methyltrans-
ferase activity of Prmt5 is required for adipogenesis.

Histone acetyltransferases. Acetylation on histone lysine residues generally cor-
relates with gene activation and is catalyzed by site-specific histone acetyltransferases
(HATs). For example, Gcn5 and PCAF are major enzymes for acetylation on H3K9
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(H3K9ac), while CBP and p300 are responsible for acetylation on H3K18 (H3K18ac) and
H3K27 (H3K27ac) in mammalian cells (121–123).

Gcn5 and PCAF function redundantly to regulate adipogenesis (124). Double knock-
out of Gcn5 and Pcaf by Myf5-Cre impairs BAT development in mice. In vitro, Gcn5/PCAF
and their catalytic activities are required for adipogenesis. Interestingly, ectopic PPAR�

can rescue adipogenesis but not brown adipocyte-enriched Prdm16 expression in Gcn5
Pcaf double knockout cells, suggesting that Gcn5 and PCAF regulate transcription of
general adipogenic genes and brown adipocyte-enriched genes through different
mechanisms. Determining genomic localization of Gcn5 and/or PCAF would provide a
better understanding of the mechanism by which this functionally redundant pair of
HATs regulates adipocyte genes and BAT-enriched genes in brown adipogenesis.

CBP and p300 are required for adipogenesis. Ribozyme-mediated targeting of either
CBP or p300 inhibits adipogenesis and PPAR� target gene expression, suggesting that
these two enzymes are not mutually compensating each other in regulating adipo-
genesis (125). Crebbp�/� mice have markedly reduced WAT mass compared to wild-
type littermates, suggesting that CBP is essential for adipogenesis in vivo (126). CBP/
p300-mediated H3K27ac marks active enhancers (127, 128). Consistently, profiling of
CBP/p300 binding sites demonstrated that genomic binding of these HATs drives
enhancer activation during adipogenesis (41).

Histone deacetylases and sirtuins. Histone deacetylation is mediated by classical
zinc-dependent histone deacetylases (HDACs) and NAD�-dependent sirtuins (SIRTs)
(129). Studies have suggested diverse roles of HDACs and SIRTs in adipogenesis.

Among 11 HDACs, Hdac1, Hdac2, and Hdac9 have been shown to regulate adipo-
genesis. Hdac1 and Hdac2 positively regulate adipogenesis redundantly, since knock-
out of both, but not the individual knockout of each, inhibits adipogenesis of fibroblasts
(130). In contrast, Hdac9 negatively regulates adipogenesis. Hdac9 expression is down-
regulated during adipogenesis. Preadipocytes isolated from Hdac9 knockout mice show
accelerated adipogenesis, while overexpression of Hdac9 represses 3T3-L1 adipogen-
esis independently of deacetylase domain (131). The roles of HDACs in adipogenesis in
vivo and the genomic localization of HDACs remain to be determined.

Among seven SIRTs, Sirt1, Sirt2, Sirt6, and Sirt7 have been implicated in regulating
adipogenesis. Fabp4-Cre-mediated Sirt1 knockout mice show increased adipose tissue
mass under conditions of a high-fat diet, suggesting a negative role of Sirt1 in adipose
tissue development (132). In culture, Sirt1 knockout enhances adipogenesis in MEFs
(133). Sirt2 has also been implicated in negative regulation of adipogenesis. Two
studies reported that stable knockdown of Sirt2 promotes adipogenesis in 3T3-L1 cells.
Mechanistically, Sirt2 inhibits adipogenesis by deacetylating FOXO1, which represses
PPAR� transcriptional activity (134, 135). In contrast, whole-body Sirt7 knockout mice
show reduced WAT mass, suggesting that Sirt7 positively regulates adipose tissue
development (136). Sirt6 regulates mitotic clonal expansion in cells and is required for
adipogenesis (137). Future studies are needed to identify direct target genes of SIRTs
in adipogenesis and to demonstrate whether SIRTs play a cell-autonomous role in
regulating adipogenesis in vivo.

Epigenomic reader Brd4. Brd4 is a member of the family of bromodomain and
extraterminal domain (BET) proteins, which also includes Brd2 and Brd3 (138). Brd4
binds to acetylated histones and TFs and acts as an epigenomic reader (139). Brd4 is
critical for adipogenesis in culture and in mice (97). Deletion of Brd4 in preadipocytes
prevents adipogenesis and adipogenic gene induction. During adipogenesis, lineage-
determining transcription factors (LDTFs) cooperate with enhancer epigenomic writers
MLL3/4 and CBP/p300 to recruit Brd4 to active enhancers, which facilitates the recruit-
ment of Pol II, Mediator, TFIID, and p-TEFb. An independent study also showed that
Brd4 is enriched on superenhancers in 3T3-L1 adipogenesis (140). Consistently, BET
inhibitors block adipogenesis of 3T3-L1 and C3H10T1/2 cells (140, 141). In mice,
Myf5-Cre-mediated knockout of Brd4 impairs BAT development. Although Brd4 is
essential for adipogenesis, it is largely dispensable for maintaining differentiated
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adipocytes, as evidenced by the lack of the phenotype in mice with Adipoq-Cre-
mediated Brd4 knockout (97). Interestingly, another BET family protein, Brd2, has been
suggested to inhibit adipogenesis (142, 143). Further study is necessary to clarify the
shared and distinct functions of BET family members in adipogenesis in vivo.

Chromatin remodeling complex. SWI/SNF is a multisubunit ATP-dependent chro-
matin remodeling complex that uses Brg1 or Brm as the ATPase (144). C/EBPs initiate
recruitment of SWI/SNF to Pparg2 promoter in adipogenesis (145). Ectopic expression
of dominant-negative Brg1 or Brm interferes with PPAR�-, C/EBP�-, or C/EBP�-
mediated adipogenesis in fibroblasts, suggesting that the SWI/SNF complex is required
for adipogenesis. Whether the SWI/SNF complex is required for chromatin opening and
adipogenesis in vivo and how it regulates adipogenic gene expression remain largely
unclear. Recent studies in human cancer cells suggested that the SWI/SNF complex is
critical for enhancer activation (146, 147). Whether the SWI/SNF complex is required for
activation of enhancers critical for adipogenic gene expression may require further
investigation.

DNA methylation. DNA methylation is catalyzed by DNA methyltransferases (DNMTs)
and is removed by TET dioxygenases. There are five DNMTs responsible for establishing
or maintaining DNA methylation (148). The role of DNMTs and DNA methylation in
adipogenesis has been controversial. An earlier study showed that small interfering
RNA (siRNA) knockdown of DNMT1 in 3T3-L1 cells reduces DNA methylation levels on
the Pparg gene and accelerates adipogenesis (149). However, a recent study showed
that pharmacological inhibition of DNA methylation by 5-aza-dC treatment suppresses
adipogenesis and is accompanied by demethylation and upregulation of Wnt10a (150).
To clarify the role of DNMTs in adipogenesis in vivo, tissue-specific knockout mouse
studies are necessary.

DNA methylation in the form of 5-methylcytosine (5mC) can be reversed by TET1/
2/3 (151). A study has shown that 5-hydroxymethylcytosine (5hmC), an intermediate of
DNA demethylation process, marks a subset of PPAR�- and C/EBP�-bound enhancers
during 3T3-L1 adipogenesis. Addition of 5hmC during adipogenesis coincides with
increased levels of enhancer marks H3K4me2 and H3K27ac (152). In line with this
finding, double knockout of Tet1 and Tet2 has been shown to block adipogenesis of
mouse embryonic fibroblasts (153). The role of TETs in regulating adipogenesis should
be investigated in vivo using tissue-specific knockout mice. In addition, whether Tet1
and/or Tet2 localizes on enhancers to regulate adipogenic gene expression needs to be
determined.

microRNAs. MicroRNAs (miRNAs) are noncoding RNAs that posttranscriptionally
regulate gene expression by degrading target mRNA or inhibiting protein synthesis
(154). Studies have suggested that several miRNAs play a role in adipose tissue
development and associated metabolism (155). A study used miRNA microarray anal-
ysis to profile PPAR�-regulated miRNAs in human adipocytes (156). Among 27 miRNAs
whose expression was altered by treatment of pioglitazone, a synthetic PPAR� ligand,
miR-378, has been shown to promote adipogenesis of subcutaneous adipocytes but
not of visceral adipocytes. miR-378 is embedded in the first intron of PPARGC1b, which
encodes PGC-1�. The target genes of miR-378 and its working mechanisms in adipogenesis
have yet to be examined. Another important intronic miRNA is miR-33, which is embedded
within the SREBP-2 gene and targets ABCA1 to control cholesterol homeostasis (157, 158).
Whole-body miR-33 knockout mice gradually become obese and develop hepatic steatosis
through derepression of SREBP-1 in the liver (159). How miR-33 regulates adipogenesis and
metabolism in adipocytes remains to be understood.

CONCLUSIONS AND FUTURE DIRECTIONS

In recent years, one major discovery in transcriptional regulation of adipogenesis is the
identification of EBF2 as a major regulator of brown adipogenesis. Further study is neces-
sary to clarify the role of EBFs in general versus in brown adipogenesis and their potential
redundancy. This can be achieved by generating tissue-specific knockout of single and
multiple EBFs in mice. Another important contribution to understanding transcriptional
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regulation of adipogenesis is the exclusion of Krox20, KLF4, and GR from the list of
adipogenic TFs, which underscores the importance of studying adipogenesis in vivo instead
of drawing conclusions based on the knockdown approach in cell culture.

During the last decade, many epigenomic factors have been shown to regulate adipo-
genesis. These factors are involved in regulating histone modification, chromatin remod-
eling, and DNA methylation. Studies have revealed sequential actions of epigenomic factors
on enhancers in adipogenesis. C/EBP� recruits MLL3/MLL4 to prime enhancers, which
facilitates binding of CBP/p300 to activate and label enhancers with H3K27ac. H3K27ac and
acetylated TFs are recognized by Brd4, which recruits Mediator and Pol II to activate PPAR�

and C/EBP� expression (41, 91, 97). The SWI/SNF complex may participate in these
sequential events, leading to lineage-specific enhancer activation in adipogenesis (Fig. 5).
The expression of adipogenesis master regulators is also under the control of two mutually
exclusive repressive histone marks. G9a-mediated H3K9me2 represses PPAR� expression.
Ezh2-mediated H3K27me3 represses Wnt expression (Fig. 5).

Despite the rapid progress in the study of transcriptional and epigenomic regulation
of adipogenesis, several issues remain to be addressed and new techniques need to be
employed. First, although cell culture systems have revealed important mechanisms
regulating adipogenesis, they do not fully recapitulate adipogenesis in vivo. Many
putative adipogenic TFs identified in cell culture need to be validated using mouse
models, and specific and direct target genes of these TFs need to be identified by
ChIP-Seq. Second, adipose tissues are heterogeneous and contain multiple cell types
(160). Recently developed INTACT, TRAP, and NuTRAP transgenic mice allow isolation of
mRNA and nuclei from specific cell types. These techniques will enable transcriptional
and epigenomic profiling of adipogenesis in vivo using heterogeneous adipose tissues
(161–163). Third, recent advances in single-cell technology provide opportunities for
transcriptomic and epigenomic studies at single-cell resolution (164). This will help
identify cell lineages and distinct developmental stages during adipogenesis. Fourth,

FIG 5 Epigenomic mechanisms control expression of master regulators of adipogenesis. Epigenomic
factors such as MLL4, p300, and Brd4 bind to enhancers to activate expression of adipogenesis genes,
including the master adipogenic TF PPAR� gene. Two repressive histone marks oppositely regulate
adipogenesis. Ezh2-mediated H3K27me3 represses Wnt gene expression and promotes adipogenesis,
whereas G9a-mediated H3K9me2 represses Pparg expression and inhibits adipogenesis.
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RNAi-mediated knockdown approach often lacks sufficient specificity and tends to
create artifacts (165). Artifacts generated by RNAi are also found in the adipogenesis
field. The recently developed revolutionary genome editing technique that uses the
clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 system has
enabled time- and cost-efficient gene knockout (166). By generating knockout cells by
the use of the CRISPR-Cas9 approach, roles of poorly characterized, putative adipogenic
factors can be reevaluated. Fifth, studies have implicated noncoding RNAs in regulating
adipogenesis in culture (167, 168). Although knockdown of several candidate noncoding
RNAs inhibits adipogenesis, more efforts are needed to determine the mechanism by which
these noncoding RNAs regulate adipogenesis and to validate their roles with in vivo
models. Sixth, higher-order chromatin interactions, in particular, promoter-enhancer loop-
ing, are involved in regulating gene expression during differentiation and development
(169). It has been shown that promoter-anchored chromatin loops change dynamically
during adipogenesis (170). Future efforts are needed to identify the factors that are
responsible for dynamic promoter-enhancer looping during adipogenesis.
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