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Abstract: Autism Spectrum Disorders (ASD) is a group of neurodevelopmental disorders that is
characterized by an altered brain connectivity organization. Autistic traits below the clinical threshold
(i.e., the broad autism phenotype; BAP) are frequent among first-degree relatives of subjects with ASD;
however, little is known regarding whether subthreshold behavioral manifestations of ASD mirror
also at the neuroanatomical level in parents of ASD probands. To this aim, we applied advanced
diffusion network analysis to MRI of 16 dyads consisting of a child with ASD and his father in order
to investigate: (I) the correlation between structural network organization and autistic features in
preschoolers with ASD (all males; age range 1.5–5.2 years); (II) the correlation between structural
network organization and BAP features in the fathers of individuals with ASD (fath-ASD). Local
network measures significantly correlated with autism severity in ASD children and with BAP traits
in fath-ASD, while no significant association emerged when considering the global measures of
brain connectivity. Notably, an overlap of some brain regions that are crucial for social functioning
(cingulum, superior temporal gyrus, inferior temporal gyrus, middle frontal gyrus, frontal pole,
and amygdala) in patients with ASD and fath-ASD was detected, suggesting an intergenerational
transmission of these neural substrates. Overall, the results of this study may help in elucidating the
neurostructural endophenotype of ASD, paving the way for bridging connections between underlying
genetic and ASD symptomatology.

Keywords: autism spectrum disorders; preschoolers; diffusion tensor imaging; brain connectivity;
connectome; fathers; broader autism phenotype

1. Introduction

Autism Spectrum Disorders (ASD) is a heterogeneous group of neurodevelopmental conditions,
which is characterized by impairments in socio-communication and the presence of restricted/repetitive
behaviors [1], with a consistent prevalence rate in different countries of about 1% of children [2–4].
Although the exact etiopathogenesis of ASD remains elusive in the majority of cases, a combination
of genetic predisposition, environmental influence, and the interaction between the two has been
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repeatedly suggested [5,6]. Regarding genetic influences, the analysis of single nucleotide variants
(SNVs) on the whole genome (genome-wide association studies, GWAS) [7–9], of copy number variants
(CNVs) [10], and the sequencing of the whole exome in subjects with ASD [11,12] detected a large set of
rare variants, highly penetrating, affecting hundreds of genes. Crucially, the several hundred genes that
are involved converge on the functioning of a smaller number of key pathways, such as development
and activity of synapses (molecules of neuronal adhesion, synaptic transmission, activity-dependent
protein synthesis), regulation of transcription, and remodeling of the chromatin [13,14]. Genetic
anomalies are implicated in a considerable proportion of ASD cases (at least 10–20%). For the
remaining ~85% cases, in which specific genetic variations are not yet detectable, the sources of ASD
heritability remain to be clarified.

Consistent with a genetic predisposition in ASD, several studies have reported that, in about 25%
of families of persons with ASD, other family members display various ASD manifestations, ranging
from full–blown autistic disorder, autistic symptoms, or autistic traits [15–17], suggesting that ASD
and autistic traits might share common underlying genetic susceptibility factors [18]. More specifically,
literature consistently suggests that parents of individuals with ASD (pASD) are more likely than
the general population to express personality traits similar, although less severe, to those of ASD
individuals, i.e., the so-called broad autism phenotype (BAP) [19]. These sub-threshold characteristics
include peculiar social, communication, and cognitive processes, strong persistent interests, and rigid
and aloof personality traits [20,21], and they are higher in fathers when compared to mothers of
individuals with ASD (for a systematic review, see [22]). Still little is known, however, on whether
genetic and behavioural commonalities between pASD and their sons with ASD also mirror at the
brain level. This issue is of relevance, since neuroimaging could reveal ‘intermediate phenotypes’ or
‘endophenotypes’ that are more closely associated with specific genes than the clinical phenotype,
and they can therefore support the discovering of new disease genes or the characterization of genetic
subtypes of the disease [23].

To this aim, some investigations have examined the neurostructural and the neurofunctional
underpinnings in pASD. In a pioneering single case report, Volkmar and colleagues [24] reported
similar MRI abnormalities in the dorsolateral frontal region in a father and his 15-year-old son with
Asperger syndrome. More recently, studies regarding this topic were summarized in a review [25].
The selected studies used structural magnetic resonance imaging (sMRI), magnetic resonance
spectroscopy (MRS), functional magnetic resonance imaging (fMRI), electroencephalography (EEG),
or magnetoencephalography (MEG) to explore neurobiological substrates of pASD. The results
indicated that pASD are generally different from healthy controls at a structural [26,27] and functional
level [28,29]. In addition, a positive correlation between neuroanatomical characteristics and BAP
traits is emerging [30,31]. Crucially, some of the observed atypicalities involve the same brain
regions (e.g., fusiform gyrus) as the ASD probands, suggesting a potential genetic influence [30].
Moreover, gender was found to influence the neurostructural and neurofunctional results: in particular,
the neuroimaging study of Baron-Cohen et al. [32] supported the “Extreme Male Brain Theory” of
ASD [33], with mothers of individuals of ASD expressing even less fMRI activation than male controls
in empathic tasks.

To the best of our knowledge, no study has used diffusion-weighted imaging (DWI) to explore
structural connectivity in pASD and its relationship with behavioral measures. DWI allows for
indirect inferences on anatomical connectivity based on differential water diffusion [34], and it is
thought to be particularly suited to assess the neuroanatomical underpinnings of ASD, which has been
increasingly considered a brain connectivity disorder [35–37]. This assumption stems from the several
DWI-based studies that were performed in the last two decades to investigate the white matter tracts
of individuals with ASD, which revealed a complex pattern of abnormalities in brain connectivity
when compared to matched controls [38]. Specifically, atypical connectivity in a distributed network
of brain regions specialized in understanding the social behaviours of others—the so-called ‘social
brain’—is thought to be involved in social impairment, which is a cardinal feature of the autistic
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spectrum. This circuit comprises a set of areas that are implicated in processing social stimuli, i.e.,
the orbitofrontal and medial prefrontal cortices, the superior temporal cortex, the temporal poles,
the amygdala, the precuneus, the temporo-parietal junction, the anterior cingulate cortex (ACC),
and the insula [39]. Atypical connectivity patterns in ASD are not limited to the social brain, but it also
includes thalamo-frontal [40], fronto-striatal [41], cerebellar [42], and motor-sensory homunculus [43]
connections, as well as corpus callosum [44]. Further, a developmental trend in the disruption of brain
structural connectivity was detected. In fact, infants and toddlers with ASD are characterized by a
predominance of over-connectivity pattern when compared with age-matched controls [45–48], while
adolescents and adults predominantly show an overall under-connectivity, as to matched peers [49,50].
However, recent studies revealed a picture that is more complex, in which over- and under-connectivity
are network-dependent and may coexist in the brain of subjects with ASD, independently from
their age [51].

In the current study, we performed brain structural connectivity in ASD children and in their fathers
by applying the HARDI (High Angular Resolution Diffusion Imaging) protocol. This method is able to
reduce the known limits of the diffusion-weighted MRI, allowing for a better identification of crossings
and branching fibers, which are highly prevalent in brain white matter [52]. In addition, the adoption
of a mathematical approach based on graph theory allowed us to examine the brain as a network of
interconnected processing units, rather than exploring individual anatomical connections [53]. Graph
analysis approaches use measures of the length and strength of connections between all pairs of brain
regions to evaluate the efficiency of information transfer within the network, assessing how brain
abnormalities impact communication, both at the global and local level. The primary aim of this
study was to more specifically explore brain-behavior correlations in the two groups: (I) to correlate
autistic features in terms of Autism Diagnostic Observation Schedule Second Edition (ADOS-2) [54]
scores with structural network organization in ASD preschoolers; (II) to correlate BAP features in
terms of Autism-Spectrum Quotient (AQ) [55] with structural network organization in fathers of ASD
preschoolers (fath-ASD). The secondary aim was to test the hypothesis that regions that were identified
in fath-ASD may overlap those identified in their probands. We restricted our investigation to male
subjects with ASD and their fathers, as fathers have higher rates of BAP than mothers [22], and gender
can impact on neuroanatomical findings, both in typical [56] and ASD subjects [57].

2. Experimental Section

2.1. Participants

Sixteen ASD-child/father dyads (all Caucasian) were recruited at IRCCS Stella Maris Foundation
(Pisa, IT). The study protocol was approved by the Pediatric Ethic Committee of the Tuscany Region
and was performed in accordance with the Declaration of Helsinki. A document with all the necessary
information about the study protocol as well as a written informed consent form to participate in the
study were given and signed by the parents.

The inclusion criteria for children were an age-range between 18 and 72 months and male gender.
Fathers were only included if they were 18 years or older. Exclusion criteria for both fathers and
their children were: (I) brain anomalies that were detected on MRI; (II) neurological syndromes or
focal neurological signs; (III) history of birth asphyxia, extreme premature birth (≤28 gestational
weeks) or perinatal insult; (IV) epilepsy; (V) significant sensory impairment (e.g., blindness, deafness);
(VI) use of any psychotropic medication; and, (VII) contraindication for MRI. Additional exclusion
criteria for fathers were a poor comprehension of Italian language, which could have biased the
clinical evaluation, and insufficient cooperation for MRI scans. Children with ASD also performed
the recommended laboratory tests to rule-out medical causes of ASD, including audiometry, thyroid
hormone disorders, DNA analysis of FRA-X and screening tests for inborn errors of metabolism
(plasma and urine aminoacid analysis, urine organic acid measurement, urine mucopolysaccarides
quantitation, plasma and urine creatine, and guanidinoacetate analysis).
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Table 1 reports on the demographic and clinical characteristic of the participants.

Table 1. Demographic and clinical characteristics of the participants.

ASD Children (n = 16)

Age (years) 3.1 (1.3)
ADOS, CSS 6.4 (1.3)
ADOS, SA 7.8 (1.4)

ADOS, RRB 6.1 (1.7)
Performance IQ a 83.7 (13.7)

Fathers of children with ASD (n = 16)

Age (years) 43.5 (5.1)
Autism-Spectrum Quotient (AQ), total 13.5 (7.2)

AQ range 4–28

Data are expressed as mean (SD). ADOS: Autism Diagnostic Observation Schedule; CSS: Calibrated Severity Score;
SA: Social Affect; RRB: Restricted, Repetitive Behavior; AQ: Autism Quotient; a As assessed by the Griffiths Mental
Developmental Scales (GMDS).

2.2. Clinical Assessment

All of the children received a clinical diagnosis of ASD according to DSM-5 criteria [1] that was
confirmed using algorithm cutoffs on the ADOS-2 [54], as administered by an evaluator (A.N.) who
has obtained research reliability certification. Children with ASD perform structural MRI as part of
the clinical assessment protocol with the aim of excluding brain alterations. In the case of absence
of anomalies detected on MRI, the father of the child was asked to participate in the study and was
evaluated with the same MRI protocol.

ADOS calibrated severity score (ADOS-CSS) was used as a clinical measure of ASD severity
in children. Separate severity metrics for the Social Affect (SA) and Restricted, Repetitive Behavior
(RRB) domains were also considered, which could provide a better picture of ASD dimension [58].
In addition, all children with ASD were assessed for non-verbal development quotient through the
performance subscale of the Griffiths Mental Developmental Scales (GMDS).

The fathers enrolled in the study were evaluated through a semi-structured clinical interview
that aimed at making the major psychiatric diagnoses (SCID-I, [59]) and through a series of
self-administered questionnaires to evaluate post-traumatic stress disorder (Trauma and Loss
Spectrum-self report, TALS-SR lifetime version) [60,61] and mood disorders (Mood Spectrum-self
report, MOODS-SR—lifetime version) [62].

BAP traits evaluation was based on the Autism-Spectrum Quotient (AQ) [55], a self-report
questionnaire that evaluates the following five different areas: “social skills”, “attention switching”,
“attention to detail”, “communication”, and “imagination”.

2.3. Image Acquisition

Structural and diffusion tensor MRI were acquired on a 1.5 T MR system (Signa Horizon LX,
GE Medical System). Children were scanned under bland sedation. They received inhalational
anesthesia with an odorless oxygen and nitrous mixture for induction and sevoflurane for maintenance.
No side effects were reported. The fathers were scanned while they were awake, after being
recommended to stay as still as possible during the scan acquisition. The MRI protocol included an
axial MRI three-dimensional (3D) brain volume (BRAVO) T1-weighted (acquisition matrix = 256 × 256,
TR/TE = 12,332/5.16 ms, voxel dimension = 0.5 × 0.5 × 2 mm3, field of view = 256 mm) and an HARDI
scan that was acquired along 30 uniformly distributed diffusion encoding directions (b = 1000 s/mm2),
along with one b = 0 image (acquisition matrix: 80 × 80, voxel dimension = 3 × 3 × 3 mm3,
TR/TE = 10,000/92 ms, field of view = 240 mm). Notably, in a HARDI approach, the diffusion-weighted
images are acquired using a large number of non-collinear encoding directions (ideally 60 or above);
however, crossing fibers can also be resolved using 30-direction diffusion data, albeit less accurately [63].
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2.4. Structural Data Analysis

Structural MRI segmentation was performed in native space using the FreeSurfer software
package [64]. Although Freesurfer analysis is not formally recommended for use in children under four
years of age due to insufficient gray–white matter contrast, it has been previously used in investigations
in infants and toddlers as young as 12 months [46,65–67]. Images were visually inspected at each stage
in the Freesurfer processing pipeline and, if needed, manually edited and corrected to avoid errors in
the segmentation procedure. This included inspecting data for poor skull-stripping, the additional
use of “gcut” (http://freesurfer.net/fswiki/FsTutorial/SkullStrip_Fix_freeview) and, in extreme cases,
the manual removal of remaining dura, eye, and other non-brain signal. Using this controlled procedure,
we also obtained good results for younger children.

FreeSurfer provides parcellation of anatomical regions of the cortex (34 for each hemisphere) based
on the Desikan atlas [68] and subcortical regions [69], eight for each hemisphere (nucleus accumbens,
amygdala, caudate, hippocampus, pallidum, putamen, and thalamus and cerebellum) were included.
Thus, the final parcellation, including both hemispheres, consisted of 84 cortical and subcortical regions
in total (Table 2). Cortical regions are defined according to the Desikan atlas [68] and subcortical
regions, according to Fischl et al. [69]. The Freesurfer procedure has been previously validated in a
control group of typically developing children [70].

Table 2. Cortical and subcortical regions including in the final parcellation within each hemisphere.

Localization Region Abbreviation Localization Region Abbreviation

Frontal lobe

Superior frontal gyrus SFG Transverse temporal
cortex TTC

Middle frontal gyrus,
rostral division MFGrostr Entorhinal cortex ENC

Middle frontal gyrus,
caudal division MFGcaud Temporal pole TPO

Inferior frontal gyrus,
pars opercularis IFGoperc Parahippocampal gyrus PHG

Inferior frontal gyrus,
pars triangularis IFGtriang

Occipital lobe

Lateral occipital cortex LOC

Inferior frontal gyrus,
pars orbitalis IFGorbit Lingual gyrus LING

Orbitofrontal cortex,
lateral division ORBlat Cuneus cortex CUN

Orbitofrontal cortex,
medial division ORBmed Pericalcarine cortex CAL

Precentral gyrus PCG

Cingulate Lobe

Cingulate cortex, rostral
anterior division CNGrostr

Paracentral lobule PCL Cingulate cortex, caudal
anterior division CNGcaud

Frontal pole FPO Cingulate cortex,
posterior division CNGpost

Parietal lobe

Superior parietal cortex SPC Cingulate cortex,
isthmus division CNGisthm

Inferior parietal cortex IPC Insula Insula INS

Supramarginal gyrus SMG

Subcortical

Thalamus THA

Postcentral gyrus POG Caudate nucleus CAU

Precuneus cortex PCN Lenticular nucleus,
putamen PUT

Temporal lobe

Superior temporal gyrus STG Lenticular nucleus,
pallidum PAL

Middle temporal gyrus MTG Hippocampus HIP

Inferior temporal gyrus ITG Amygdala AMY

Banks of the superior
temporal sulcus STS Nucleus accumbens ACC

Fusiform gyrus FFG Cerebellar cortex CRB

http://freesurfer.net/fswiki/FsTutorial/SkullStrip_Fix_freeview
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Figure 1 represents the cortical brain regions that were obtained by Freeserfer parcellation.
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2.5. Diffusion Data Analysis and Connectome Construction

An extensive pre-processing procedure was applied to HARDI data to correct for head motion,
image distortions, and artifacts based on previous work [70]. In brief, first volumes with motion
between subvolumes were detected and removed based on a discontinuity index [71]. Subsequently,
outlier detection and replacement, correction for distortions (eddy currents and subject motion) was
performed used the integrated new tool “eddy” implemented in FSL version 5.0.11 [72].

Spatial intensity inhomogeneities were reduced using N3 correction [73]. The bias field was
calculated from the image with b = 0, and subsequently applied to all diffusion-weighted images.
Using MRtrix3 software (http://www.mrtrix.org) tensor, the fractional anisotropy (FA) and mean
diffusivity (MD) maps were successively computed and the fiber orientation distribution (FOD) was
estimated using single-tissue constrained spherical deconvolution while applying an algorithm that is
a reimplementation of the iterative approach proposed in Tournier et al. [74].

Tractography was performed using an approach that was based on the integration of
anatomically-constrained tractography (ACT) [75], which uses anatomical information from
high-resolution T1-weighted images to control the evolution and termination of fiber tracking and
spherical-deconvolution informed filtering of tractograms (SIFT) [76].

First, registration between structural and diffusion data was performed using the Boundary-Based
Registration (BBR) approach [77]. The T1-weighted image that was generated by Freesufer processing
was used as it is isotropic (1 × 1 × 1 mm3). Subsequently, tissue partial volume maps of brain white
matter (WM), cortical grey matter (GM), deep GM, and cerebrospinal fluid (CSF) were prepared for the
ACT framework while using FSL tools [78]. For each scan, tractograms of 10 million streamlines were
generated through seeding from either WM mask or deep GM. SIFT was finally applied to filter the
reconstruction from 10 million to five million streamlines.

Using MRtrix3 software, the connectomes were generated while considering all possible connecting
streamlines between each pairs of nodes. Connectomes were generated using streamline count as the
weighting factor.

Figure 2 schematically represents the overall analysis procedure.

http://www.mrtrix.org
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2.6. Graph Analysis of Connectomes

The graph theory approach was used to analyze connectome. First, a group threshold of 60% was
applied to connectomes in order to eliminate false positive and false negatives [79]. The threshold was
separately applied for the group of fathers and the group of children.

The Brain Connectivity Toolbox [80], as well as homemade Matlab scripts, were then used
to perform the analyses. Global measures (network-level) and local measures (node-level) were
calculated for each connectome. The global measures computed were the global efficiency (EG) [81],
the transitivity (T) [82], and the characteristic path length [83]. In addition, Small-World Propensity
(SWP), a measure to evaluate small-world characteristics in weighted neural networks [84], was
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calculated. The local measures used in this study were local efficiency (LE) [81], clustering coefficient
(CC) [83], and betweenness centrality (BC) [85]. Table 3 reports the graph theoretical measures extracted
in this study. For a more detailed description, please see Bullmore and Sporns [53] and Rubinov and
Sporns [80].

Table 3. Description of the global and local network measures.

Measure Description

Global measures

Global efficiency (EG) Average of the inverse shortest path lengths, typically considered to be a measure of the
network’s overall ability for information transfer and integrated processing.

Transitivity (T) Ratio of triangles to triplets in the network. It is more robust compared to the average
clustering coefficient.

Characteristic path length (CPL)
Average of the shortest path lengths between each pair of nodes in the network, where
shortest path length is the minimum number of links that are passed through to get from
one node to another node.

Small world propensity (SWP)
A measure of small-worldness for weighted graphs. Small-worldness is defined as a type
of network that exhibits groups of highly clustered vertices (high clustering coefficient),
with a limited number of edges connecting the vertex assemblies (low path length) [83].

Nodal Measures
Local efficiency (EL) Efficiency of a subgraph made up by the neighborhood of the node.

Clustering coefficient (CC)
Weighted sum of the number of links between the nearest neighbors of the node divided
by the maximum possible amount of links between the nearest neighbors. It is a measure
of the percentage of the node’s neighbors that are also connected to each other.

Betweenness centrality (BC) Quantifies how many shortest paths between any two nodes pass through a given node.
It is a measure for how important a given node is for the efficiency of the network.

2.7. Statistical Analysis

Statistical analyses of the data were performed using SPSS software for Mac Version 20.0 (SPSS Inc,
Chicago, IL, USA). Multiple univariate general linear model (GLM) based variance analysis was
performed for each brain region, in which the network measures were dependent variables and
the clinical variables were independent variables, to identify the clinical correlates of the network
characteristics. Age was regressed out as covariate, as it has been previously demonstrated that it can
influence the diffusion-weighted MRI parameters [86].

In the group of children, the ADOS-CSS, the SA and the RRB domains, and the GMDS were
evaluated, while in the group of fathers the AQ total score as well as its subdomains were considered
as the clinical variables. The effect sizes were estimated by partial eta squared (η2; values between
0.01 and 0.06 are they generally considered to be a small effect, between 0.06 and 0.14 a medium effect,
and those above 0.14 are regarded as a large effect) [87]. A multiple comparison correction using the
Benjamini–Hochberg procedure for false discovery rate (FDR) control [88], with a level set at 0.05
was applied, resulting in a significance of p < 0.0083 (0.05/6 clinical variables). However, due to the
explorative nature of the study, we also reported significance values with p < 0.05.

3. Results

3.1. Correlation between ASD Symptoms and Brain Network Measures in ASD Probands

3.1.1. Global Measures

Using multiple linear regression analyses, no significant correlations emerged between clinical
features and global measures in ASD probands. A significant positive correlation between age and
SWP was found (F = 9.78, p = 0.02, η2 = 0.620).

3.1.2. Nodal Measure

Significant correlations were found for the nodal measures and the clinical measures. We report
here only those that survived FDR correction and those obtained for the same brain areas in fathers
and children. Supplementary Data S1 reports all of the significant correlations.
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EL index. ADOS-CSS was significantly positively correlated with EL of right PCL, left CNGpost,
and right STG. SA was also positively correlated with the left CAU. Age also showed a significant
negative correlation with EL of left CAU and of right STG.

CC index. For CC, significant correlations in most of the same areas were found. ADOS-CSS
was positively correlated with CC of CNGpost. Regarding ADOS subdomains, SA was positively
correlated with left CAU, right FPO, and right ITG. GMDS was positively correlated with right ITG.

BC index. ADOS-CSS was significantly positively correlated with the BC of right PCG. SA was
significantly positively correlated with the BC of right MFGcaud, left CNGpost, and significantly
negatively correlated with the BC of the left AMY. RRB was negatively correlated with the BC of the
the left CNGpost. Age showed a significant negative correlation with left AMY.

Table 4, left column, summarizes the significant correlations between ASD symptoms and brain
network measures in ASD probands.

Table 4. Significant correlations between nodal measures and psychological measures in children with
Autism Spectrum Disorders (ASD), and in their fathers. Only correlations that survived false discovery
rate (FDR) correction and/or were obtained in the same brain areas in the two groups are reported.

Children with ASD Fathers of Children with ASD

Local Efficiency (LE)

Brain region Significant interactions Brain region Significant interactions

Right PCL ADOS-CSS: B = 0.78; F = 12.75, p = 0.006, η2 = 0.586 * Left CNGisthm Att. swi.: B = −1.09; F = 10.11,
p = 0.01, η2 = 0.503

Left CNGpost ADOS-CSS: B = 0.66; F = 8.05, p = 0.02, η2 = 0.472 Right STG Att. swi.: B = −0.91; F = 5.32,
p = 0.044, η2 = 0.384

Right STG ADOS-CSS: B = 0.70; F = 11.75, p = 0.008, η2 = 0.566 *
Age: B = −0.54; F = 6.79, p = 0.028, η2 = 0.430

Left CAU SA: B = 1.10; F = 19.66, p = 0.004, η2 = 0.766 *

Cluster coefficient (CC)

Left CNGpost ADOS-CSS: B = 0.76; F = 8.38, p = 0.018, η2 = 0.482 Right SFG Att. swi.: B = −1.10; F = 12.61,
p = 0.005, η2 = 0.558 *

Right FPO SA: B = 0.92; F = 10.69, p = 0.017, η2 = 0.641 Right MFGrostr Att. swi.: B = −1.03; F = 13.47,
p = 0.004, η2 = 0.574 *

Right ITG SA: B = 0.95; F = 14.21, p = 0.009, η2 = 0.703
GMDS: B = 0.59; F = 6.11, p = 0.048, η2 = 0.504

Left FPO Att. swi.: B = −0.82; F = 5.67,
p = 0.04, η2 = 0.362

Left CAU SA: B = 1.11; F = 18.86, p = 0.005, η2 = 0.554 * Left LOC Att. swi.: B = −1.02; F = 10.92,
p = 0.008, η2 = 0.522 *

Left CNGisthm Att. swi.: B = −1.15; F = 11.89,
p = 0.006, η2 = 0.543 *

Right ITG Att. swi.: B = −0.71; F = 5.61,
p = 0.039, η2 = 0.360

Betwenness centrality (BC)

Right
MFGcaud SA: B = 0.97, F = 6.66; p = 0.04, η2 = 0.526 Left IFGoperc Imm.: B = 1.00; F = 16.76,

p = 0.002, η2 = 0.626 *

Left CNGpost SA: B = 0.91; F = 15.35, p = 0.008, η2 = 0.719 *
RRB: B = −0.87; F = 15.06, p = 0.008, η2 = 0.683 *

Left POG Age: B = 1.14; F = 14.46,
p = 0.003, η2 = 0.591 *

Left LOC Imm.: B = −0.80; F = 6.41,
p = 0.030, η2 = 0.391

Right PCG ADOS-CSS: B = 0.91; F = 14.96, p = 0.008, η2 = 0.714 *
Right

MFGcaud
Soc. skills: B = 0.89; F = 6.87,

p = 0.025, η2 = 0.408

Left AMY SA: B = −0.89; F = 10.41, p = 0.018, η2 = 0.662
Age: B = −0.75, p = 0.020, η2 = 0.609

Right MTG Soc. skills: B = 1.00; F = 15.94,
p = 0.003, η2 = 0.615 *

Right MTG Soc. skills: B = 1.00; F = 15.94,
p = 0.003, η2 = 0.615 *

Left CNGisthm Imm.: B = −0.70; F = 5.41,
p = 0.040, η2 = 0.351

Right THA Soc. skills: B = 0.98; F = 16.86,
p = 0.002, η2 = 0.628 *

Right AMY Imm.: B = −0.76; F = 6.31,
p = 0.030, η2 = 0.387

* Significant interaction after false discovery rate correction; In bold, regions for which correlations with clinical
measures are shared by fathers and their children.
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3.2. Correlation between BAP Traits and Brain Network Measures in Fathers of ASD Probands

3.2.1. Global Measures

No significant correlations were found between global measures and autistic traits in fath-ASD

3.2.2. Nodal Measures

Significant correlations were found for the nodal measures and the clinical measures. No significant
correlation between the nodal measures and total AQ were found. Conversely, the following significant
correlations were observed with the AQ subdomains.

As for children, we only report those that survived FDR correction and those that were obtained
for the same brain areas in fathers and children, while Supplementary Data S1 reports all of the
significant correlations.

EL index. The “attention switching” area of the AQ was negatively correlated with the EL of left
CNGisthm and right STG.

CC index. Additionally, for the CC, the “attention switching” area of the AQ was negatively
correlated with several brain regions: right SFG, right MFGrostr, left FPO, left LOC, left CNGisthm,
right SMG, and right ITG.

BC index. Regarding the BC a significant positive correlation between the “social skills” area of
the AQ and the BC of the right THA, right MFGcaud, and right MTG was detected. The “imagination”
area of AQ was also significantly positively correlated with the BC of the left IFGoperc. Moreover,
“imagination” was negatively correlated with BC of left LOC, left CNGisthm, and right AMY. Age
significantly correlated with the BC of left POG.

Table 4, the right column, summarizes the significant correlations between BAP traits and brain
network measures in fath-ASD.

3.3. Brain Areas Shared in Fathers and in Their ASD Probands

When considering the correlations that were reported in the above paragraphs, it emerges that
fathers and their ASD probands shared some brain areas of significance i.e., areas that in both groups
are correlated with BAP/clinical measures. These brain areas are highlighted in bold in Table 4 and
summarized in Table 5.

Table 5. Brain area for which significant correlations with clinical measures were found both in fathers
and in their children.

Measure Shared Brain Areas

Local efficiency (EL) CNG, Right STG
Clustering coefficient (CC) CNG, FPO, ITG

Betweenness centrality (BC) CNG, LOC, MFG, AMY

In particular, EL of right STG and left CNG was correlated to BAP/clinical measures in both fathers
and their ASD probands. CC of right ITG and left CNG and FPO (right in ASD probands and left in
their fathers) also expressed significant correlations in both groups.

Finally, the BC of left LOC, right MFGcaud, left CNG, and AMY (left in ASD probands and right
in their fathers) significantly correlated with BAP/clinical measures in the two groups.

The relationship of the predicted and observed values of graph measurements for those brain
regions shared by children and their fathers is represented in Figures 3–5. In order to understand
whether all of the couples showed the same degree of correlation, we performed an analysis of residuals
of GLM, which is reported in Supplementary Data S2.
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To better visualize the anatomical regions that were significantly associated with autistic traits in
fathers and in their children, we plotted connectivity graphs which are reported in Supplementary
Data S3.

4. Discussion

The primary aim of this investigation was to explore the brain-behavior correlations in ASD
preschoolers and in their fathers (fath-ASD) by using HARDI diffusion techniques. To the best of our
knowledge, this is the first study applying an advanced diffusion tractography approach to explore
this possible association. The results indicated that the local network measures significantly correlated
with autism severity in ASD children and with BAP traits in fath-ASD, while no significant association
emerged when considering the global measures of brain connectivity. Interestingly, in ASD probands,
correlations were mainly positive, while in fath-ASD correlations, they were mostly negative (especially
for local efficiency and cluster coefficient).

4.1. Correlations between Autistic Severity and White Matter Measures in Children

ASD children mostly displayed a positive association between local efficiency/clustering coefficient
and ASD severity (ADOS-CSS and SA), thus suggesting higher connectivity indexes in most impaired
subjects. In particular, the brain regions that are involved have been previously associated with
ASD impairments, like the caudate [89], known to be implicated both in sensorimotor and cognitive
functions [90], or the cingulum [45], associated to empathic cognition, social behaviour, and pain
perception [91]. This result agrees with other studies reporting a positive correlation between the
connectivity and severity of the social domain [92,93].

A positive correlation between GMDS and local efficiency as well as the clustering coefficient
in children with ASD was also observed. This is consistent with the recent report of a significant
positive association between local connectivity and language performance in individuals with ASD [94].
We could speculate that this result is in line with the compensatory theory [95,96], according to which,
during the development, neural reorganization of brain networks (e.g., high local connectivity) may
occur as a compensatory strategy, and may result in better performances.

Interestingly, we found a correlation in the opposite direction for the RRB symptoms, suggesting the
existence of a mix pattern of both over- and under-connectivity that subtended specific autistic domains,
which is in agreement with previous investigations [97,98]. Notably, in our study, such an inverse,
negative correlation was found between local efficiency or cluster coefficient of hippocampus and
inferior parietal cortex. Studies in the animal models of ASD have related hippocampal dysfunction
to restrictive and repetitive behaviors (RRB) [99,100], while the inferior parietal cortex has been
previously associated with cognitive flexibility [101]. Also, RRB have been correlated with weaker
brain connectivity in adolescents with ASD [102], and with stronger brain connectivity in adults with
ASD [103]. These results are consistent with our findings, and they suggest that, at a younger age,
RRB are associated with both reduced local efficiency and cluster coefficient, and thus with weak
local connectivity.

4.2. Correlations between BAP Traits and White Matter Measures in Fathers

Following the concept of BAP, some studies have explored whether the same neural alterations
that were observed in ASD individuals are present in non-clinical or in ASD first-degree relatives.
Several techniques, including fMRI, EEG, and MEG have been utilized to assess the brain correlates
of autistic traits in pASD, however MRI tractography was never applied [25]. Few studies have
used diffusion-weighted MRI to assess the relationship between autistic traits and white matter
microstructure in a non-clinical sample of adults, detecting significant associations. For example,
Gibbard et al. [104], in a combined sample of individuals with and without ASD, have reported
significant negative correlations between the fractional anisotropy (FA) values in several brain regions
and AQ score. Hirose et al. [105] found that autistic traits in healthy adults were significantly negatively
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correlated with the FA in regions that are related to core features of ASD. Positive brain-behavior
associations were also reported. For instance, in the study by Iidaka et al. [106], autistic traits were
positively associated with the volume of connectivity between superior temporal gyrus and amygdala,
while, in the study by Bradstreet et al. [107], autistic traits were positively correlated with FA values in
left inferior longitudinal fasciculus. Notably, both significant and positive associations with autistic
traits have been reported in the study by Takeuchi et al. [108], which explored WM structural correlates
of empathizing and systemizing in young, typically developing adults.

Only one study used a graph theoretical network approach to investigate the functional connectivity
of autistic traits in a population of typically developing individuals [109]. Again, both positive and
negative correlations between autistic traits and local measures of functional connectivity were found.
In particular, the two questionnaires that were used to assess autistic traits (the Social Responsiveness
Scale and the Autistic Spectrum Screening Questionnaire) often showed opposite correlations, possibly
capturing different aspects of the ASD endophenotype.

Overall, regions we found to be significantly correlated with BAP traits in fath-ASD mostly
overlap with those previously that were reported as correlated to autistic traits in non-clinical
samples [105,106,110,111]. Importantly, while most previous studies were only able to identify
correlations with the total score of the questionnaire, in the current investigation we found significant
correlations with the AQ subdomains. This finding may be explained by the different approach that
was used in our study (graph analysis versus more traditional DWI techniques), but also by the fact
that fath-ASD generally have more autistic traits than typical adults [17]. Accordingly, a wider network
of altered regions than those that were recognized in previous diffusion-weighted MRI studies of
typical adults was identified. In agreement with the study by Jakab et al. [109], we did not observe
any significant correlation with global efficiency, but we detected significant correlations with local
measures in several brain regions, suggesting that the impairment of connectivity could be regionally
specific. In particular, most of the correlations that we obtained were negative, suggesting that
fath-ASD, such as adults with ASD, present higher expression of autistic features in association with
lower connectivity indexes. However, some sporadic opposite trends were also found (in particular for
“communication” and “attention to detail” domains) [108,109].

Some of the regions that we identified as implicated in autistic traits (i.e., LOC, INS, AMY, SMG,
STG) overlap with those that were identified as atypical in previous structural and functional studies
of pASD [25]. For example, Yucel et al. [31] investigated neural substrates of faces processing in an
fMRI study in pASD and highlighted the lower activation of right INS and higher activity in the AMY
when compared with healthy controls. Additionally, an increased activation of LOC only in those
parents with aloof personality was detected. Using fMRI, Greimel et al. [30] observed significant
differences in the activation of AMY between pASD and controls during an empathy task, with parents
displaying decreased activation. Notably, a positive correlation between INS activity and language
score was also identified. Increased LOC and SMG activations that correlated with the level of language
measures were also found during a MEG language auditory stimulation task [112] in pASD relative to
controls. In a phonological processing fMRI task [29], greater hemodynamic response enhancement in
several cortical regions, including insular cortex STG, SMG, as well as greater hemodynamic response
suppression in the left lateralized postcentral gyrus, middle temporal gyrus (MTG), STG, and SMG
was characteristic of pASD when compared to controls. Increased response in STG was also typical of
pASD compared with healthy controls in the picture-naming MEG study by Buard et al. [113].

In our study, the higher autistic traits in fath-ASD are associated with lower connectivity in most
of the regions that were identified in the abovementioned studies. Given that most of the functional
studies have highlighted an increased activity of these regions during several social or auditory tasks, it
is possible that the enhanced activation reflects a compensatory mechanism for the abnormal, reduced
structural connectivity.

Most of the brain-behavior correlations that we observed were related to the “attention switching”
domain of the AQ, suggesting that a wide range of brain areas contribute to modulating cognitive
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flexibility in fath-ASD. It should be noted that this item does include attention shifts, not only between
non-social stimuli, but also between social stimuli. Thus, an impaired cognitive flexibility may reduce
one’s ability to effectively attend to, process, and use social and emotional information [114]. Therefore,
having a higher number of autistic traits may be related to displaying fewer social behaviors and
experiencing more discomfort when doing so.

The correlations obtained for betweenness centrality confirm the relevance of the identified regions
in the definition of the ASD phenotype. In particular, reduced centrality of left LOC, right AMY,
and left SMG was related to increased autistic traits in the “imagination” domain, which is consistent
with the role of LOC region in processing social stimuli [115], of AMY inferring mental states from
faces [116], and of left SMG in linking symbols to their meaning [117]. Reduced centrality of bilateral
INS was instead correlated with increased autistic traits in the “social skills” domain, which is in
agreement with the reduced activation of the insula across several social cognitive task paradigms in
individuals with ASD [111].

4.3. Overlap between Fathers and Their Children

Some of the regions that were identified as correlated with ADOS scores in the group of ASD
probands overlap with those that were correlated to autistic traits in their fathers, thus suggesting
an intergenerational transmission of neural substrates. In particular, the local efficiency of STG and
cluster coefficient of FPO, ITG, and CNG were significantly negatively correlated with autistic features
in ASD probands and positively correlated with autistic traits in fathers. This opposite direction of
correlation is consistent with the inversion of connectivity pattern from childhood to adulthood that
was previously discussed.

Previous MRI studies have suggested that abnormalities in the STG are highly implicated in
ASD [118–120]. Interestingly, neuroimaging and neurophysiological studies show that, in the left
hemisphere, the STG is implicated in language, while in the right hemisphere mediates spatial
awareness and exploration [121]. In this study, we found a positive correlation between ADOS-CSS
and right STG in children with ASD, which is in line with the impairment of language function in the
clinical sample [122], and a negative correlation between the “attention switching” domain of the AQ
and right STG in fath-ASD, revealing a deficit more related to the cognitive flexibility in fathers. These
results are consistent with previous studies that identified the STG, the CNG, and the ITG as part of
the circuit activated in response to switching the attention to an unattended stimulus [123].

The FPO plays a role in retrospective memory and in higher-order cognitive operations
(e.g., decision making, planning, social/moral reasoning) [124], and structural abnormalities in this
area has been previously linked to ASD [125]. Our results indicated a positive association with the
social domain of ADOS in ASD probands and a negative correlation with the “attention switching”
in fath-ASD, suggesting the involvement of this brain structure in mediating the ASD features in the
two groups.

Moreover, the betweenness centrality of LOC, AMY, CNG, and MFG was correlated with autism
severity in both ASD children and their fathers. The limbic system, including the cingulate gyrus, is
related to emotion and social behaviors, and replicated evidences suggested that the disruption of
this circuitry could be related to some of the behavioral deficits that were seen in individuals with
ASD [126].

The different direction of correlations in ASD children and their fathers can be partially ascribed
to their different ages, which implies a shift in the connectivity patterns, and partially to the different
severity of ASD features (i.e., autistic disorder in children versus autistic traits in their fathers).

4.4. Strengths and Limitations

This is the first DWI study investigating the neurostructural correlates of BAP traits in fathers of
individuals with ASD (fath-ASD). In addition, we enrolled children with ASD as well as their fathers,
to allow for exploration of the intergenerational transmission of autistic features. Only one previous
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fMRI study [30] acquired both the ASD probands and their fathers, with the aim of exploring the
intergenerational transmission of neural substrates. Overall, the results from these studies may help in
elucidating the neural endophenotype of ASD and better clarifying the hereditary mechanisms that are
involved in the various clinical dimension of ASD.

A further strength of this study is the use of the graph analysis approach to explore network
characteristics and their behavioral correlates in children with ASD and in fath-ASD. This novel
approach is providing interesting results for a comprehensive characterization of brain connectivity
and it is improving our understanding of the brain organization in neurodevelopmental disorders
as well as in other pathological conditions. Since ASD reports several white matter microstructure
abnormalities, investigating the properties of the inter-regional correlations of white matter integrity
may provide insight into the structural coherence of underlying white matter tracts in ASD and
in fath-ASD. In particular, the characterization of the local properties of the structural connectivity
can enhance our understanding of the correlations between white matter structure and behavioral
impairments in the ASD endophenotype.

There are some limitations to our study that must be acknowledged. At first, the relatively low
sample size only allows for partial conclusions regarding the common and distinct brain-behavior
correlations in ASD preschoolers and in fath-ASD. With larger cohorts, it would be possible to better
control for confounding factors, including IQ and psychiatric comorbidities, which could somehow
affect the neuroanatomical underpinnings. However, the number of subjects that were included in this
study is somewhat in line with previous MRI investigations on this topic [26,29,30,113]. In this context,
our findings could add to the current literature by providing initial insight into DWI patterns in ASD
individuals as well as in fath-ASD. Moreover, we did not include a control group, so the specificity of
our results is unclear. Finally, as this was the first DTI study in fath-ASD, we did not have any a priori
hypothesis allowing for restricting the number of comparisons between DTI measures for each brain
region and different domains of autistic traits. As a result, FDR correction yielded a very conservative
threshold with only two correlations surviving the correction. Since many of the extracted features or
regions are likely to be highly dependent from each other, it is conceivable that an a priori limitation of
the number of comparisons would have resulted in a higher number of significant correlations.

4.5. Future Directions

Future investigations should address the limitations of this and previous studies in pASD by
including a larger sample of parents and a group of adults without a child with ASD, but comparable for
autistic traits. In addition, multimodal imaging techniques that evaluate the structural and functional
measures could help in elucidating the relationship between the neurostructural and neurofunctional
correlates of autistic traits in ASD parents, including the potential compensatory neural activations to
counter structural brain impairments. Moreover, studies assessing the BAP could also benefit from
the assessment of multiple endophenotypes/biomarkers by collecting, in addition to neuroimaging
data, immunological, biochemical, or neuropsychological information, thus addressing the cross talk
among the different modalities [127]. Ultimately, the detection of common and distinct neuroimaging
underpinnings in patients with ASD and in fath-ASD has the potential to bridge the gap between
genes and clinical ASD features, and therefore to pave the way towards a better understanding of
ASD etiopathogenesis.

5. Conclusions

Our results suggest that a significant association exists between BAP traits in fath-ASD and
their white matter connectivity organization. Importantly, some aspects of the brain structure are
shared by parents and their children with ASD, supporting their possible role as an endophenotype of
the disorder. Conversely, several other patterns of brain connectivity are group-specific, with some
regions being correlated with autistic features in children with ASD and others with BAP traits in
fath-ASD. The specificity of these brain-behavior correlations could be due to the different age-range of
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the two groups of subjects, when considering that the connectome changes with age [86]. However,
another possible, not mutually exclusive, explanation is that the regions exhibiting correlations
with autistic traits in fath-ASD, but not in their children, have a more marginal role in defining the
ASD endophenotype.
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S1. Nodal measures correlations in fathers and in their children; S2. Data analysis to understand if all the couples
showed similar correlations; S3. Anatomical graphs for father and children; Table S1. Significant correlations
between nodal measures extracted from the connectome weighted on the basis on the number of streamlines and
psychological measures in children with ASD and in their fathers; Figure S1. Three dimensional sagittal and
axial views of the anatomical graph in fathers (a) and in children (b) in which the size of the node represents
the Local Efficiency (EL), while the thickness of the edges represents the strength of the connections (number of
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children (b) in which the size of the node represents the Cluster Coefficient (CC), while the thickness of the edges
represents the strength of the connections (number of streamlines); Figure S3. Three dimensional sagittal and
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