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ABSTRACT Soil microorganisms play fundamental roles in cycling of soil carbon, ni-
trogen, and other nutrients, yet we have a poor understanding of how soil micro-
biomes are shaped by their nutritional and physical environment. In this study, we
investigated the successional dynamics of a soil microbiome during 21 weeks of en-
richment on chitin and its monomer, N-acetylglucosamine. We examined succession
of the soil communities in a physically heterogeneous soil matrix as well as a homo-
geneous liquid medium. The guiding hypothesis was that the initial species richness
would influence the tendency for the selected consortia to stabilize and maintain a
relatively constant community structure over time. We also hypothesized that long-
term, substrate-driven growth would result in consortia with reduced species rich-
ness compared to the parent microbiome and that this process would be deter-
ministic with relatively little variation between replicates. We found that the
initial species richness does influence the long-term community stability in both
liquid media and soil and that lower initial richness results in a more rapid con-
vergence to stability. Despite use of the same soil inoculum and access to the
same major substrate, the resulting community composition differed greatly in
soil from that in liquid medium. Hence, distinct selective pressures in soils rela-
tive to homogenous liquid media exist and can control community succession
dynamics. This difference is likely related to the fact that soil microbiomes are
more likely to thrive, with fewer compositional changes, in a soil matrix than in
liquid environments.

IMPORTANCE The soil microbiome carries out important ecosystem functions, but
interactions between soil microbial communities have been difficult to study due to
the high microbial diversity and complexity of the soil habitat. In this study, we suc-
cessfully obtained stable consortia with reduced complexity that contained species
found in the original source soil. These consortia and the methods used to obtain
them can be a valuable resource for exploration of specific mechanisms underlying
soil microbial community ecology. The results of this study also provide new experi-
mental context to better inform how soil microbial communities are shaped by new
environments and how a combination of initial taxonomic structure and physical en-
vironment influences stability.
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Soil microbiomes are among the most diverse microbial communities on the planet
(1, 2), and the majority of soil microbes have not yet been cultivated or studied

under laboratory conditions. This and other confounding properties, such as extreme
spatial heterogeneity, make it difficult to study how soil microorganisms interact within
natural communities (3). Despite this, a deeper understanding of the ecological prop-
erties that control the structure and function of soil microbiomes is needed, as they
underpin almost every terrestrial food web (4), regulate many elements of Earth’s
biogeochemical cycles (5), and are fundamental for growth of healthy crops and
bioenergy feedstocks (6).

Estimates for annual CO2 emissions from soil microbial respiration are 10 times
greater than the CO2 produced by fossil fuel utilization (5). Therefore, small changes in
the soil carbon cycle—specifically microbiome functioning and substrate availability—
can have large impacts on atmospheric CO2 concentrations. The cycling of complex
biopolymers that are both produced and stored in soils largely influences the flux of
CO2 to the atmosphere. Of these, chitin, an insoluble �-1,4-linked polymer of
N-acetylglucosamine (NAG) (7, 8), is a major substrate for soil microbial activity (9) and
represents a linkage between the carbon and nitrogen cycles in soils (10–12). Chitin is
omnipresent in soil and is an important biopolymer synthesized by fungi (13) and many
insects. However, little is known about how chitin and NAG can select for soil-specific
bacterial and fungal taxa and influence the structure of microbial communities that are
involved in their decomposition.

Successional dynamics of soil microbiomes are related to changes in substrate
availability and are crucial to predicting ecosystem development (14–20). During
primary succession, early-colonizing taxa shape available niche space by regulating pH
and nutrient availability (16, 17, 21). However, the feedbacks and processes driving
successional patterns constitute fundamental knowledge gaps in understanding tra-
jectories of ecosystem development (16, 19). Microbial succession patterns can be
influenced by available resources, including nutrient pools (19, 22), physiochemistry
(23), and vegetation (24). Additionally, it is well known that soil moisture is a key
determinant of microbial metabolism (25–27). Less is known about how the physical
environment, with respect to soil or liquid-like conditions, affects microbial community
succession and stability. The relative stability of microbial communities through early
succession and thereafter is key to understanding and predicting microbial responses
to perturbation (28–31). While the complexity of soil microbiomes has hindered many
efforts to describe the succession dynamics to ecosystem functioning, organic matter
chemistry has been identified as a key driver of primary succession (32).

In this study, we aimed to investigate processes underlying soil microbial commu-
nity succession by monitoring community development in a sterile soil matrix enriched
with NAG. Comparisons were made over the course of 15 weeks of succession to a
liquid medium culture derived from the same inoculum. In this way, environmental
successional trajectories of the soil microbiome were directly compared to community
development using traditional, liquid-based culturing methods that omit the heterog-
enous chemical and spatial landscapes associated with the soil matrix.

We hypothesized that initial species richness would influence the succession of the
consortia and their ability to stabilize with a relatively constant taxonomic structure
over time. Specifically, we anticipated that consortia with lower species richness during
the initial phases of succession would display higher tendencies to converge toward
smaller changes in community structure between successive time points. We also
hypothesized that long-term selection by NAG would result in soil microbial consortia
with reduced complexity compared to the parent soil microbiome and that this process
would be deterministic with relatively little variation between replicates during enrich-
ment.

To test these hypotheses, we investigated the influence of initial richness and
physical environment on the progression of chitin/NAG-enriched soil microbial consor-
tia. We designed soil microbiome enrichment experiments with the expectation that
dilution and long-term selection on chitin/NAG would dramatically reduce the initial
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community richness compared to the native soil. One of our aims was to use this
procedure to obtain simplified, naturally adapted consortia that can serve as a valuable
experimental resource that can be shared for recapitulating some soil microbiome
behaviors. We also expected and found that the emergent consortia from long-term
succession would show distinct differences based on the physical environment (soil
versus liquid). This study has improved our understanding about the succession and
stability of microbial communities in soil. Generally, these results show that the final
stability of and the extent of species richness were directed by the length of succession,
the initial richness, and the culturing environment.

RESULTS
Enrichment of a native soil microbiome on chitin. Native soil was supplemented

in triplicate with 3 concentrations of chitin (10, 50, and 100 ppm) for 6 weeks to select
for naturally coexisting soil populations capable of using chitin as a carbon and/or
nitrogen substrate. Respiration was monitored during the enrichment as a proxy for soil
microbial activity during chitin decomposition. The highest respiration was observed
for the highest chitin concentration, and therefore, the 100-ppm treatments were used
to inoculate longer-term enrichments supplemented with NAG.

The dominant bacterial phyla in the native soil communities were Proteobacteria,
Actinobacteria, Acidobacteria, Chloroflexi, Plantomycetes, and Bacteroidetes; there were
few archaea identified in high relative abundance (Fig. 1; see also Fig. S1A in the
supplemental material). The dominant fungi were Ascomycota (Fig. S1B). The native soil
bacterial richness had a mean of 818.5 � 75.6 16S operational taxonomic units (OTUs)
(Fig. S1C). The native soil bacterial community also exhibited high evenness, with a
Simpson’s evenness score of 0.3; the most abundant OTU accounted for less than 4%
of all observations. The fungal richness and evenness in the native soil were much lower
than the 16S results (Fig. S1D). The mean internal transcribed spacer (ITS) OTU count
was 128 � 39, with a Simpson’s evenness score of only 0.069, and the top two OTUs
together comprised 41% of the observed fungal community.

Following the initial 6-week chitin enrichment, the bacterial community structure
shifted to a higher relative abundance of Firmicutes and Acidobacteria and fewer
Actinobacteria, although Proteobacteria continued to maintain the highest relative
abundance (Fig. 1A). Additionally, there were shifts in the fungal communities, with a
higher relative abundance of Mortierellomycota and decreased Ascomycota abundance
compared to those of the native soil (Fig. 1B). Bacterial richness remained statistically
unchanged (P � 0.7624; native soil � 823.5 � 78.5 [n � 2] and chitin-enriched soil �

801.7 � 26.35 [n � 3]). However, bacterial evenness decreased by 55%, indicating that
chitin supplementation selected for a subset of populations. The fungal species rich-
ness remained essentially unchanged by the chitin supplementation, indicating that
the native fungal taxa were less responsive to chitin than were the bacteria.

The structure and taxa of soil and liquid-based consortia. After chitin enrich-
ment, subsequent extended enrichment was carried out over 15 weeks using 100 ppm
of NAG as the major carbon and nitrogen source. The enrichments were performed in
two parallel tracks using the same source inoculum (soil enriched for 6 weeks with
100 ppm of chitin) in both gamma-irradiated (sterile) soil and liquid M9 medium. The
total time for the experiment using chitin enrichment followed by NAG enrichment was
21 weeks. This experimental design was used to optimize opportunities for selection of
reduced complexity, naturally coexisting soil consortia and to determine the influence
of the physical matrix on the enrichment process. While the physical differences
between soil and liquid are paramount, it is important to note other differences,
including carbon/nitrogen sources or pH, that may also have an effect on the succes-
sion of resulting consortia.

The NAG enrichments were initiated by serial 10-fold dilution of the chitin-enriched
soil (dilutions ranged from 10�1 to 10�4) into the irradiated sterile soil and into liquid
M9, both containing 100 ppm of NAG. The relative abundances of both 16S and ITS
OTUs differed between serial dilutions and treatment conditions over the course of the
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FIG 1 The successional dynamics of microbial consortia. Differences in microbial community structure and alpha diversity are plotted with respect
to native soil communities (labeled as “n”), the 6-week-chitin-enriched communities (labeled as “c”), uninoculated control (labeled as “control”), and
different serial dilutions of NAG enrichment in liquid and soil treatments for 0 to 15 weeks. The results are partitioned by initial dilution and
incubating conditions (NAG enrichment in liquid on the top and soil on the bottom). The most abundant bacterial (A) and fungal (B) phyla are
shown over the 15-week incubation. The alpha diversities of bacteria (C) and fungi (D) were estimated using species richness and Simpson’s
evenness.
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experiment (Fig. 1). Proteobacteria remained the dominant bacterial phylum during the
succession period in both the liquid and soil treatments (Fig. 1A). However, the
NAG-enriched liquid environment showed a greater degree of change than the native
source soil. In the NAG-enriched liquid medium, members of the Proteobacteria and
Ascomycota phyla dominated the bacterial and fungal communities, respectively. In
contrast, there was a higher diversity of phyla represented in the NAG-enriched soil
environment over time. In these samples we observed increases in typical soil bacteria
that are generally difficult to cultivate, namely, Planctomycetes and Verrucomicrobia.
Planctomycetes were negligible in all matching liquid incubations, and Verrucomicrobia
was present to a comparable degree only in the least diluted liquid sample (10�1).
Simultaneously, we observed depletion of Acidobacteria and Actinobacteria in the
NAG-enriched soil. We also detected a greater number of fungal phyla in communities
grown on the NAG-enriched soil than in its liquid counterpart, with relatively high
proportions of Mortierellomycota, Basidiomycota, and unidentified fungi at the end of
the incubation period (Fig. 1B).

As the 15-week NAG enrichments were being regularly sampled for genomic DNA
(gDNA) and respiration, we employed sterile controls to monitor contamination
(Fig. S2). This enabled detection of cross-contamination between samples as growth in
our soil and liquid medium controls. This was inferred from non-zero respiration
measurements and the recovery of gDNA from liquid media (gDNA was always present
in sterile soil). The cross-contamination was first observed at week 5 (Fig. S2). The most
common OTU identified from the controls was of the genus Pseudomonas. This OTU
was present in the native soil and chitin enrichments, indicating that it was intrinsic to
the experimental system and native to the parent microbiome (Fig. S3). Although the
sterile controls lacked any viable growth at the onset of the incubations (as determined
by plate counting), the Pseudomonas OTU introduced during the incubations was able
to grow and dominate the liquid sterile controls as well as the more dilute liquid
samples (10�3 and 10�4). However, although present, the Pseudomonas OTU did not
establish itself to high relative levels within the higher-richness liquid samples or any
of the soil samples, likely due to the complexity and stability of the existing microbial
communities already present in these sites.

We anticipated that long-term selection by NAG in a sterile soil or liquid M9 medium
environment would result in soil microbial consortia with reduced complexity com-
pared to both the native soil microbiome and the chitin-enriched soil microbiome.
Overall, this was found to be true, although the initial species richness of the inoculum
also played a major role. We manually reduced the complexity of the inoculum by
controlling the initial species richness through dilutions. A comparison of the species
richness measured on the first sampling date (week 0) across dilutions in NAG-enriched
liquid media showed that the dilutions were successful in reducing the richness of the
initial inoculum (Fig. 1C and Table S1). It is very likely that a corresponding initial drop
in richness was also happening with the soil dilutions, although this could not be
confirmed by amplicon analysis due to DNA amplification from soil microbes that were
likely killed during the gamma irradiation process (33, 34). In the liquid incubations, the
observed 16S and ITS OTU counts from the 10�3 and 10�4 dilutions gradually de-
creased over time; however, the 10�1 and 10�2 dilutions revealed sharp decreases in
species richness on the first week, followed by a rebounding trend through week 15.
This drop and rebounding effect after week 3 were also observed across all of the
dilutions associated with the NAG-enriched soil. Fungal richness measurements fol-
lowed patterns similar to those seen for bacterial richness. By the end of 15 weeks the
NAG-enriched soil microbiome richness was reduced by approximately 35 to 70%
(depending on dilution) compared to the original native soil (Fig. 1C and D) and the
NAG-enriched liquid microbiome richness was reduced by approximately 37 to 88%.
This represents a considerable decrease in species complexity from the initial native
and chitin-enriched soil microbiomes and a demonstration that a combination of
dilution and long-term selection on specific carbon sources can lead to consortia with
reduced species complexity.
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Physical environment and initial species richness influence stability. The sta-
bility of the enriched consortia was measured by comparing beta diversity over time.
Specifically, we used measures of weighted UniFrac distance (35) between samples that
occurred sequentially as a measure of phylogenetic volatility (Fig. 2), where consortia
with lower volatility are defined as those showing a more similar community structure
from one time point to the next (36). This represents a way to measure how much the
community is changing from week to week, which is related to the taxonomic com-
positional stability over time (Fig. S4). By using this metric, it was clear that while
enrichment on both NAG-containing soil and liquid media led to stable consortia, those
enriched within the liquid environment became relatively stable more quickly than
those in the enriched soil (Fig. 2). Consortial stability also depended on the complexity
of the initial inoculum (Fig. 2 and Table S2), a factor that was controlled by dilution of
the chitin-enriched input soil. Samples inoculated with the 10�4 dilution (lowest initial
richness) showed the greatest tendency to stabilize.

The consortia became more stable starting at week 5, with the maximum stability
reached by the end of the experiment, at week 15. However, differences were observed
based on succession in liquid versus soil environments. The NAG-enriched soil microbial
communities showed an initial drop in volatility (weeks 1 to 2), followed by a rise in
volatility through weeks 3 to 5 (Fig. 2). After 5 weeks of enrichment in soil with NAG,
the composition of the soil microbiome did not change significantly and volatility
continued to drop as the experiment progressed. In contrast, NAG-enriched liquid
microbiomes initially exhibited an extreme drop in volatility over the first 2 weeks and
thereafter showed either a consistent volatility measurement near 0.10 (dilutions 10�3

and 10�4) or a continual gradual drop in volatility over the remaining 13 weeks down
to a minimum of 0.15 (dilutions 10�1 and 10�2). Bacterial volatility showed a consistent
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FIG 2 The influence of physical environment on taxonomic volatility, i.e., the tendency for the community to
stabilize with respect to taxa being gained/lost over time. Each graph shows the weighted UniFrac distance for
bacteria (A) and fungi (B) calculated between subsequent incubation times and plotted by weeks of incubation,
dilution factor, and treatment conditions.
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increase around near week 11, which also corresponded with the observed decreases
in the relative abundance of OTUs assigned as Verruucomicrobia and Bacteroidetes in
the soil consortia (Fig. 1). More diverse microbial communities were enriched and
stabilized in soil than in the liquid incubations. This demonstrates that the physical
environment was a significant factor for the stability and compositional convergence of
microbial consortia. These results show that the final stability of the consortia and the
extent of species richness were directed by the length of succession, initial richness,
and culturing environment.

Biological and physical variables underpinning observed beta diversity. Respi-
ration and volatility of the enriched communities were compared to phylogenetic
composition over time via ordination by canonical analysis of principal coordinates
using weighted Unifrac distance between rarefied samples (Fig. 3). As described earlier,
changes (volatility) in community composition between time points were measured as
the weighted UniFrac distance between subsequent time points (Fig. 2). In all environ-
ments, the volatility vector points were in the direction of early-stage incubation
samples (Fig. 3), where large changes in the community structure occurred between
time points (Fig. S4A). In liquid medium incubations, the contribution of respiration for
the dissimilarity between samples becomes more prominent in the later stages of
incubation time courses. The dominant phyla from both kingdoms were assessed with
respect to incubation time and treatment condition. In the soil, Proteobacteria and
Firmicutes covaried with volatility (Fig. 3A), as they were most abundant in the volatile
initial samples and slowly decreased over time. However, in the liquid media Firmicutes
and Bacteroidetes were closely aligned with volatility (Fig. 3B). Also, Proteobacteria
became dominant over time in the liquid medium incubations; in particular, those that
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were originally inoculated with higher dilutions of the chitin-enrichment that had a
lower initial species richness. For the fungi in the soil culture, volatility covaried
primarily with Mortierellomycota and Chytridiomcota, motile saprotrophs with chitin-
containing cells walls that are found in wet soils (Fig. 3C) (37).

DISCUSSION

Selective enrichment of soil microbes with specific carbon substrates resulted in the
formation of distinct microbial consortia that displayed reduced complexity. Those
consortia that developed in NAG-enriched soil were also representative of the native
soil microbiome used as the inoculum. A primary finding from this study was that the
initial species richness influenced successional patterns that were enriched with a
specific carbon/nitrogen source in both NAG-enriched liquid media and soil incuba-
tions. Because the experiment was well replicated (8 biological replicates per treat-
ment), we also confirmed our hypothesis that substrate-driven soil community succes-
sion is deterministic in that all of the replicates for a given soil dilution become more
similar over the course of the successional period observed (Fig. S4 and Table S3). This
result was obtained in both liquid media and soil substrates, although the taxonomic
structure of endpoint consortia was controlled by hydrophysical and other matrix-
associated differences between soil and liquid media. The endpoint microbial commu-
nity structure was well explained by the initial dilution condition, and this influence was
more pronounced under the liquid than the soil treatment condition (Table S2). At the
end of the enrichment period, the soil NAG enrichments showed higher species
richness than equivalent liquid treatments, despite having identical inoculations, and
were also more representative of microbiomes from the original native soil with respect
to community composition. The persistence of members of the original soil micro-
biome was consistent across dilutions for the NAG-enriched soil. The 10�1 dilution had
the highest species similarity to the native soil and retained a diverse community, while
at the other extreme, the 10�4 dilution represented a much simpler, less rich commu-
nity.

This approach for developing consortia with reduced complexity is of interest as a
method for obtaining simplified model microbiomes with naturally interacting mem-
bers that are representative of the native soil system. This similarity to the native soil
seen with the NAG-enriched soil is likely a result of the experiment being performed
with soil microbes in their natural soil substrate, in contrast to a relatively foreign
substrate (liquid). Another recent study also examined shorter-term succession of soil
microbiomes in liquid (but not soil) and found that soil microbiomes enriched on liquid
media are very different from the original-source soil microbiome (38). That study was
carried out using a variety of carbon sources, resulting in microbiomes with reduced
complexity, similar to what we show here. Together, these studies confirm that
reduced-complexity consortia that have community membership representative of soil
microbiomes are much more likely to be obtained using a soil-based enrichment than
a liquid-based enrichment. In addition, our results clearly show differences in the
successional dynamics and endpoint structures of each consortium with respect to their
initial species richness based on the dilution of the chitin-enriched soil inoculum.

We found that the richness of the initial soil inoculum strongly impacted the alpha
diversity of the resulting microbial consortia over time (Fig. 1). These results support our
hypothesis that the initial species richness would influence each consortium’s tendency
to converge toward smaller changes in community structure between successive time
points. Results supporting this hypothesis were observed for the higher dilutions (10�3

and 10�4) for all treatments and measurements (Fig. 2). Each consortium’s tendency to
converge toward smaller changes in community structure between successive time
points was assessed by comparing weighted UniFrac distances between time points
and was notably strongest for communities developed in the liquid media and mea-
sured by 16S rRNA sequencing rather than ITS. The generalizability of this stability
convergence effect is partially supported through similar findings presented by Shade
et al., who showed how rare taxa significantly influence microbial diversity (39).
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Dilutions are more likely to remove rare taxa, and therefore, our results provide some
additional quantification of the effect presented by Shade et al. (39). However, in our
current study, we could not fully decouple the effects of reduced initial richness from
reduced counts of viable cells that were almost certainly created from the dilution
procedure. Hence, an alternative interpretation could be formulated, as decreased
viable cell numbers in early stages of succession led to decreased species richness and
higher tendencies to converge toward smaller changes in community structure be-
tween successive time points.

Both bacterial and fungal populations were selected during the chitin/NAG incuba-
tion process. This suggests that the representative populations were able to either
metabolize or take advantage of the added substrates through other means. Specifi-
cally, we found that members of the Acidobacteria, Actinobacteria, Bacteroidetes, Chlo-
roflexi, Firmicutes, Gemmatimonadetes, Planctomycetes, Proteobacteria, and Verrucomi-
crobia were represented in the NAG incubations (Fig. 1A). In addition, the richness of
Verrucomicrobia, Bacteroidetes, and Planctomycetes increased in soil incubated with
NAG compared to that in native soil (Fig. 1A). Representatives of these phyla were also
detected on a previous study of soil enriched with chitin (12). With respect to the fungi,
we found that the Mortierellomycota phylum increased in relative abundance in the
NAG-enriched consortia (Fig. 1B). Mortierellomycota are members of the Mucoromyceta,
based on recent fungal taxonomy (40). They are sporangiferous, are generally sapro-
trophic (including being able to grow on other fungi), and are found in soil (41). The
dominance of these specific bacteria and fungi suggests that their enrichment came
due to their ability to use either chitin/NAG or its metabolic by-product as a substrate.

The occurrence of enriched, stable consortia with dozens to hundreds of members,
found in this study and in a similar study by Goldford et al. (42), as opposed to selection
of a monoculture, suggests that the compositions of the reduced microbial communi-
ties are governed by cross-feeding interactions among microbes. In our longer-term soil
incubations with NAG, the microbiome converged into a less complex microbial
community than that found in the native soil. This is consistent with the results of the
study by Goldford et al., which also enriched a simplified microbial community, derived
from soil, on single carbon sources. However, unlike the previous study, which used
only liquid, we enriched on both liquid and soil and found that enrichments on soil led
to a reduced-complexity community that was far more representative of the native soil
microbiome than obtained with enrichment on liquid. There are several reasons why
structured environments may better facilitate and stabilize social interactions, including
the limited dispersal of interacting species and the physical retention of resources
within the soil matrix. The close physical proximity of members of soil consortia in
discrete niches would thus facilitate social activities between member populations (e.g.,
exchange of public goods, quorum sensing, and competition). When microbial com-
munities have a single major carbon source, only a subset of the community will have
the metabolic capability to utilize it as a substrate. For complex substrates, such as
chitin, other species will be reliant on primary species to degrade the polymer to
simpler compounds, thus selecting for a community that interacts by metabolic cross-
feeding, interactions that positively affect both the primary degrading species and the
secondary degrading species (43, 44). Positive metabolic interactions between micro-
organisms residing within communities have been studied in other systems as well,
particularly in biofilms where species and cells are in very close proximity and must
cooperate for growth (45).

Because we monitored the soil enrichments over a relatively long period, we could
determine the time required for the soil microbiomes to reach stable community
memberships. Stability was achieved surprisingly rapidly (3 to 5 weeks), and the result-
ing consortia remained stable over several months. Importantly, the development of
stable, reduced complexity, naturally interacting consortia from native soil can provide
representative model soil communities for future studies to study the mechanisms
underlying species interactions. This valuable resource should enable deciphering of
the molecular signaling mechanisms and metabolic interactions used by soil commu-
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nity members to decompose complex carbon substrates in soil. In addition, the
information can be used to enhance in silico models of soil microbial community
interactions that can be used to predict how key taxa and traits can be perturbed by
environmental change.

Conclusions. Here we demonstrate that the succession of microbial communities
derived from chitin/NAG-enriched soil microbiome is strongly influenced by the initial
soil microbiome richness and the hydrophysical environment. The initial species rich-
ness, which is a proxy for the complexity of a microbiome, at least partially controlled
the tendency for a soil-sourced consortium to stabilize and maintain a relatively
constant community structure over time. Additionally, the long-term soil enrichments
resulted in a reduced-complexity representation of the initial soil microbiome diversity
and richness. The results of this study show how soil microbial communities are shaped
during succession and how a combination of the initial taxonomic structure and
physical environment influences the tendency for a community to stabilize over time.

MATERIALS AND METHODS
Field sampling and chitin enrichment. Soil was collected in October 2017 from a field site operated

by Washington State University, located in Prosser, WA (46°15=04�N and 119°43=43�W). The soil repre-
sents a Warden silt loam that is characterized as a coarse-silty, mixed, superactive, and mesic Xeric
Haplocambid. The soil represents a marginal soil with low organic matter content (3.7%) and pH of 8. All
soil samples were collected in three field replicates. At each site, bulk sampling was accomplished with
a shovel within a 0- to 20-cm depth from the ground, and samples were stored in plastic bags at 4°C. To
exclude bigger soil aggregates and rocks, samples were sieved (4-mm mesh size). For each of the three
field blocks, three homogeneous replicates of 150 g of soil were weighed out into 250-ml sterile
screwcap bottles. To enrich chitin-degrading members of the microbial community, samples were
incubated for 6 weeks in soil augmented with chitin [poly-(1¡4)-�-N-acetyl-D-glucosamine; Sigma-
Aldrich, St. Louis, MO] at different concentrations (0, 10, 50, and 100 �g of chitin/g of soil [dry weight]).
Chitin was mixed and evenly distributed within the soil, and sterile water was added to reflect a 24% field
water capacity. Samples were kept in the dark at 20°C. Additionally, 1 g of sample was harvested weekly
from each bottle and stored in �80°C for 16S and ITS amplicon analysis.

Gamma-irradiated soil. Prosser soil was sterilized with gamma irradiation at 85 kGy in two
successive applications of 25 kGy followed by 60 kGy. Initially, 3,000 Ci of 60Co source was used in the
collimated open beam irradiator. For the second irradiation, 1,300 Ci of 60Co source was used in the
Gamma Bunker, which is a 1.5-ft3 closed-chamber irradiator (46, 47). Sterility of soil was confirmed by
plating of several serial dilutions on LB agar plates followed by incubation at 30°C and the lack of growth.

Sterile soil incubations and liquid controls. M9 minimal medium and sterile liquid soil extract were
prepared as described by Sambrook and Russell (48) and Weaver et al. (49), respectively.
N-Acetylglucosamine (NAG; Sigma-Aldrich, St. Louis, MO) was added into the M9 medium to 100 �g/ml.
Ten-milliliter liquid cultures were set up in 25-ml sterile glass tubes in four successive 10-fold serial
dilutions. First, 1 g of actively respiring chitinolytic enriched soil (100 �g of chitin/g of soil [dry weight])
was inoculated into the first glass tubes with 9 ml of the M9 medium (representing the 10�1 dilution) and
vortexed for 30 s. This solution then was used for the subsequent serial dilutions. Uninoculated controls
were also generated and incubated with the dilution samples. Each serial dilution and respective controls
were performed in 8 biological replicates. Incubation was performed in the dark at 20°C, with shaking at
130 rpm. CO2 respiration was measured aseptically three times a week. Headspace was aseptically
flushed with air after each sample to prevent anaerobic conditions. Additionally, 1 ml of sample was
harvested weekly for the first 3 weeks, followed by biweekly sampling; samples were stored at �80°C for
16S and ITS amplicon analysis. After each sampling period, substrate and moisture levels were refreshed
by adding 1 ml of M9 medium.

The soil enrichments were set up using 5.5 g of gamma-irradiated soil in 15-ml sterile tubes in parallel
with their liquid counterparts. The “sterile soil” treatments were prepared by adding 1 ml of soil extract
liquid enriched with 100 ppm of NAG to each tube containing sterile soil. The soil samples were briefly
mixed with a sterile spatula and preincubated in the dark at 20°C for 2 days. After preincubation, 0.5 ml
of inoculum was taken from the liquid serial dilution described above and added to the counterpart
sterile soil tubes. The soil enrichments were sealed with filter screw caps (nonpyrogenic and sterilized by
gamma irradiation; CellTreat, China) to allow continuous airflow. Each 0.3-g sample was harvested weekly
for the first 3 weeks, followed by biweekly sampling; samples were stored at �80°C for downstream
molecular measurements.

Amplicon sequencing. Total DNA was extracted using the MoBio PowerSoil DNA isolation kit
(Qiagen, Carlsbad, CA) in accordance with the Earth Microbiome Project (EMP) protocols (50). Sequencing
was performed on a MiSeq instrument (Illumina, San Diego, CA). Triplicate, separate 16S and ITS rRNA
gene amplification reactions were performed on DNA from each extraction. The 16S primers targeted the
V4 hypervariable region of the 16S small-subunit (SSU) rRNA gene using the V4 forward primer (515F)
and V4 reverse primer (806R) with 0 to 3 random bases and the Illumina sequencing primer binding site
(51). The ITS primers targeted the ITS1 region using the ITS1f and ITS2 primers (52).
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Amplicon analysis. The Hundo amplicon processing protocol was used to process 16S and ITS
amplicons (53). In brief, sequences were trimmed and filtered of adapters and contaminants using
BBDuk2 of the BBTools (“Tools”) package. VSEARCH (54) was used to merge, filter to an expected error
rate of 1, dereplicate, and remove singletons before preclustering reads for de novo and reference-based
chimera checking. Reads were clustered into OTUs at 97% similarity, and an OTU table in the BIOM format
(55) was constructed by mapping filtered reads back to these clusters. BLAST� (56) was used to align
OTU sequences to the database curated by CREST (57) (SILVA v128 for 16S and UNITE v7 for ITS), and
taxonomy was assigned based on the CREST lowest common ancestor method. Multiple sequence
alignment was performed with Clustal Omega (58) and a phylogenetic tree was constructed using
FastTree2 (59).

Diversity analysis. Downstream analysis was completed in R (60), using the phyloseq (61) and vegan
(62) packages. To preserve the maximum consistency within each replicate, samples were rarified to an
even depth of 2,000 reads per sample. The observed counts of unique OTUs (species richness) and
Simpson’s evenness were used to characterize alpha diversity (35). In order to assess microbial stability/
volatility over time, we implemented the volatility analysis as previously described (36), in which the
amount the community change between successive time points was measured with weighted UniFrac
distances.

Data availability. Genetic sequencing data are available on DataHub at https://doi.org/10.25584/
data.2019-02.700/1506698 for both 16S and 1TS amplicons. The R markdown processing scripts used to
process the data and build graphs are available on Open Science Framework at https://osf.io/6d5kz/.
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