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ABSTRACT

Background: 1t is becoming increasingly clear that pathophysiological processes underlying psychiatric disorders
categories are heterogeneous on many levels, including symptoms, disease course, comorbidity and biological
underpinnings. This heterogeneity poses challenges for identifying biological markers associated with dimen-
sions of symptoms and behaviour that could provide targets to guide treatment choice and novel treatment. In
response, the research domain criteria (RDoC) (Insel et al., 2010) was developed to advocate a dimensional
approach which omits any disease definitions, disorder thresholds, or cut-points for various levels of psycho-
pathology to understanding the pathophysiological processes underlying psychiatry disorders. In the present
study we aimed to apply pattern regression analysis to identify brain signatures during dynamic emotional face
processing that are predictive of anxiety and depression symptoms in a continuum that ranges from normal to
pathological levels, cutting across categorically-defined diagnoses.

Methods: The sample was composed of one-hundred and fifty-four young adults (mean age=21.6 and s.d. =2.0,
103 females) consisting of eighty-two young adults seeking treatment for psychological distress that cut across
categorically-defined diagnoses and 72 matched healthy young adults. Participants performed a dynamic face
task involving fearful, angry and happy faces (and geometric shapes) while undergoing functional Magnetic
Resonance Imaging (fMRI). Pattern regression analyses consisted of Gaussian Process Regression (GPR) im-
plemented in the Pattern Recognition for Neuroimaging toolbox (PRoNTo). Predicted and actual clinical scores
were compared using Pearson's correlation coefficient (r) and normalized mean squared error (MSE) to evaluate
the models' performance. Permutation test was applied to estimate significance levels.

Results: GPR identified patterns of neural activity to dynamic emotional face processing predictive of self-report
anxiety in the whole sample, which covered a continuum that ranged from healthy to different levels of distress,
including subthreshold to fully-syndromal psychiatric diagnoses. Results were significant using two different
cross validation strategies (two-fold: r=0.28 (p-value=0.001), MSE=4.47 (p-value=0.001) and five fold
r=0.28 (p-value = 0.002), MSE =4.62 (p-value = 0.003). The contributions of individual regions to the predictive
model were very small, demonstrating that predictions were based on the overall pattern rather than on a small
combination of regions.

Conclusions: These findings represent early evidence that neuroimaging techniques may inform clinical assess-
ment of young adults irrespective of diagnoses by allowing accurate and objective quantitative estimation of
psychopathology.
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1. Introduction

Almost one-fifth of all 18-25-year olds seek help from mental health
professionals for psychological distress, which ranges from anxiety and
depressive symptoms to personality traits, functional disabilities and
behavioural problems (SAMHSA, 2007). Identifying biomarkers re-
flecting pathophysiological processes associated with these dimensions
of behaviour has the potential to provide biologically-relevant targets
that can guide treatment choice and novel treatment development
(Phillips and Frank, 2006; Hasler et al., 2006). While studies using
neuroimaging techniques have the potential to identify these bio-
markers, most neuroimaging studies in youth suffering from anxiety
and depression have focused on identifying group differences in neural
circuitry associated with the categorical diagnoses (Stein et al., 2007;
Blair et al., 2008; Stuhrmann et al., 2011; Demenescu et al., 2011;
Duval et al., 2015). This approach is helpful for making regionally
specific inferences about abnormalities in brain function and structure
that may be associated with anxiety and depression; however, such an
approach describes differences at the group level and do not enable
predictions at the individual level, which is more desirable in clinical
practice, where physicians need to make decisions about individuals.

Over the last ten years, machine learning approaches, such as pat-
tern recognition, also known in the neuroimaging field as Multivoxel
Pattern Analysis (MVPA), have been increasingly used to identify
multivariate patterns in neuroimaging data that enable prediction at
the individual subject level (for reviews, see Haynes and Rees, 2006;
Cohen et al., 2011, Marquand et al., 2016, Janssen et al., 2018). These
techniques are promising for identifying neurobiological measures that
can predict scores on a given dimension, for example dimensional
measures of anxiety and depression. In the context of pattern recogni-
tion, the term “predict” means that once the model has learned a re-
lationship between a set of patterns (e.g. multivariate patterns of brain
activation) and labels (e.g. a clinical score), given a new pattern (e.g.
brain activation from a new subject) it can predict its label. In other
words, in pattern recognition analysis the model performance (e.g.
predictive accuracy for classification or mean squared error for re-
gression) is evaluated on new data that was not used to train or fit the
model. For example, fMRI and pattern recognition techniques have
been used to identify relationships between patterns of brain activity
and continuous measures of behaviour or symptoms. Such information
was then used to predict individual-level scores on symptom/beha-
vioural measures in a set of new individuals (Stonnington et al., 2010;
Cohen et al., 2011; Portugal et al., 2016; Fernandes et al., 2017). As a
multivariate approach, pattern recognition also has the potential to be
more sensitive to spatially distributed and subtle effects in the brain
than a standard mass-univariate analysis, potentially providing a more
powerful approach for studies of subclinical populations in which less
severe alterations are generally observed. To date, there are few neu-
roimaging studies that applied pattern recognition approaches to pre-
dict current or future clinical scores in young adults seeking help for
psychological distress (Chase et al., 2017; Greenberg et al., 2017).

Currently the standard diagnostic approach for people seeking help
for psychological distress is based on the Diagnostic and Statistical
Manual of Mental Disorders (DSM) and the International Classification
of Diseases (ICD), which relies on specific symptom criteria for estab-
lishing a categorical diagnosis. Although these systems have con-
tributed greatly to the reliability of psychiatric diagnoses made for re-
search and clinical purposes, their categories and criteria were
formulated before modern neuroscience and perhaps do not reflect the
organization of brain circuits and their associated behaviours (Morris
and Cuthbert, 2012). Yet, it is becoming increasingly clear that pa-
thophysiological processes underlying such disease definitions are
heterogeneous (Hyman, 2007; Insel and Cuthbert, 2015). For example,
some studies have shown that a specific drug or psychotherapy inter-
vention can be successful in a certain patient subgroup and unsuccessful
in another patient subgroup labelled with an identical diagnosis
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(Gabrieli et al., 2015). This variability in treatment response, which is
not understood and not simply a consequence of disease severity, sug-
gests that there are clinically important neurobiological differences
among patients sharing a diagnostic label. High comorbidity rates also
contribute to this debate, raising questions about the core features of a
specific diagnosis and poses problems for diagnosis and treatment
(Sanislow et al., 2010). The ongoing discussion surrounding psychiatric
nosology reflects well-acknowledged difficulties in finding biological
markers that predict current disease state or future outcomes with
sufficient sensitivity and specificity to be clinically useful (Kapur et al.,
2012; Insel and Cuthbert, 2015).

Motivated by the fact that most findings from neuroscience and
genetics either link to many different syndromes or distinct subgroups
within syndromes, but not to DSM diagnostic categories of psychiatric
disorder, the research domain criteria (RDoC) (Insel et al., 2010) was
developed to advocate a dimensional approach to understanding the
pathophysiological processes underlying psychological distress and
other mental health problems. An important contribution is a shift away
from symptoms and towards conceptualizing psychopathology as
spanning multiple domains of functioning and across multiple units of
analysis. An important assumption of the RDoC is that psychopatholo-
gies are heterogeneous phenomena involving multiple pathophysiolo-
gical processes, which make them difficult targets for reduction
(Cuthbert and Insel, 2013). It is also important to highlight that the
RDoC framework intentionally omits any disease definitions, disorder
thresholds, or cut-points for various levels of psychopathology. Fur-
thermore, these behavioural changes exhibited by individuals with
mental health disorders may be the tip of an iceberg—a late manifes-
tation of a change that has been occurring in the brains of people who
were still considered psychiatrically “healthy”, thereby suggesting that
these disorders may be better conceptualized as “brain disorders”.

In this context, Oathes et al. (2015) used resting-state functional
magnetic resonance imaging (fMRI) and principal component data re-
duction to elucidate the relative contributions of categorial and di-
mensional formulations implicated in anxiety and depression disorders.
They showed that general distress, measured by a self-rated scale, is
positively associated with limbic and paralimbic signal amplitudes,
whereas the presence of a depressive disorder diagnosis drives signal
down across these neural regions. They also showed a positive asso-
ciation between anxious arousal and connectivity between the anterior
cingulate cortex and the ventral striatum, whereas the presence of a
depressive disorder diagnosis was associated with reduced connectivity
among these regions. While the authors suggested that using a single
conceptual framework (i.e. categorical diagnoses or symptom dimen-
sions) provides an incomplete mapping of psychopathology to neuro-
biology, they argued that symptoms are especially strong predictors of
resting-state connectivity. Supporting the concept behind the RDoC
framework, some studies employed clustering methods to stratify in-
dividuals with psychiatric disorders across conventional diagnostic ca-
tegories (Olino et al., 2010, Lewandowski et al., 2014, Kleinman et al.,
2015, for a review see Marquand et al., 2016). For instance, Drysdale
et al. 2016 used resting state fMRI in a large multisite sample and
showed that patients with depression could be subdivided into four
neurophysiological subtypes defined by distinct patterns of dysfunc-
tional connectivity in limbic and frontostriatal networks. However,
more recently, Dinga et al., 2018 attempted to replicate the results of
Drysdale et al. 2016 without success. In fact, the authors did not find
clearly distinct subtypes of depression and argued that the evidence for
the existence of the distinct resting state connectivity-based subtypes of
depression is weak and should be interpreted with caution.

Nevertheless, to the best of our knowledge, no study has applied
pattern regression analysis to find brain signatures in fMRI task data
that are predictive of anxiety and depression in a continuum that ranges
from normal to pathological levels, cutting across categorically-defined
diagnoses. In the present study, we applied pattern regression analysis
to determine whether we could find brain signatures during dynamic
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emotional face processing, a task that has previously been shown to
elicit abnormal activity in widespread neural regions in individuals
with anxiety and depressive disorders, related to anxiety and depression
symptoms (Hafeman et al., 2017; Greenberg et al., 2017; Manelis et al.,
2015). We recruited young adults (18-25 years) self-identified as dis-
tressed irrespective of the presence or absence of a psychiatric diagnosis
and healthy individuals (see Materials and Methods for definition of
these groups). This approach thereby allowed us to include young
adults across a wide range of anxiety and depressive symptoms. In
summary, the aim of the present study was to combine fMRI and pat-
tern regression analysis to determine, as a proof of concept, whether
patterns of brain activity during dynamic emotional face processing
could accurately predict anxiety and depressive symptoms in a sample
of 154 young adults ranging from normal to pathological, and com-
prising 82 young adults seeking treatment for psychological distress,
26% with subthreshold symptoms and the remainder with fully syn-
dromal psychiatric disorders, and 72 age- and gender-matched healthy
young adults.

2. Materials and methods
2.1. Participants

We used the DIAMOND (Dimensions of Affect, Mood, and Neural
circuitry Underlying Distress) sample (ROIMH100041, PI Phillips). The
available sample at the time of the analyses consisted of 170 young
adults between 18 and 25 years (mean age=21.6 and standard devia-
tion (s.d.)=2.0, 116 females). Some subjects presented signal dropout
in frontal brain regions in the fMRI images, therefore in order to
minimize the impact of this issue on the analysis we excluded subjects
that had > 15% missing voxels (voxels with NaN - Not a Number) in the
contrast images that were used for the pattern regression analysis
(details are described below).

A total of 154 subjects were thus included in the present study
(mean age=21.6 and s.d.=2.0, 103 females). The distressed sample
consisted of 82 young adults actively seeking help for psychological
distress (including depressive and anxiety symptoms, and other beha-
vioural and emotional problems such as failing to cope with everyday
stressors and interpersonal relationships), irrespective of having re-
ceived a DSM diagnosis. The distressed sample had a variety of current
unmodified DSM-5 diagnoses, confirmed by a licensed child psychiatrist
or psychologist: depressive disorder (n=27), anxiety disorder (n=43),
eating disorder (n=3), externalizing disorder (n=11), trauma related
disorder (n=9), sleep disorder (n=17), somato-form disorder and ad-
justment disorder (n=2). Some individuals had more than one co-
morbid anxiety and/or depressive disorder. In addition, 21 distressed
individuals (26%) were below threshold for any disorder. Furthermore,
in the distressed sample only three participants were taking psycho-
tropic (antidepressant) medications.

The healthy group consisted of 72 individuals (mean age=21.5 and
s.d.=1.8, 47 females) not presently seeking help from such services,
and with no previous personal or family history of psychiatric illness in
first-degree relatives. All individuals were assessed with the Structured
Clinical Interview for DSM-5, Research Version (SCID-5-RV17) before
participation in the study. We ensured inclusion of a range of person-
ality traits and behavioural problems in both groups. Participants were
recruited via community advertisement, student counselling services,
and a participant registry.

The exclusion criteria at screening for all participants included 1.
history of head injury, neurological, pervasive developmental disorder
(e.g. autism), or systemic medical disease (that could impact fMRI
scans; from medical records and report by each potential participant);
2. Mini-Mental State Examination (Folstein et al., 1975) (cognitive
state) score < 24; 3. premorbid NAART IQ (Blair and Spreen, 1989)
estimate < 85; 4. visual disturbance (<20/40 Snellen visual acuity); 5.
left or mixed handedness (Annett criteria (Annett, 1970)), to ensure a
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uniform hemispheric dominance for interpretation of neuroimaging
data; 6. Alcohol/substance use disorder (including nicotine) and/or il-
licit substance use (except cannabis) over the last 3 months, determined
by Structured Clinical Interview for DSM5 (SCID-5) (First et al., 1995)
(and psychiatric records, if available). Lifetime/present cannabis use
(non substance use disorder levels) was allowed, given its common
usage in 18-25 year-olds (SAMHSA, 2010). Urine tests on the scanning
day excluded individuals with current illicit substance use (except
cannabis, n=_8); salivary alcohol tests excluded individuals who were
intoxicated on the scanning day. Alcohol/nicotine/caffeine/cannabis
use (below SCID-5-defined substance use disorder levels) per week was
noted; 7. MRI exclusion criteria, including metallic foreign objects, such
as aneurysm clips or pacemakers, or a questionable history of metallic
fragments, proneness to panicking in enclosed spaces, and a positive
pregnancy test for female individuals or self-reporting of pregnancy.
The University of Pittsburgh Human Research Protection Office ap-
proved the study, and all participants provided written informed con-
sent.

2.2. Symptom assessment

Anxiety and depression levels were measured using self-reported
and clinician-rated measures. In order to limit the number of multiple
comparisons in our analysis we used one self-reported and one clinician
rated scale of anxiety and depression in the pattern regression analysis.
The self-reported scales used were the Spielberger State-Trait Anxiety
Inventory (STAL Spielberger et al., 1983), which consists of two sessions
(i.e. the trait and state sub-scales, STAI-T and STAI-S, respectively) and
the depression subscale of the Mood and Anxiety Symptom Questionnaire
(MASQ-D, Clark and Watson, 1991). The clinician-rated scales used
were the Hamilton Rating Scale for Anxiety (HAM-A, Hamilton, 1959)
and the Hamilton Rating Scale for Depression (HDRS,Hamilton, 1960;
please see Greenberg et al., 2017 for all the clinical and behavioural
measures collected in the DIAMOND sample). In Table 1 is presented
the mean and standard deviation obtained for these scales in the con-
sidered samples. Please see full description of the scales used in this
study in the Supplemental Material.

Participants' trait anxiety scores (STAI-T) ranged from 22 to 75 in
the whole sample (mean=43.6 s.d.=15.0), from 25 to 75 in the dis-
tressed sample (mean=54.9 s.d.=11.0) and from 22 to 47 in the
healthy sample (mean=30.6 s.d.=5.7). Participants' state anxiety
scores (STAI-S) ranged from 20 to 75 in the whole sample (mean=39.0
s.d.=13.2), from 20 to 75 in the distressed sample (mean=48.0
s.d.=10.8) and from 20 to 42 in the healthy sample (mean=28.7
s.d.=6.0).

Participants' MASQ-D score ranged from 12 to 59 in the whole
sample (mean =25.8 s.d. =13.4), from 17 to 59 in the distressed sample
(mean=35.0 s.d.=12.0) and from 12 to 24 in the healthy sample
(mean=15.3 s.d.=3.5).

Participants' HAM-A scores ranged from O to 27 in the whole sample
(mean=6.8 s.d.=7.4; 48 zero scores), from 0 to 27 in the distressed
sample (mean=12.2 s.d.=6.3; 1 zero scores) and from O to 6 in the
healthy sample (mean=0.6 s.d=1.2; 47 zero scores).

Participants' HDRS scores ranged from 0 to 30 in the whole sample
(mean=8.4 s.d.=8.6, 45 zero scores), from 2 to 30 in the distressed
sample (mean=15.0 s.d.=6.0, 0 zero scores) and from O to 7 in the
healthy sample (mean=0.8 s.d. =1.5, 45 zero scores) (Table 1).

2.3. fMRI paradigm

Participants completed the dynamic faces task (12 min 36 s), which
has been previously described in detail (Fournier et al., 2012;
Greenberg et al., 2017). Briefly, stimuli were grayscale emotional faces
(happy, angry, fearful, and sad) taken from the NimStim face database
(Tottenham et al., 2009), and grayscale ovals (matched in luminance
with the face stimuli) that served as control stimuli. The task included
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Table 1
Mean and Standard Deviation of measures from whole sample, healthy sample
and distressed sample.

Measures Whole sample Distressed sample Healthy sample
STAI-T 43.6 (15.0) 54.9 (11.0) 30.6 (5.7)
STAI-S 39.0 (13.2) 48.0 (10.8) 28.7 (6.0)
MASQ-D 25.8 (13.4) 35.0 (12.0) 15.3 (3.5)
HDRS 8.4 (8.6) 15.0 (6.0) 0.8 (1.5)
HAM-A 6.8 (7.4) 12.2 (6.3) 0.6 (1.2)

three, 12-trial blocks for each emotional face type and six 6-trial blocks
of shapes presented pseudo randomly. During the face trials, a face
changed in emotional expression from neutral to emotional over 1s in
5% increments. During shape trials, an oval shape changed in size to
parallel the changes in the face trials. In the middle of each trial (200 to
6500 ms), a semi-transparent foreground colour flash (blue, orange or
yellow) overlaid the image. Participants identified the colour of the
foreground colour flash using a response pad. The neural correlates of
anxiety and depression have been extensively studied using tasks that
present affective stimuli such as faces with emotional expressions (Stein
et al., 2007; Blair et al., 2008; Stuhrmann et al., 2011; Demenescu et al.,
2011; Duval et al., 2015; Greenberg et al., 2017).

2.4. Image acquisition

Neuroimaging data were collected using a 3.0 Siemens Trio MRI
scanner (119 subjects, distressed n=50 and healthy control n=69) and
Tesla Prisma scanner (35 subjects, distressed n =32 and healthy control
n=3) at the MRI Research Center at the Presbyterian Hospital,
Pittsburgh. For the Siemens Trio MRI scanner, Blood-oxygenation-level-
dependent (BOLD) images were acquired with a multi-band gradient
echo-planar imaging (EPI) sequence (18x(MB)3=54 slices; 2.3 mm
isotropic voxels; TR/TE =1500/30 msec; Field of View =220 x 220 mm;
matrix 96 x 96; Flip Angle 55°, Bandwidth 1860 Hz/Px). Structural 3D
axial MPRAGE images were acquired in the same session (TE=3.19 ms,
TR =1500 ms; Flip Angle8°; FOV =256 X 256 mm; 1 mm isotropic voxels;
176 continuous slices. For the Prisma scanner, structural 3D axial
MPRAGE images were acquired (TR =1520 ms, TE=3.17 ms, Flip Angle
8°, FOV=256 x 256 mm, 1 mm? isotropic voxels, 176 continuous slices;
4 min, 50s). BOLD functional images were acquired with a gradient echo
EPL; multiband (MB)3 sequence, covering 18 x (MB)3 (=54) oblique
slices (TR/TE=1500/30ms; 2.3mm°® slices; Flip angle=55°%
FOV =220 X 220; Matrix=96 X 96).

2.5. Data pre-processing and general linear model analysis

Data were pre-processed using a combination of software packages
(SPM, FSL, AFNI) implemented in Nipype (Gorgolewski et al., 2011).
Pre-processing included realignment, coregistration, distortion correc-
tion, normalization, despiking, and smoothing. A first-level fixed-effect
general linear model (GLM) was constructed for each participant using
Statistical Parametric Mapping software, version-8 (SPM8), with the
four emotion (anger, fear, sad and happy) and shape conditions. Motion
parameters were included as covariates of no interest to control for
participant movement. A regressor to correct for physiological fluc-
tuations was also included, derived from the mean signal within white
matter, cerebrospinal fluid and high temporal standard deviation voxels
(Behzadi et al., 2007; Fournier et al., 2014). A high-pass filter (256 s),
and autoregressive (AR (1)) modelling were also implemented at the
first level. For each subject a contrast imaging was created to capture
the overall pattern of brain activation during emotional face processing
(all emotions versus shape contrast) which was used for the pattern
regression analysis. Subjects were excluded if their contrast image (all
emotions versus shape) contained >15% of NaN voxels (16 out of 170).
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Finally, a customized mask was created to include only brain voxels
which were common to all participants in the contrast imaging (i.e. we
excluded voxels which had a NaN in the contrast imaging for at least
one participant). This criterion for creating the mask has been pre-
viously shown to improve the performance of pattern recognition
analyses by decreasing the number of noninformative features/voxels
in the model (Portugal et al., 2016).

2.6. Pattern regression analysis

Pattern regression analysis were implemented in PRoNTo (Schrouff
et al., 2013a,b) to investigate whether it is possible to predict anxiety
and depressive scores from patterns of brain activation during dynamic
emotional face processing. In the present study we used the Gaussian
Process Regression, which is a probabilistic regression approach (GPR;
Rasmussen and Williams, 2006). We trained and tested the GPR models
based on the whole sample and based on each of the groups (for the
distressed and healthy sample results please see Supplemental Mate-
rial). As a comparison we also tested other pattern regression models
available in PRoNTo. The results were similar across the different re-
gression models but GPR provided slighter better results. For the sake of
brevity, we included only the GPR results in the manuscript (results for
the other pattern regression models can be found in the Supplementary
Material).

To evaluate the GPR performance we used two different cross-vali-
dation strategies (a two-fold cross-validation and a five-fold cross-vali-
dation) to demonstrate that the results were not dependent on a specific
cross-validation scheme. We choose two and five-fold cross validation,
as these numbers of splits seemed reasonable considering our sample
size. The two-fold cross-validation strategy involves dividing the data
into 2 sets (n="77). Data from one set are left out as test samples and
data from the other set are used to train the model. This procedure is
then repeated, so that each data set is left out once for test. The five-fold
cross validation involves dividing the data into 5 disjoint sets. Data
from each set is left out once for test and data from the remaining 4 sets
are used to train the model. This procedure is then repeated five times,
so that each set is left out once. In both cases, the performance of the
model is computed based on the concatenation of the predictions across
folds, as implemented in PRoNTo v2.1. Based on the evidence from
previous studies that scanner differences strongly affect images, al-
lowing pattern classification models to predict the type of “scanner”
with very high accuracy (Schrouff et al., 2013), and the evidence that it
is possible to combine multi-center MRI data to create a well per-
forming classification model if the model is trained and tested using
multi-centre data (Nieuwenhuis et al., 2017), we manually balanced the
proportion of data from different scanners across the different folds.
Furthermore, in both cross-validation strategies we applied a t-test
ensure that the distribution of the to-be-predicted variables (STAI-T,
STAI-S, MASQ-D, HAM-A and HDRS) did not differ significantly among
the folds.

The performance of the pattern regression models was measured
using two metrics of agreement between the predicted and the actual
scores, Pearson's correlation coefficient (r) and normalized mean
squared error (MSE). The correlation coefficient (r) describes the
strength of a linear relationship between two variables. A small corre-
lation is an indication of poor predictions, and a high correlation is an
indication of good prediction. The normalized MSE is the mean of the
squared differences between the predicted and true scores divided by
the range of predicted scores (i.e. maximum minus minimum value). It
measures the error between the predicted and actual scores.

We used non-parametric permutation tests to measure the sig-
nificance of the model performance. More specifically, we repeated the
cross-validation procedure 1000 times and counted how many times
the absolute value of the metric (r or MSE) with the permuted labels
was equal to or higher than (or lower than in the case of the MSE) the
one obtained with the correct labels. The p-value was then calculated
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by dividing this number by the number of permutations (1000). We
used Bonferroni correction to account for the multiple comparisons (5
scales X 2 cross-validation strategies=10), therefore results were con-
sidered significant if the p-value<.05/10=0.005.

Age, gender and scanner were considered potential confounders
that could affect the patterns of brain activity. However, removing
confounds associated with the variable we want to predict (i.e. the la-
bels) is not recommended due to the fact that this adjustment is likely to
remove not only the variability in the data due to the confounds but
also variability on the data associated with the labels (Rao et al., 2017;
Miller and Chapman, 2001). Therefore, we used two sample t-tests to
determine whether scanner and gender were systematically related to
the clinical scores that we intended to predict and Pearson correlation
to determine whether age was associated with them. We found an as-
sociation between scanner and all clinical scores in the whole sample
but not in the healthy and distressed cohorts when considered sepa-
rately. We also found an association between gender and STAI-T,
MASQ-D and HAM-A in the whole sample, distressed sample and
healthy sample. There was no significant correlation between age and
any of clinical variables. Due to these observed associations, we in-
cluded only age as covariate/confound in the pattern regression ana-
lyses, using an approach that accounts for the training and testing se-
paration as described in Rao and Mourao-Miranda (2017). Due to the
observed association between the clinical scores and scanner and
gender we cannot exclude a potential effect of these confounds on the
predictive models. However, since the association between scanner and
the clinical scores was not observed within the distressed sample, for
the models that presented statistically significant results based on the
whole sample, we repeated the analysis within the distressed sample
considering age and scanner as confounds (please see results in Sup-
plementary Material).

We computed the weight maps for the GPR models that showed
statistically significant values of correlation and normalized MSE. The
weight map is a spatial representation of the model's parameters or
predictive function. It shows the contribution of each voxel in the image
for the linear predictive function, such as the GPR with linear kernel as
implemented in PRoNTo. As has been previously discussed in the lit-
erature (Schrouff et al., 2013, Schrouff et al., 2018), the weight map of
linear machine learning models cannot be thresholded to make re-
gionally specific inferences as in classical (univariate) techniques. Since
each cross-validation fold yields a different weight vector, the final
weight map is the average map across the folds divided by its Euclidean
norm. Here, we applied a methodology, referred to as pattern locali-
zation, based on a labelled anatomical template to summarize the
weight map in terms of anatomical regions (Scrouff et al., 2013,
Portugal et al., 2016). Briefly, for each brain region defined by the
anatomical template, the normalized weight (NW) is computed as the
mean of absolute values of all voxel weights within this region divided
by the number of voxels within the region. We then ranked the labelled
regions according to the percentage of the total normalized weights
they explained. We used the Anatomical Automatic Labeling (AAL)
atlas from the WFU-PickAtlas (Maldjian et al., 2003) toolbox in SPM to
define the brain regions.

2.7. Pattern classification analysis

In addition to the main aim of the study, which was to investigate
whether wholebrain patterns of activity could be used to predict con-
tinuous/multi-symptoms measures associated with distress (i.e. anxiety
and depression scores) in a sample ranging from normal to pathological
levels of distress, we also performed a “traditional” binary classification
analysis to investigate whether we could distinguish healthy vs. dis-
tressed individuals based on their the wholebrain patterns of activity.
We performed a Gaussian Process Classification (GPC) in PRoNTo ap-
plying the same cross-validation schemes to the same sample used for
the pattern regression analysis: 154 subjects (n=82 distressed youth
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Table 2

Measures of agreement between actual and decoded scores
based on wholebrain activity patterns to emotional faces after
controlling for covariate (age) in the whole sample. Significant
results are displayed in red.

Normalised MSE (p-
value)
m Controlled for age

Two-Fold Cross-Validation

STAI-T 0.28 (0.001) 4.47 (0.001)
STAI-S 0.24 (0.01) 3.50 (0.006)
MASQ-D 0.22 (0.006) 4.33 (0.005)
HDRS 0.22 (0.01) 2.80 (0.006)
HAM-A 0.24 (0.007) 2.18 (0.003)
Five-Fold Cross-Validation
STAI-T 0.28 (0.002) 4.62 (0.003)
STAI-S 0.19 (0.04) 3.84 (0.04)
MASQ-D 0.28 (0.002) 4.24 (0.005)
HDRS 0.21 (0.02) 2.99 (0.02)
HAM-A 0.21 (0.02) 2.44 (0.02)

For reference: corrected p-value =0.005.

and n=72 healthy individuals). The performance of the GPC was
evaluated using balanced accuracy and accuracies per class. As for the
GPR models, a permutation test (with 1000 permutations) was used to
determine the significance of the classification performance measures.

3. Results
3.1. Pattern regression analysis

Table 2 shows the performance of the pattern regression models for
predicting anxiety and depression related scores from patterns of brain
activity to dynamic emotional face processing based on the whole
sample. After correcting for multiple comparisons (since 5 different
scales were tested using 2 cross-validation strategies the significance
threshold was 0.05/10=0.005), the only significant models were the
ones decoding STAI-T using both cross validation strategy (two-fold
cross-validation: r=0.28 (p-value=0.001) and normalized MSE = 4.47
(p-value =0.001); five-fold cross-validation: r=0.28 (p-value=0.002)
and normalized MSE=4.62 (p-value=0.003); Fig. 1). These results
suggest that there is an association between self-report anxiety mea-
sures and patterns of brain activity during dynamic emotional face
processing in a sample that ranges from normal to pathological levels of
distress, cutting across categorically-defined diagnoses. Fig. 1 shows the
scatter plots between the predicted and actual STAI-T scores. For vi-
sualization purposed the subjects were colour coded as belonging to the
healthy and distressed subsamples (Fig. 1A and 1C) or according to the
categorically-defined diagnoses. It should be noted that 21 distressed
individuals (26%) were below threshold for any psychiatric disorder
(Fig. 1B and 1D). As expected, most of the distressed subjects have
comorbidities. It is interesting to note that the models decoding MASQ-
D almost reached significance for both cross-validations strategies,
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Fig. 1. (A) Scatter plot between the actual and predicted STAI-T scores for the model based on patterns of brain activation to dynamic emotional face processing in
the whole sample applying a two-folds cross-validation scheme. For visualization purposed the subjects were colour coded as belonging to the healthy and distressed
samples. (B) Same plot as in (A) but for visualization purposed the subjects were colour coded according to the categorically-defined diagnoses. (C) Scatter plot
between the actual and predicted STAI-T scores for the model based on patterns of brain activation to dynamic emotional face processing in the whole sample
applying a five-folds cross-validation scheme. Again, for visualization purposes subjects were colour coded as belonging to the healthy and distressed samples. (D)
Same plot as in (C) but for visualization purposed the subjects were colour coded according to the categorically-defined diagnoses. Distressed individuals below

threshold for any disorder were labelled as ‘no-diagnosis’.

suggesting a weak association between the self-report depression
measure and the patterns of brain activity during dynamic emotional
face processing.

For completeness we also tested if we could predict anxiety and
depression scores considering the distressed and healthy samples se-
parately. In the distressed sample we obtained similar results as the
ones obtained when considering the whole sample with almost sig-
nificant p-values after correcting for multiple comparison, potentially
due to the smaller sample size (Table SO1 — Supplementary Material). In
contrast, in the healthy sample, the models were not able to predict any
of the considered clinical scores (Table S03 — Supplementary Material).
These results suggest that the association between self-reported trait
anxiety and brain response to dynamic emotional face processing is
stronger in the distressed sample. Nevertheless, it should be noted that
the variability of the STAI-T scores is much lower in the healthy sample,
which potentially makes them a suboptimal target for the pattern re-
gression model. As previously mentioned, we run an additional analysis
to test whether we could still predict STAI-T scores in the distressed
sample after controlling for age and scanner (within the distressed
sample there was no significant association between scanner and clin-
ical scores). The results of this model were similar to the ones obtained
when controlling only by age (Table SO2 — Supplementary Material).

For the sake of brevity, we display the weight maps only for the
model based on the two-fold cross-validation scheme in the main
manuscript (the weight maps for the model based on the five-fold cross-
validation scheme can be found in the Supplemental Material). In
Fig. 2A we present the weight map for the GPR model that predicted
STAI-T based on patterns of brain activation to dynamic face proces-
sing. The weight in each voxel corresponds to its contribution to the
model's prediction. We emphasize that weight maps should not be in-
terpreted as statistical parametric maps; they provide a spatial re-
presentation of the predictive function and should not be thresholded as
all voxels used in the modelling contributed to the final predictions. In
Fig. 2B we present the region-based pattern localization map, a post-
hoc summarization map computed from the voxel based predictive
pattern displayed in Fig. 2A. The colour of each region corresponds to
the normalized average of voxels weights within the regions (in abso-
lute value). The regional summarization indicate that the predictions
were based on the wholebrain pattern with all regions having similar
level of contribution. Table 3 shows the top 20 ranked regions ac-
cording to normalized weights per region, which represent 28.6% of the
total weights of the predictive function (a table showing the relative
contribution of all brain regions can be found in the Supplementary
Material). The regions with highest contributions were frontal and
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A Voxel based predictive pattern

temporal regions, occipital regions and areas of the cerebellum. Note
that contributions of individual regions were very small, however,
suggesting that predictions were based on the overall pattern rather
than on a small combination of regions. As noted in previous studies
(Haufe et al., 2014; Weichwald et al., 2015; Kia et al., 2017; Schrouff
and Mourao-Miranda, 2018), this however does not mean that the brain
activity associated with anxiety (measured by the STAI-T score) is
distributed over the wholebrain. For example, Schrouff and Mourao-
Miranda (2018) have shown that when the predictive patterns are
subtle (i.e. have a low signal to noise ratio) the weights are more dis-
tributed across all brain regions. Please see Table complete S04 and S05
for the complete list of regions.

3.2. Pattern classification analysis

The GPC models were not able to accurately discriminate distressed
versus healthy individuals for both cross-validation strategies (two-fold:

Table 3
Top 20 ranked regions according to normalized weights per region, which re-
present 28.6%of the total weights of the predictive function.

Rank Brain regions %NW
1 Rectus_L 2.5
2 Occipital_Inf L 1.8
3 Occipital_Inf R 1.8
4 Rectus_R 1.7
5 Cerebelum_3_L 1.6
6 Fusiform_R 1.6
7 Cerebelum_7b_L 1.5
8 Frontal Inf Oper_L 1.4
9 Occipital Mid_R 1.4
10 Temporal Inf R 1.3
11 Frontal Mid_Orb_L 1.3
12 Cerebelum_4_5_L 1.3
13 Frontal Mid_L 1.3
14 Frontal_Inf Tri_ L 1.2
15 Cerebelum_6_R 1.2
16 Vermis_3 1.2
17 Fusiform_L 1.2
18 Temporal_Pole_ Mid_L 1.1
19 Frontal Mid_Orb_R 1.1
20 Frontal_Sup_Medial R 1.1

Abbreviations: Inf: Inferior; L: Left; Mid: Middle; Oper: Opercularis, Orb:
Orbital; Post: Posterior; R: Right; Sup: Superior; Supp: Supplementary, Tri:
Triangularis; % NW: Percentage of the total normalized weights that each
anatomical region explains.

B Region based pattern localization
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Fig. 2. Weight maps for GPR model predicting STAI-
T based on patterns of activation to dynamic emo-
tional face processing using a two-folds cross-vali-
dation framework on the whole sample. A: Voxel-
based predictive pattern. The colour bar indicates
the weight of the voxels for decoding the clinical
score. B: Region-based pattern localization map
computed from the voxel based predictive pattern
displayed in Fig. 2A. The colour bar indicates the
percentage of the total normalized weights that each
anatomically labelled region explains.

balanced accuracy=46.19% (p-value=0.8); distressed accu-
racy=54.9% (p-value=0.6) and healthy accuracy=37.5% (p-
value=0.9); five-fold: balanced accuracy=51.8% (p-value=0.35),
distressed accuracy=57.7% (p-value=0.45) and healthy accu-
racy =45.8% (p-value=0.39)). These results are not surprising con-
sidering the high heterogeneity of the distressed sample, and show that
the regression approach can be more sensitive in identifying a re-
lationship between patterns of brain activity and continuous measures
of symptom dimension within heterogeneous samples, in accord with
the RDOC framework.

4. Discussion

The main goal of the present study was to apply pattern regression
analysis to functional neuroimaging data to determine whether dimen-
sional scales of anxiety and depression severity could be predicted from
patterns of wholebrain activity in a sample of 154 young adults (aged
18-25), ranging from normal to pathological levels of distress. The GPR
model was able to predict trait anxiety scores (STAI-T) from wholebrain
patterns of activity to dynamic emotional face processing in a sample
including distressed and healthy young adults. These results indicate an
association between neural response during dynamic emotional face
processing and anxiety score in the whole sample. Interestingly, when
the two samples were considered separately, the GPR did not find sig-
nificant results within the healthy sample but found close to significant
results within the distressed sample, suggesting that the association be-
tween brain patterns of activation during dynamic face processing and
self-reported anxiety is stronger in distressed individuals. The contribu-
tions of individual regions to the predictive model were very small, de-
monstrating that predictions were based on the overall pattern rather
than on a small combination of regions. These findings represent early
evidence that neuroimaging techniques may inform clinical assessment
of young adults irrespective of diagnoses by allowing accurate and ob-
jective quantitative estimation of psychopathology.

In addition to the main aim of the study, we also investigated
whether the patterns of wholebrain activity during dynamic face pro-
cessing could be used to distinguish the distressed from the healthy
individuals using Gaussian Process Classifier (GPC), with the same
subjects and cross-validations strategies used for the GPR. The classi-
fication results were not significant, demonstrating that the regression
approach can be more sensitive in identifying relationships between
continuous dimensions of symptoms and neural measures within het-
erogeneous samples (ranging from normal to abnormal), supporting the
RDoC framework.

Our results agree with the fact that psychiatric patients have clusters
of symptoms, and that many symptoms are shared among, rather than
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being unique to, different psychiatric disorders. There is accumulating
evidence both within and outside of the domains of depression and
anxiety that supports a dimensional approach to psychopathology in
which individuals' functioning is characterized along continuous mea-
sures that operationalize core psychobiological constructs (Goldberg,
2000; Widiger and Clark, 2000; Levine et al., 2001; Widiger and
Samuel, 2005; Helzer et al., 2006; Insel et al., 2010; Kleinman et al.,
2015; Portugal et al., 2016; MacNamara et al., 2017; Kircanski et al.,
2017). For example, Macnamara et al. (2017) recently reported trans-
diagnostic neural correlates of anxiety and depression during affective
face processing in a sample ranging from healthy individuals to in-
dividuals with psychopathology, including three primary diagnoses:
social anxiety disorder (SAD), generalized anxiety disorder (GAD) or
major depressive disorder (MDD) (n = 199). Anxiety symptom scores
(HAM-A) were associated with increased activation bilaterally in the
insula, in the anterior/midcingulate and in the right dorsolateral pre-
frontal cortex (dIPFC) in the contrast angry faces versus shapes, while
depressive symptoms (HDRS) were associated with reduced right dIPFC
activation in the same contrast. This study focused on finding associa-
tions between signals in individual regions and clinician rated measures
using statistical univariate analysis. The present study differs from the
work from Macnamara and collaborators as, instead of investigating
associations between symptoms and brain activity in individual brain
regions at the group level using conventional univariate analysis, we
applied machine learning techniques, with the aim of determining
whether measures of anxiety and depression could be predicted or de-
coded from patterns of wholebrain activity at the individual level. To
the best of our knowledge, the present study is the first to apply pattern
regression to predict individual clinical assessment in a sample of young
adults including distressed and healthy individuals. Of note, our sample
included a majority of female participants, which likely reflects in-
creased help-seeking behavior in females than males.

In the present study we focus on anxiety and depression scales since
it has been previously shown that the dynamic emotional face proces-
sing task elicits abnormal brain activations in individuals with anxiety
and depressive disorders. Among the five scales tested (STAI-T, STAL-S,
MASK-D, HDRS, HAM-S), only the sub-scale STAI-T could be sig-
nificantly predicted from the wholebrain patterns of activity to dynamic
emotional face processing (represented by the contrast all emotions
versus shape) after correction for multiple comparisons. The Spielberger
State-Trait Anxiety Inventory (STAI, Spielberger et al., 1983) is a self-
reported scale to assess anxiety and is divided into two sub-scales: trait
and state (STAI-T and STAI-S, respectively). STAI-T captures the general
tendency of an individual to respond, with anxiety, to environmental
stimuli. This measure shows a stable predisposition in healthy in-
dividuals and is often considered to be a risk factor for anxiety disorders
and other psychiatric illnesses (Bienvenu et al., 2001; Chambers et al.,
2004). Conversely, STAI-S captures a more transient response char-
acterized by tension, apprehension, and hyperactivity of the autonomic
nervous system. Our results show that there is an association between
neural response to dynamic emotional face processing and trait anxiety
(STAI-T) but not state anxiety (STAI-S). Furthermore, the fact that we
could not predict the clinician-rated scale that measures the severity of
anxiety symptoms (HAM-A), suggests that this scale is probably less
associated with neural response to dynamic emotional face processing
than the self-reported scale.

Interestingly, the GPR model was close to reach significant results
(after correction for multiple comparison) for predicting MASQ-D, a
self-reported depression scale, suggesting a weak association between
neural response to dynamic emotional face processing and self-report
depression. Taken together, these results suggest a potential association
between emotional face processing and self-reported measures of an-
xiety and depression in a sample of young adults (aged 18-25), ranging
from normal to pathological distress, which seems to be stronger than
the association with clinician-rated measures. Nevertheless, this hy-
pothesis needs to be confirmed in a larger sample. Our results agree
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with reports showing that self-reported and clinician-rated outcomes
are not equivalent, with self-report and clinician ratings each providing
unique information that is relevant to clinical prognosis (Uher et al.,
2012). These results indicate that more neuroimaging studies should be
performed in young adults (18-25-year-olds) seeking help for psycho-
logical distress irrespective of diagnosis, with the goal of identifying
neurobiological measures that can predict or decode current sympto-
matology and potentially predict future functional outcomes which can
guide appropriate choice of intervention.

Consistent with previous studies from our group the contrast be-
tween all emotion versus shape was used (Manelis et al., 2015;
Hafeman et al., 2017; Greenberg et al., 2017). This contrast elicits ac-
tivity in emotion processing neural regions such as bilateral amygdala,
temporal and occipital fusiform cortices, frontal polar, frontal medial
and orbito-frontal cortices, right ventrolateral pre-frontal cortex and
right temporal polar cortex (Fusar-Poli et al., 2009; Sabatinelli et al.,
2011; Manelis et al., 2015). Interestingly, the brain regions with the
highest contribution to decoding the STAIT-T scores were fronto-tem-
poral regions, occipital fusiform areas which included many neural
regions elicited by this contrast in previous works. However, it is im-
portant to highlight that the contributions of individual regions to the
model were very small with all brain regions having some contribution.
As previously mentioned, this does not mean that the brain activity
associated with anxiety is distributed over the wholebrain pattern of
activity since it has been previously shown that when the predictive
patterns are subtle (i.e. have a low signal to noise ratio) the weights
tend to be more distributed across all brain regions (Schrouff and
Mourao-Miranda, 2018).

A strength of the present study was using 18-25 year-olds seeking
help for psychological distress since in our sample no one had long-term
exposure to psychotropic medications. The present study was a unique
opportunity to identify neuroimaging measures reflecting pathophy-
siologic processes in individuals seeking help for psychological distress,
without the potential confounds of “scarring” effects resulting from
factors associated with having a long history of seeking help for mental
health problems in adulthood. Furthermore, studying individuals be-
tween 18 and 25 years is a unique opportunity to identify dimensions of
pathophysiology at a critical developmental period when brain devel-
opment is still occurring, so that appropriate, biologically-informed
interventions have potential to take advantage of the plasticity of the
brain during this developmental period to minimize, or even prevent,
long-term abnormalities in neural circuitry, and chronic, recurrent, or
difficult to treat mental health problems.

There were also some limitations in the present study. The main
limitation was the fact that two potential confounders (scanner and
gender) were associated with the clinical scores we wanted to predict.
Therefore, removing their effect from patterns of brain activity would
also remove the variability in the data associated with the clinical
scores. In order to address this limitation, we performed additional
analyses to investigate the effect of controlling by scanner and age on
the distressed sample (which had no association between scanners and
clinical scores). We obtained similar results as the ones obtained on the
distressed sample after controlling only by age. The manual matching of
subjects across the different cross-validation splits (to keep balanced
proportions of scanner and gender) might also affect the results.
Therefore, we used two cross-validation schemes to show that the re-
sults were not due to a specific data split. Another limitation of the
study was the fact that the GPR predictive patterns were difficult to
interpret in terms of the underlying neurobiology. The models' weights
where distributed across the wholebrain and there was no evidence of
specific brain regions having stronger contributions to the predictions.
In addition, given the nature of contrast data used (all faces versus
shape), we cannot exclude the fact that our results could be driven by
face processing in general (not by emotional faces in particular) or by a
process occurring during shape processing. Finally, even though we
used two cross validation schemes (two-fold (or half split) cross-
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validation and five-fold cross-validation), ideally, predictive models
should be further validated with a truly independent sample.

5. Future directions and conclusion

The present study was a proof of concept study designed to examine
whether pattern regression analysis could be applied to neuroimaging
data to predict individual-level severity along dimensions of anxiety
and depression in young adults with symptomatology that varies from
normal to pathological, irrespective of primary diagnoses in a research
domain framework. The fact that the GPR model was able to decode the
STAI-T score from patterns of brain activation in our heterogeneous
sample (including healthy and distressed individuals) is evidence that
there was a common underlying pattern of brain activation during
dynamic face processing in the sample that was associated with a
continuous measure of anxiety trait (operationalized as STAI-T scores).
Our results support the research domain criteria (RDoC) re-
commendation, which advocates that it is critical to study hetero-
geneous samples to identify biomarkers reflecting pathophysiological
processes, irrespective of diagnosis.

Moving forward, similar approaches could be applied to investigate
whether other clinical scales can be predicted from wholebrain patterns
of activity during other emotional and/or cognitive processes (e.g. re-
ward and n-back tasks). Taken together, we advocate adopting a multi-
dimensional assessment strategy for investigating the nature of patho-
physiology of mental disorders and improving therapeutics since neu-
roimaging measures can ultimately provide biological targets for novel
treatment development for this vulnerable population. Future studies,
using a combination of multimodal neuroimaging and non-imaging
information, can build on the present findings to determine the extent
to which individual-level patterns of neural function either instead of or
in combination with clinical scores, familial and demographic measures
can predict individual-level future clinical outcomes on sufficiently
large datasets. Furthermore, with the technological advances enabling
acquisition of large databases of patients and healthy subjects, machine
learning represents a powerful tool in the search for psychiatric bio-
markers.
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