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ABSTRACT

Autologous biologics, defined as platelet-rich plasma (PRP) and bone marrow aspirate concentrate (BMC),
are cell-based therapy treatment options in regenerative medicine practices, and have been increasingly
used in orthopedics, sports medicine, and spinal disorders. These biological products are produced at
point-of-care; thereby, avoiding expensive and cumbersome culturing and expansion techniques.

Numerous commercial PRP and BMC systems are available but reports and knowledge of bio-cellular
formulations produced by these systems are limited. This limited information hinders evaluating clinical
and research outcomes and thus making conclusions about their biological effectiveness. Some of their
important cellular and protein properties have not been characterized, which is critical for understanding
the mechanisms of actions involved in tissue regenerative processes. The presence and role of red blood
cells (RBCs) in any biologic has not been addressed extensively. Furthermore, some of the pathophysi-
ological effects and phenomena related to RBCs have not been studied. A lack of a complete under-
standing of all of the biological components and their functional consequences hampers the
development of clinical standards for any biological preparation.

This paper aims to review the clinical implications and pathophysiological effects of RBCs in PRP and
BMC; emphasizes hemolysis, eryptosis, and the release of macrophage inhibitory factor; and explains
several effects on the microenvironment, such as inflammation, oxidative stress, vasoconstriction, and
impaired cell metabolism.
© 2019, The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V. This is
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
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1. Introduction

Regenerative medicine methods, in particular orthobiologic in-
jections, offer solutions to a number of compelling clinical problems
such as tendinopathies and degenerative arthritis which have previ-
ously had limited response to medications, rehabilitation, surgery, or
joint replacement surgery. Recently, biological therapies have
emerged as promising treatment options for many musculoskeletal
disorders affecting young adults and the elderly [1]. Autologous bi-
ologics prepared at point-of-care, such as platelet-rich plasma (PRP)
and bone marrow concentrate (BMC), have become important autol-
ogous biological therapeutics in health care strategies for enhanced
tissue repair, regenerative processes, and immunomodulation [2,3].

Within orthobiology, biological therapies utilizing autologous
PRP and BMC frequently include the following clinical problem:
osteoarthritis (OA), tendon repair, focal chondral lesions, and soft
tissue (meniscus, ligaments) repair [4]. In addition, there is early
promise in the treatment of nerve conditions and injury [5].

PRP therapies and several related treatment protocols have
evolved immensely over the past 20 years. Through laboratory,
experimental, and clinical research, followed by meta-analyses,
physicians, medical practitioners, and scientists have gained a
better understanding of how PRP affects cellular physiology.
Notably, they have gained further insight into the functions of some
specific biological components in the platelet proteome that affect
PRP-treatment outcomes when used to treat various musculo-
skeletal pathologies [6]. The biological rationale for the clinical use
of PRP includes the local delivery of the intra cellular platelet ves-
icles containing growth factors, cytokines, lysosomes and chemo-
kines [7]. Furthermore, PRP has been recognized to modify
inflammatory responses and to stimulate cell proliferation and cell
differentiation [8,9]. The rationale for BMC applications is the
abundant and varied bone marrow cell content, such as bone
marrow-mesenchymal cells (BM-MSCs), hematopoietic-progenitor
cells, platelets, white blood cells, and erythrocytes that are readily
accessible and largely dispensable [10]. BM-MSCs are relatively
easy to acquire by bone marrow aspiration (BMA) from a variety of
anatomic sites with minimal morbidity. An effective BM-MSC in-
jection depends on the quality of the initial BMA procedure, which
should minimize trauma to the cellular content of the bone marrow
niche while maximizing cellular yields and simultaneously avoid-
ing peripheral blood infiltration [11]. Moreover, the authors believe
that a BMA sample should always be followed by a 2-step centri-
fugation procedure to concentrate the essential cellular content of
BMC above the baseline counts, according to the recommendation

of Pittenger et al. [12]. BM-MSCs have been found to differentiate
into mesodermal lineage cells, such as osteoblasts, endothelial cells,
adipose tissue, smooth muscle cells, and multiple musculoskeletal
tissue types, including chondrocytes, and tenocytes [13,14].

These bio-cellular capabilities have led to the use of BM-MSCs as
a potential strategy for treating various diseases because they
promote biological processes, such as angiogenesis, cell prolifera-
tion, and differentiation [15]. Furthermore, the cellular component
of BMC can synthesize mediators (cytokines and trophic factors)
that participate in tissue repair processes, immune modulation, and
the regulation of inflammatory processes [16,17]. Similar to PRP,
viable, autologous prepared BM-MSCs are used to treat a variety of
musculoskeletal disorders, such as chondral defects, osteoarthritis,
and rotator cuff lesions [18,19].

However, the discrete characterization of PRP and BMC biological
therapies are still in their infancy relative to surgical interventions and
pharmaceuticals. One reason for this immaturity may be the lack of
standardization of PRP and BMC final product characterization, e.g. the
number of the cellular components within the final product delivered
to a specific patient [20]. This lack of regulatory standards for clinical
practice and the limited consensus on specific formulation charac-
teristics of PRP and BMC products likely contribute to inconsistent
patient outcomes, as reported in the literature [21,22].

RBCs can be damaged as a result of several immune-mediated
processes and high shear forces during blood collection for PRP
preparation and bone marrow aspiration, or inadequate centrifu-
gation and concentration protocols. As a consequence, the RBC cell
membrane will start to disintegrate and hemolysis, with the release
of plasma free hemoglobin (PFH) will occur and is characterized by
the release of hemoglobin (Hb) and hemin and iron from lysed RBCs
[23]. The disintegration of RBC's lead to the development and
release of toxic Hb forms, capable of inducing oxidative stress and
pro-inflammatory PFH reactions in plasma and tissues. These
pathophysiological conditions have the potential of inducing RBC
suicidal cell death, eryptosis. During eryptosis, platelet activating
factor (PAF) is released from RBCs, exposing phosphatidylserine to
the cell surface, affecting in particular RBC-endothelial interaction.
This phenomenon is known to contribute to vascular damage or
microcirculatory blood flow irregularities [24]. Another significant
consequence of PFH is the release of macrophage migration
inhibitory factor (MIF), since RBCs contain large concentrations of
this enzymatically and chemotactically active cytokine [25]. MIF is
identified as a very potent inflammatory cytokine.

The presence of PFH and RBCs in biological treatment vials is of
particular concern when these split products cannot be cleared by
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natural scavenger proteins and PRP and BMC are applicated in a
microenvironment outside of the blood stream.

There is currently almost no research on both the role and con-
sequences of erythrocytes-red blood cells (RBCs) within a final BMC
product. Additionally, the concept of bone marrow aspiration (BMA)
in autologous prepared biological products has gained minimal to no
attention in the clinical and scientific community. This may be
related to the fact that the pathophysiological effects of damaged
RBCs, PFH and its detrimental mechanisms to tissues have not been
widely noted in scientific reports. Therefore, the aim of this article is
to elucidate and review the consequences of (damaged) RBCs in
biological-based PRP and BMC products when used in musculo-
skeletal regenerative medicine treatments. This article will focus on
RBC disintegration, the release of macrophage inhibitory factor, and
PFH influence pro-inflammation, oxidative stress, reactive oxygen
species (ROS), cellular dysfunction, eryptosis, and apoptosis.

2. Formulations and bio-cellular components of PRP
and BMC

Any PRP or BMC preparation begins by meticulously acquiring a
fresh unit of whole blood or bone marrow, respectively, using
standard operating procedures according to the specific system
used. The next step in the preparation of a biologic is the use of
specific, disposable, concentrating device and a dedicated centri-
fuge system. However, the functional design and methods of PRP
and BMC processing systems varies tremendously, and the majority
of these systems do not permit full manual control or adjustments
to control the production of specific bio-cellular formulations.

2.1. PRP composition

Currently, physicians can choose from more than 30 PRP-
processing systems. Therefore, a lack of consensus on standardizing
PRP has contributed to the large variation in PRP products. Conse-
quently, different devices produce dissimilar platelet concentrations
and cellular compositions [26,27]. However, optimal whole blood
separation is best accomplished by double-spin PRP devices and
centrifuges that create a layered buffy coat stratum due to the use of
different centrifugal forces and the varying specific gravities and
densities of the individual blood components (Fig. 1) [28].

Specific centrifugation design protocols are critical in avoiding
agitation, resuspension, and shifting of cellular layers during decel-
eration. PRP can be characterized as a small volume of plasma with a
complex composition of multi-cellular components comprised of
platelets and different leukocytes. To induce a functional angiogenic
response that stimulates tissue repair mechanisms, via endothelial
cell activity. A final PRP product should contain a substantial supra-
physiologic concentration of platelets above baseline, greater than
1.5 x 10? platelets/mL [29]. Cavallo et al. reported on the effects of
leukocytes. PRP containing fewer leukocytes induced greater cell
growth by stimulating chondrocyte anabolism, whereas leukocyte
rich PRP stimulated catabolic pathways [30]. In contrast, others
demonstrated that leukocyte rich PRP treatment of tendinopathy
induced early increased cellularity and new vasculature in an acute
inflammatory environment [31]. These studies indicate that different
PRP formulations, with varying concentrations of pro-inflammatory
leukocytes, are warranted to optimize disease specific treatment
protocols. Of note, none of the published PRP classification systems
has addressed the presence RBCs in PRP vials [20—22,32,33]. The lack
of scientific inquiry into the potential role of RBCs in PRP and its
consequences for tissue regeneration or tissue healing is even more
concerning. Furthermore, the consequences of damaged RBCs,
including the release of RBC content due to inferior whole blood
collection or processing, have not yet been reported.

Density separation in g/mL.
Plasma: 023 = AP ———————
Platelets: 1.060 - 1.067
Monocytes:  1.062 - 1.068
Lymphocytes: 1.068 - 1.072
Neutrophils:  1.080 - 1.090

Erythrocytes: 1.086 -1.100 ————

Fig. 1. Cellular whole blood density separation following the first centrifugation pro-
cedure with the EmCyte PurePRP®SP. The whole blood cellular components (indicated
by the red lines) are separated in the PurePRP®SP concentrating device as a result of
the different cell densities in two basic layers [81]. The top layer is the platelet plasma
suspension, consisting of plasma and the multicomponent buffy coat layer, containing
platelets, monocytes, lymphocytes, and neutrophils. The second basic layer consists of
the erythrocyte cellular pack. The range of the specific cell densities varies between
individuals. After a second centrifugation procedure approximately 7 mL of PurePRP is
aspirated from the bottom chamber to be used for regenerative therapies.
(PurePRP®SP: Pure Platelet-Rich Plasma Supra-Physiologic).

2.2. BMA-BMC composition

The composition and structure of the bone marrow is dynamic,
containing a mixture of cellular and non-cellular components
(connective tissue), small tissue fragments, and venous blood.
Compositional differences in cellularity may occur between in-
dividuals [34]. The marrow stroma consists of a heterogeneous
population of cells (e.g. fibroblasts, adipocytes, osteoblasts, osteo-
clasts, macrophages, and endothelial cells) providing a microenvi-
ronment for bone marrow stem -and progenitor cells.

According to the authors, similar to blood sampling procedures
for PRP preparations, bone marrow harvesting is a very subtle
procedure. BMA devices should contain minimally invasive
instrumentation to collect a selective bone marrow aspirate con-
taining a high fraction of progenitor stem cells. During device
deployment and BMA collection the trabecular bone should be
gently penetrated, maintaining a quiescent tissue environment.
This technique should lead to reduced tissue activation, incidence
of clotting, less peripheral blood contamination, and less RBC
destruction, while increasing stem cell yields.

Bone marrow stem cells can be categorized as hematopoietic stem
cells (HSCs) and MSCs. HSCs are pluripotent cells that further differ-
entiate into distinctive progenitor cells that mature into blood cells of
myeloid (monocyte, granulocyte, megakaryocyte/platelets, and
erythrocyte) lineages and lymphoid cells (B, T, and NK cells) through
hematopoiesis [35]. MSCs are multipotent adult stem cells that pro-
vide a niche for HSCs and, due to their plasticity, have the ability to
differentiate into various mesodermal lineages. Such multipotency
has the potential to play a valuable therapeutic role in the repair and
reconstruction of multiple tissues in musculoskeletal disorders.
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Furthermore, MSCs have diverse immunomodulatory properties,
leading to an expanded interest in their use for various therapeutic
applications [36]. Aside from MSCs, human bone marrow contains
mononucleated cells (MNCs) with subpopulations of various types of
progenitor cells, including endothelial progenitor cells, which are
thought to play an important role in angiogenesis. Furthermore,
platelets, and erythrocytes are also present in BMA samples [37].

The objective of concentrating BMA to BMC is to recover the
MNCs layer from the bone marrow by density gradient centrifu-
gation (Fig. 2). This is of particular importance because the per-
centage of MSCs in BMA varies from 0.001 to 0.01% of nucleated
cells [38]. Through centrifugation, the bone marrow cell concen-
trations can be increased 5—8 fold, depending on the quality of the
BMA sample and the centrifugation preparation protocol used. The
MSCs contained within BMC will potentially provide a direct
cellular source for tissue repair and regeneration of the host tissue.
In addition, the nucleated cells may have a paracrine effect by
delivering various growth factors, cytokines, and chemokines into
tissue to orchestrate and direct repair mechanisms [39]. Addition-
ally, concentrated platelets play a key role in BMC, because their
paracrine effects are mediated through the secretion of various
platelet-derived growth factors and cytokines, such as vascular
endothelial growth factor, interleukin-6, platelet-derived growth
factor-AB, fibroblast growth factor, stromal cell derived factor-1,
and insulin-like growth factor. The combination of MNC and
platelets in BMC provide conditions permitting more rapid and
effective tissue regenerative potential by MSCs [40]. Critically,
when concentrating BMA, the recovery of non-nucleated cells, in
particular RBCs, should be significantly reduced.

Studies have addressed the deleterious effects of RBCs on joints,
in particular chondrocyte apoptosis, long term inhibition of pro-
teoglycan synthesis, and damage to cartilage [41,42]. In addition, it
has been shown that hemoglobin in joints stimulated the expres-
sion of ADAMTS-5 and -9 by synovial cells, possibly causing carti-
lage damage [43].

Notably, Dawson and co-workers concluded that RBCs had a
negative impact on colony forming unit-fibroblastic growth, indi-
cating that the benefits of using MSCs in regenerative therapies
might be limited [44].

Density separation in g/mL.

Plasma: 1.025 - 1.029
Platelets: 1.060 - 1.067
Monocytes:  1.062 - 1.068
Lymphocytes: 1.068 - 1.072
HSCs: 1.069 - 1.071
MSCs: 1.073 - 1.077
Neutrophils:  1.080 - 1.090

Erythrocytes: 1.086 - 1.100

Fig. 2. Bone marrow concentrate density separation following EmCyte Aspire ™ BMA
harvesting and PureBMC® second spin centrifugation. Anticoagulated aspirated bone
marrow was initially injected in the concentration device for the first spin cycle. After
the second centrifugation procedure the separation of bone marrow components,
according to their different density gradients, follows in the concentrating accessory
device. The HSC's and MSC'’s are located on top of the erythrocyte and white blood cell
layer [82] and are extracted via the aspirating pipe. (BMA: bone marrow aspirate;
PureBM(C®: Pure Bone Marrow Concentrate; HSC: hematopoietic stem cell; MSC:
mesenchymal stem cell).

3. Hematological composition of prepared biologics

Based on differences in clinical outcomes following biological
therapies, we conclude that a full understanding is needed of the
true composition of any biologic that is being used in regenerative
medicine treatments. With regard to PRP standardization, Chahla
et al. reported that preparation protocols were highly inconsistent.
In addition, the majority of studies did not describe the complete
PRP composition or formulation, thereby hindering the ability to
understand the ultimate clinical effects of PRP applications.
Sometimes reports about PRP include final platelet and leukocyte
concentrations, whereas information about erythrocyte counts and
PFH are not provided [45].

Murray and colleagues reported on standards in clinical studies
in which BMC was used. In their review, they found that all existing
clinical reports that evaluated BMC for orthopedic, musculoskel-
etal, or sports medicine applications were limited by inadequate
reporting of preparation protocols. Remarkably, no studies re-
ported the complete bio-cellular composition of the BMC prepa-
rations. Furthermore, they concluded that there are profound
deficiencies in reporting the BMC cell characteristics; the total
number of cells delivered was reported in only 8% of all reviewed
studies [20]. Furthermore, no attention has been given to the
consequences of PFH on the microenvironment of treated tissues.
We suggest that these deficiencies in reporting hematological
variables in autologous biologics may critically influence patient
outcomes. Therefore, describing the entire composition and bio-
cellular activities of PRP and BMC preparations is of paramount
importance because this information might indicate the need to
make meaningful protocol adjustments to the preparation of these
biologics. To our knowledge, this is the first paper that provides an
in-depth analysis of the consequences of PFH and the effect of RBCs
on tissues.

3.1. Hematological characteristics of erythrocytes

Erythrocytes develop from HSCs in the red bone marrow in
response to erythropoietin, which is produced by the kidneys. A
few days after they have entered the circulation, they become
mature erythrocytes. During the final maturation process, the nu-
cleus and mitochondria are replaced to maximize the space for
hemoglobin [46]. RBCs represent the primary cells in the human
circulatory system. Their plasma membrane consists of a specific
composition and structure that is highly correlated with their
biological functions. It contains a phospholipid bilayer and a
membrane skeleton [47]. The membrane components provide RBCs
with elasticity, flexibility, and deformability, very important char-
acteristics that maintain RBCs structural integrity and protect them
from stress and forces during their passage through microcircula-
tory capillaries [48]. The cytoskeleton is important because it
maintains cellular components, particularly hemoglobin, which is
the major protein within RBCs cell membrane. RBCs are responsible
for the distribution of oxygen to tissues and for transportation of
carbon dioxide to the lungs. Iron and heme moieties inside the RBCs
facilitate the binding of oxygen and carbon dioxide and the delivery
of oxygen to tissues [49].

RBCs circulate in the body for approximately 120 days before
they are removed from the circulatory system by the process of
senescence; they are recycled by macrophages. However, under
certain conditions, erythrocytes undergo another form of cell
death, eryptosis, before reaching their full lifespan. This type of cell
death may be caused by an injury to the erythrocyte and may be
triggered by a wide variety of factors, such as hemolysis, hyper-
osmolarity, and oxidative stress. The process of eryptosis is dis-
cussed below in more detail [50].
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4. Hemolysis and plasma free hemoglobin

Intra-vascular and extra-vascular hemolysis, which releases
PFH, is a pathological condition, characterized by the release of Hb
and heme from disintegrated RBCs. Several human disease and
pathological conditions of with varying etiology are associated with
hemolysis, such as paroxysmal nocturnal hemoglobinuria, sickle-
cell disease, and thalassemia's [51,52]. Hemolysis can occur due to
a variety of immune-mediated processes. In addition, hemolysis is
associated with surgical procedures, hemodialysis, blood trans-
fusion, and other therapies in which mechanical forces can produce
red blood cell rupture [53,54]. In Table 1, a summary of probable
causes for hemolysis is presented. In their report, Schaer et al.
describe in detail hemoglobin's toxic effects and the body's natural
scavenger mechanisms involved in hemolysis [23]. During hemo-
lysis, the RBC cell membranes rupture and free Hb, and its degra-
dation products, heme and iron, are released into the blood stream.
The release of Hb from RBCs will lead to specific and significant
structural and biochemical changes in the Hb molecule and has
adverse clinical effects; Hb toxicity is a fact [55,56].

After RBC hemolysis has occurred, tetrameric and dimeric Hb
forms translocate across endothelial barriers to the subendothelial
and perivascular space. Secondary mechanisms of Hb toxicity are
pro-oxidative and pro-inflammatory PFH reactions in plasma and
within tissues. Consequently, these reactions lead to endothelial
dysfunction characterized by consumption of endothelial cell nitric
oxide (NO). PFH split products reduce and deplete NO, and vasodi-
latation becomes jeopardized. As a result, heme favors ROS produc-
tion, leading to the dysregulation of the endothelium vasodilator/
vasoconstrictor balance, resulting in severe vasoconstriction and
hypertension, with the potential for the development of coagulo-
pathies [57]. Another mechanism of Hb toxicity is PFH forming stable
complexes with the acute phase protein haptoglobin (Hp), which is
produced and released by the liver. The Hb—Hp complexes are
cleared from the circulation. However, when the Hp buffering ca-
pacity is overwhelmed, Hb undergoes an instant conversion to
metHb (ferric-hemoglobin, Hb-Fe**). This triggers the release of
hemin from Hb-Fe>*, the primary product of the oxidative reactions,
transferring reactive porphyrin to cell membranes or soluble plasma
proteins, providing free hemin as a ligand for molecular signaling
interactions, and finally lead to inflammatory and cytotoxic activities,
inducing vascular injury [58,59]. Another protein, hemopexin (Hx),
also produced by the liver and released into circulation, binds to
heme to protect against the consequences of the hemolytic damaging
effects, especially to prevent from heme entering endothelial cells
[60]. Lastly, free hemin can selectively bind to several (cell) receptors,
sequence-specific DNA-binding factors, and several enzymes. The
significance of this binding potential is an altered cell metabolism

Table 1
Probable causes for the development of Red Blood Cell Hemolysis.
In vivo Bacteria
Parasites
Genetic and autoimmune disorders
Device Aspiration needle lumen size
Needle tip and site hole design and surface area
BMA centrifugation protocols with high g-forces
Surrounding marrow and platelet tissue activation
Device causing turbulence during aspirate collection
High erythrocyte count in aspirate
Physician Incorrect aspiration technique

Excessive syringe suction creating high shear forces
Prolonged storage

Inappropriate, small, needle size

Forceful transfer from syringe into the concentrating tube
High viscosity of injectate

Table 2
Overview of potential physiological consequences following the presence of plasma
free hemoglobin in a biological treatment vial.

Radical oxygen reactions [51]
Oxidative stress [51,52]

Local vasoconstriction [52,55]
Pro-inflammation [51,55,56,68]
Impaired cell metabolism [51,55,56]
Tissue damage [59]

Inflammatory infiltrates [60]
Ceramide release [45,63]

Endothelial cell dysfunction [54,57,59]
Vascular damage [63,64,65]

Eryptosis [46,61]

Mesenchymal stem cell dysfunction [72]
Pain [73]

and gene transcription. When hemin enters cells, it is neutralized by
heme-oxygenase's 1 and 2 that degrade the heme into iron and
carbon monoxide, employing anti-inflammatory, antioxidant and
anti-apoptotic effects [61].

In summary, when excessive PFH, hemin, and iron are released
into the bloodstream and cannot be cleared by natural scavenger
proteins, various hemolytic-related sequelae will follow, such as
endothelial dysfunction, pro-inflammation, development of reac-
tive oxygen species (ROS), thrombosis, vascular endothelium
damage, impaired microcirculation, and organ failure, potentially
resulting in morbidity and mortality (Table 2) [62,63]. The amount
of Hb molecules that can be lysed from 1 mL of blood is a 1000-fold
higher than the immediate Hp plasma availability, indicating that
Hb and heme loads can be massive (60).

Usually, Hb toxicity and PFH's deleterious mechanisms are
counteracted by the body's natural occurring homeostatic protein
scavengers and clearing mechanisms, provided that they are pre-
sent and functional. Most importantly, these mechanisms take
place in a microenvironment that entails a vascular endothelium
milieu, where endothelial cells are layered, with the presence of
smooth muscle cells, a functional NO signaling system, and avail-
ability of the liver proteins Hp and Hx to interact with the detri-
mental Hb split products.

5. Eryptosis, erythrocyte suicidal cell death

During their presence in the circulation, RBCs can recuperate
from a limited period of applied stress or injury. After they
completed their lifecycle, RBCs are removed from the circulation by
the process of senescence. Another form of erythrocyte cell death is
the phenomenon called eryptosis [50]. This type of RBC cell death
may be triggered by a wide variety of factors such as hyper-
osmolarity, energy depletion, or injury from a prolonged period of
cellular stress [49,64]. High shear forces during specimen collection
can liberate harmful hemolytic Hb components from disintegrating
RBCs, leading to oxidative stress. This stress is an important
accelerant and inducer of eryptosis of vital and intact RBCs that are
present in the biologic.

Characteristics of eryptosis are comparable to that of apoptosis,
namely, cell shrinkage, membrane blebbing, and exposure of
phosphatidylserine on the cell membrane [65]. When cell
shrinkage occurs, platelet activating factor (PAF) is liberated from
erythrocytes. This is important because PAF plays a role in the
control of inflammation and stimulates ceramide release through
the disruption of sphingomyelin present in the erythrocyte [49].

Ceramide on the outside of the RBC membrane leads to the
exposure of phosphatidylserine (PS), a phospholipid component of
the inside of cell membrane where its key role is cell signaling.
However, upon RBC damage PS is no longer restricted to the inside of
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the cell and flips to the outside by enzymatic action. Similarly, PS is a
typical feature for apoptotic death of nucleated cells. The importance
of PS availability on the cell surface has been characterized as a
docking site for factors in the hemostatic system, with significant
physiologic consequences [66]. In addition, the presence of PS on the
outer cell surface may be a trigger for cell-to-cell interaction, in
particular RBC-endothelial interaction. In conditions were PS expo-
sure on RBCs is evident, vascular damage or blood flow complications
are observed [67]. Betal and Setty raised concern that PS-RBCs could
generate a sub-population of RBCs with enhanced pro-adhesive ca-
pabilities via thrombospondin, potentially playing an important role
in vascular obstructive complications [68].

6. RBC macrophage migration inhibitory factor

Macrophage migration inhibitory factor (MIF) was first
described in 1966 as a soluble, 12.5 kilo-Dalton cytokine released
by activated T-lymphocytes [69]. Since its discovery, interest in
MIF dynamics has expanded. Both leukocytes and platelets have
been identified as sources of MIF [70,71]. MIF has been reported
to inhibit the random migration of monocytes and macrophages.
MIF is known to play a central role in promoting inflammation
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by activating immune and inflammatory cells while promoting
the expression of matrix metalloproteinases, nitric oxide, pros-
taglandin E2 release, and the release of proinflammatory and
inflammatory cytokines, such as tumor necrosis factor-a, in-
terleukins 1$/2/6/8, and interferon-y [72].

Reports of a connection of MIF with the most common cell type
in blood, the red blood cell, are minimal, in contrast to leukocytes
and platelets. Very recently, Karsten et al. extensively studied the
presence of MIF in red blood cells and quantified the concentration
and activity of this RBC protein. They confirmed that the MIF con-
centration in whole blood is 1000-fold higher than in plasma and
that the relative MIF contribution in platelets and leukocytes is
negligible compared to that in RBCs. Furthermore, MIF is func-
tionally active in RBCs [25]. The results of their study confirm that
RBCs are a major reservoir of the inflammatory protein MIF, playing
a profound role in inflammation. In addition, these findings have
significant implications for the ultimate consequences of hemoly-
sis. RBC disintegration will release high concentrations of enzy-
matically, and thus, chemotactically active MIF.

In post-cardiac arrest patients, acute hemolysis could cause a
spike in MIF levels and may explains why cellular damage has been
reported before signs of an inflammatory syndrome [73]. However,
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Fig. 3. Schematic summary illustration showing the pathophysiological effects and reactions of RBC hemolysis and eryptosis. The pathophysiological consequences of RBC
hemolysis and PFH development in a biological treatment vial. Under normal circumstances PFH and its split products oxyHb (Fe?*), ferric Hb (Fe**), and free hemin are released
into plasma where they are cleared by natural occurring scavengers and compensatory mechanisms like Hp, Hx, and NO vascular reactions. However, in their absence and due to
excessive PFH, a build-up of ferric and heme products continues, potentially leading to toxic consequences like direct pro-inflammation and pro-oxidant effects, endothelial cell
dysfunction, and vasoconstriction. A biologic formulation which contains a high concentration of RBCs, combined with oxidative and hemolytic components, applied to
tissue microenvironments, will lead to RBC cell membrane asymmetry and membrane disruption. This will lead to eryptosis, while displaying PS, leading to inflammation, and
endothelial cell reactions with decreased microcirculatory activity. Another consequence of RBC disintegration and PFH is an abundant release of MIF cytokines, playing a profound

role in pro-inflammatory processes (Adapted in part and modified from Schaer et al. [23]).
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if MIF is not deactivated or modulated, it exerts its pro-
inflammatory signaling activity to surrounding tissues. In addi-
tion, Zhang et al. reported that MIF levels in synovial fluids, but not
in plasma, correlated with self-reported pain scores in patients
with knee OA [74]. They concluded that the MIF signaled inflam-
matory cytokines in inflamed osteoarthritic joints have an impor-
tant pathophysiological role in the generation and maintenance of
OA-induced pain by acting on nociceptive nerve cells. Additionally,
MIF synovial fluid and plasma levels were reported to be directly
related to disease severity in knee OA, comparing by Kellgren and
Lawrence grading system [75].

7. Potential consequences of RBCs within PRP or BMC
preparations

The natural occurring biological homeostatic regulations of blood
vessels should not be compared with cellular behavior in treatment
syringes containing BMA, BMC, or PRP preparations. The endothelial
single cell lining in all blood vessels and its constant regulation of
exchange between the blood stream and the surrounding tissues
provides these interior blood vessels walls with a unique blood-tissue
barrier with a unique signaling mechanism [76]. Together with the
smooth muscle cell layer below the endothelial cell layer, both cell
layers regulate a variety of homeostatic mechanisms that control
vascular relaxation, enzyme substance release that controls blood
coagulation, immune function, platelet adhesion, and contribute to
regulation of the consequences of RBC hemolysis via nitric oxide.

Polymer-based disposable sterile treatment syringes are
routinely used to collect autologous prepared biologics for use in
regenerative medicine. The polymers that are used in the health
care industry and medical device industry have demanding re-
quirements, such as profound biocompatible and low cytotoxic
characteristics [77].

Due to the different cellular -and polymer characteristics, the
presence of natural occurring scavengers and compensatory
mechanisms are neither present nor feasible within syringes.

8. Discussion

RBCs can be damaged during blood/bone marrow collection or
during centrifugation due to high shear forces, used collection and
concentrating materials, and/or inadequate centrifugation pro-
tocols. If this occurs, the RBC components cannot be cleared
because the native in-vivo environment has changed to an ex-vivo
polymer-based milieu. In a treatment syringe NO reactions and
hemolysis can take place with no counteracting haptoglobin Hb
sequestration, or hemin blocking by hemopexin. Therefore, in these
circumstances, PFH is an active and harmful component of any
biological treatment vial. Furthermore, non-scavenged oxidative
stress reactions, resulting from the consequences of hemolysis, may
cause non-damaged RBCs present in the treatment vial to ulti-
mately undergo the process of eryptosis, leading to PAF release,
contributing to pro-inflammation and the stimulation of ceramide
release. In addition, eryptotic RBCs will bind with PS, potentially
enhancing pro-adhesion and clot formation through thrombo-
spondin, which is a major protein and present in platelet o-
granules.

Following centrifugation procedures to produce PRP and BMC,
concentrated cells are suspended in a small volume of plasma.
Ideally, the formulation of these biologics should contain minimal
to no RBCs. Hypothetically, when intact RBCs are part of a biological
cell composition, and the biologics are delivered outside the blood
stream to a local tissue microenvironment, the RBCs will undergo
eryptosis because they are not able to leave the body in a natural
way through the process of senescence. This might ultimately lead

to secondary inflammatory conditions. In addition, the enormous
MIF cytokine reservoir within RBCs are accountable for further
increased levels of inflammation (Fig. 3).

In most countries, PRP and BMC biologics for regenerative
medicine treatment procedures are approved and safe procedures,
based on indication-specific pathologies. Nevertheless, there are
currently no viable therapies designed to attenuate the adverse
effects of PFH and hemin within such biologics. Replacement, or
supraphysiologic dosing of Hp and/or Hx is not a feasible option to
counteract ongoing hemolysis in a treatment vial. Increasing IL-6
and TNF-alpha concentrations in vivo, to trigger liver Hp and/or
Hx synthesis, is likely counter-productive to inflammatory envi-
ronments [78]. However, minimizing or eliminating RBCs in a
biologic is a more feasible and realistic goal that depends on the
choice of a device system and concomitant preparation protocols.
Ultimately, physicians should choose the preparation method that
safeguards the biologic by targeting the required significant cell
numbers. We encourage further in-depth clinical trials that eval-
uate clinical outcomes and emphasize the pathophysiological ef-
fects of RBCs in autologous biological preparations, as
demonstrated in various in-vitro studies. In an in-vitro study by
Harrison et al. a significant negative effect of RBCs was demon-
strated leading to suppressed fibroblasts proliferation and fibro-
blast cell growth [79].

In another study, cartilage end-plate derived stem cells (CESCs)
were cultured and the proinflammatory cytokine MIF interfered
with the homing of MSCs and they suggested that intervertebral
disk repair and regeneration might be impaired [80]. Therefore,
well designed clinical studies should confirm the finding from in-
vitro studies. Laboratory and clinical studies should be directed
towards a complete understanding of the ultimate bio-cellular
formulation to potentially reduce patient morbidity and improve
measurable outcomes. The authors are aware that this recom-
mendation poses exciting basic scientific, clinical, and regulatory
challenges. Simultaneously, during this development process,
outcomes of these studies can contribute to accepted standards for
musculoskeletal regenerative medicine treatment protocols.

9. Conclusions

A lack of a complete understanding of all of the biological
components and their consequences hampers the development of
clinical standards for any biological preparation. In this review, the
clinical implications and pathophysiological effects of RBCs in PRP
and BMC, with emphasis on hemolysis, eryptosis, and the release of
macrophage inhibitory factor have been addressed. Furthermore,
the effects of RBCs to the joint microenvironment have been
examined, with suggested improvements provided to address
these issues during the harvesting and processing of PRP and BMC.
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