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Abstract

Aims/hypothesis Understanding the molecular networks con-
trolling ectopic lipid deposition and insulin responsiveness in
skeletal muscle is essential for developing new strategies to
treat type 2 diabetes. We recently identified serine/threonine
protein kinase 25 (STK25) as a critical regulator of liver
steatosis, hepatic lipid metabolism and whole body glucose
and insulin homeostasis. Here, we assessed the role of STK25
in control of ectopic fat storage and insulin responsiveness in
skeletal muscle.
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Methods Skeletal muscle morphology was studied by histolog-
ical examination, exercise performance and insulin sensitivity
were assessed by treadmill running and euglycaemic—
hyperinsulinaemic clamp, respectively, and muscle lipid metab-
olism was analysed by ex vivo assays in Stk25 transgenic and
wild-type mice fed a high-fat diet. Lipid accumulation and mi-
tochondrial function were also studied in rodent myoblasts over-
expressing STK25. Global quantitative phosphoproteomics was
performed in skeletal muscle of Stk25 transgenic and wild-type
mice fed a high-fat diet to identify potential downstream media-
tors of STK25 action.

Results We found that overexpression of STK25 in transgenic
mice fed a high-fat diet increases intramyocellular lipid accumu-
lation, impairs skeletal muscle mitochondrial function and sarco-
meric ultrastructure, and induces perimysial and endomysial fi-
brosis, thereby reducing endurance exercise capacity and muscle
insulin sensitivity. Furthermore, we observed enhanced lipid ac-
cumulation and impaired mitochondrial function in rodent myo-
blasts overexpressing STK25, demonstrating an autonomous ac-
tion for STK25 within cells. Global phosphoproteomic analysis
revealed alterations in the total abundance and phosphorylation
status of different target proteins located predominantly to mito-
chondria and sarcomeric contractile elements in Stk25 transgenic
vs wild-type muscle, respectively, providing a possible molecu-
lar mechanism for the observed phenotype.
Conclusions/interpretation STK25 emerges as a new regula-
tor of the complex interplay between lipid storage, mitochon-
drial energetics and insulin action in skeletal muscle,
highlighting the potential of STK25 antagonists for type 2
diabetes treatment.

Keywords Ectopic lipid storage - Insulin resistance -
Mitochondrial dysfunction - Skeletal muscle
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Abbreviations

COX Cytochrome c oxidase

EDL Extensor digitorum longus

H-E Haematoxylin-eosin

HSL Hormone-sensitive lipase

LC Liquid chromatography

MAPIS Microtubule-associated protein 1S
MFF Mitochondrial fission factor
MHC Myosin heavy chain

PAS Periodic acid—Schiff

SDH Succinate dehydrogenase

STK25  Serine/threonine protein kinase 25
TEM Transmission electron microscopy
Introduction

Type 2 diabetes is strongly associated with ectopic lipid depo-
sition within non-adipose tissue, which actively contributes to
the development of insulin resistance [1-3]. Skeletal muscle
plays an important role in the pathophysiology of type 2 dia-
betes accounting for more than 70% of whole body glucose
use [4]. Thus, approaches that can suppress ectopic lipid de-
position within the skeletal muscle, and increase the respon-
siveness of muscle to insulin, offer a potential for the devel-
opment of new therapies for diabetes.

In the search for novel targets that contribute to the patho-
genesis of insulin resistance and type 2 diabetes, we recently
described serine/threonine protein kinase 25 (STK25; also re-
ferred to as YSK1 or SOK1), a member of the sterile 20
(STE20) kinase superfamily [5], as a central regulator of ectopic
lipid accumulation, and whole body glucose and insulin homeo-
stasis [6-11]. STK25 is broadly expressed in mouse, rat and
human tissues [10—13]. Previous studies have shown that
STK25, present in the Golgi complex, regulates cell polarisation
and migration in different cell types [14—17]. It is also reported
that in cells subjected to extreme stresses, STK25 enters the
nucleus and induces cell death [18, 19]. We found that in mice
fed on a high-fat diet, transgenic mice overexpressing STK25
display hyperinsulinaemia and impaired whole body glucose
and insulin homeostasis compared with wild-type littermates
[10]. Reciprocally, our studies showed that, compared with
wild-type littermates, Stk25 knockout mice are protected against
systemic glucose intolerance and insulin resistance induced by a
high-fat diet [6]. Notably, we found that in both mouse and
human liver cells, STK25 is localised on the surface of cytosolic
lipid droplets [7, 8]. We observed that increased STK25 abun-
dance in mouse liver and human hepatocytes enhances fat de-
position in intrahepatocellular lipid droplets by suppressing li-
polytic activity and thereby fatty acid release for {3-oxidation
and triacylglycerol secretion; the reciprocal effect was seen with
STK25 knockdown [7, 8]. Furthermore, we found a significant
positive correlation between STK25 mRNA expression and fat
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content in human liver biopsies [8, 9]. Moreover, STK25 mRNA
levels were higher in the skeletal muscle of individuals with type
2 diabetes than in healthy volunteers [11].

On the basis of our previous findings, which reveal a cen-
tral role of STK25 in control of hepatic fat deposition and
systemic insulin sensitivity [6—10], we hypothesised that
STK25 is also involved in regulation of ectopic lipid storage
and insulin responsiveness in skeletal muscle. Here, we pro-
vide the first evidence to support the key cell-specific role of
STK25 in the excessive accumulation of intramyocellular
lipids in the context of chronic exposure to dietary lipids,
which is associated with suppressed mitochondrial function,
reduced endurance exercise capacity and exacerbated insulin
resistance in skeletal muscle.

Methods

Animals The generation of Stk25 transgenic mice, where
mouse Stk25 expression in the targeting construct is controlled
by chicken {3-actin promoter, and the subsequent breeding
with C57BL/6NCrl mice (Charles River, Sulzfeld,
Germany), have been described previously [10]. From the
age of 6 weeks, male transgenic mice and wild-type litter-
mates were fed a pelleted high-fat diet (45% kilocalories from
fat; D12451; Research Diets, New Brunswick, NJ, USA). At
the age of 24 weeks, the mice were killed after 4 h of food
withdrawal. Gastrocnemius skeletal muscle samples were col-
lected for histological analysis (see Histology and immuno-
fluorescence) or snap frozen in liquid nitrogen and stored at
—80°C for analysis of protein and gene expression (see ESM
Fig. 1 for a schematic overview). All animal experiments were
performed after approval from the local Ethics Committee for
Animal Studies at the Administrative Court of Appeals in
Gothenburg, Sweden, and followed appropriate guidelines.

Histology and immunofluorescence Gastrocnemius muscle
samples were embedded in optimal cutting temperature mount-
ing medium (Histolab Products, Gothenburg, Sweden) and fro-
zen in liquid nitrogen followed by cryosectioning and staining
with haematoxylin-eosin (H-E; Histolab Products), Nile Red
(Sigma-Aldrich, St Louis, MO, USA) or MitoTracker Red
(Thermo Fisher Scientific, Waltham, MA, USA). Enzymatic
stainings were performed as previously described [20]. For im-
munofluorescence, sections were incubated with primary anti-
bodies followed by incubation with secondary antibodies (see
ESM Table 1). Gastrocnemius muscle samples were also fixed
with 4% formaldehyde in phosphate buffer (Histolab Products),
embedded in paraffin, sectioned and stained with Picrosirius Red
(Histolab Products) or Periodic acid—Schiff (PAS; Sigma-
Aldrich). Ultrastructural analysis of gastrocnemius muscle was
performed by transmission electron microscopy (TEM; LEO
912AB; Omega; Carl Zeiss NTS, Oberkochen, Germany) as
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previously described [21]. Gastrocnemius muscle homogenates
were analysed using a Hydroxyproline Colorimetric Assay Kit
(Sigma-Aldrich) and a Triglyceride Calorimetric Assay Kit
(Biovision, Mountain View, CA, USA).

Cell culture and transient overexpression L6 myoblasts
(Rattus norvegicus, American Type Culture Collection,
Manassas, VA, USA) were maintained as described [11] and
transfected with pFLAG-Stk25 (cytomegalovirus promoter;
GeneCopoeia, Rockville, MD, USA) or an empty control
plasmid using Lipofectamine 2000 (Invitrogen, San Diego,
CA, USA). Cells were incubated with 50 pwmol/l oleic acid
for 24 h and stained with Oil Red O or MitoTracker Red as
described [8]. Palmitate oxidation was measured as previously
described [11]. Cells have been demonstrated to be free of
mycoplasma infection by use of the MycoAlert Mycoplasma
Detection kit (Lonza, Basel, Switzerland).

Western blot and quantitative real-time PCR Western blot-
ting was performed as previously described [7] in gastrocne-
mius muscle of Stk25 transgenic and wild-type mice and/or
transfected L6 myoblasts using anti-STK25, anti-adipose tri-
acylglycerol lipase (ATGL), anti-hormone-sensitive lipase
(HSL), anti-PLIN2 and anti-actin primary antibodies (see
ESM Table 1). The anti-STK25 antibody has been validated
by using Stk25-knockout mice [6]. Quantitative real-time PCR
was performed in gastrocnemius muscle of Stk25 transgenic
and wild-type mice and transfected L6 myoblasts using the
ABI Prism 7900HT Sequence Detection System (Applied
Biosystems, Foster City, CA, USA) as described [10] (see
ESM Table 2).

Ex vivo measurement of lipid metabolism The oxidation
rate of palmitate was measured in quadriceps muscle homog-
enates as described previously [7]. Oleic acid uptake and tri-
acylglycerol synthesis from ['*CJ-oleic acid were measured in
isolated extensor digitorum longus (EDL) and soleus muscles
as described [22, 23].

In vivo assessment of exercise performance and insulin
sensitivity Endurance exercise was assessed by treadmill run-
ning until the mice reached fatigue (see ESM Methods).
Insulin sensitivity was measured by euglycaemic—
hyperinsulinaemic clamp as previously described [10] using
an insulin infusion rate of 7 mU/min/kg (see ESM Methods).

Liquid chromatography mass spectrometry analysis
Gastrocnemius muscle samples were heat stabilised and pre-
pared, including tryptic digestion, chemical labelling for rela-
tive quantification, enrichment of phosphopeptides and pre-
fractionation, as described in ESM Methods. Liquid chroma-
tography mass spectrometry (LC-MS)/MS of these combined
tandem mass tagged labelled samples was performed on an

Orbitrap Fusion Tribrid MS interfaced to an Easy-nLC 1000
(Thermo Fisher Scientific).

Statistical analysis Statistical significance between groups
was calculated with an unpaired two-tailed Student’s ¢ test or
by two-way ANOVA followed by Tukey post hoc test. A
p<0.05 was considered statistically significant.

Results

Evidence for muscle damage in Stk25 transgenic mice,
with fibre type composition remaining unaltered We pre-
viously showed that STK25 is highly expressed in mouse, rat
and human skeletal muscle [11]. Here we found that endoge-
nous STK25 protein was 2.1 +0.3-fold higher in white por-
tions of the gastrocnemius muscle (predominantly type IIb
fibres) compared with red portions (predominantly type Ila
fibres) in wild-type mice (ESM Fig. 2a). Nonetheless, the
endogenous STK25 protein was detected by immunofluores-
cence in all fibre types (ESM Fig. 2b). STK25 was markedly
increased in both red and white portions of Stk25 transgenic vs
wild-type muscle (ESM Fig. 2a, b).

Fibre type proportions, as identified by myosin heavy chain
(MHC) immunochemistry, were unchanged in Stk25 transgen-
ic compared with wild-type muscle (Fig. 1a); type IIb fibres of
transgenic muscle appeared slightly hypertrophic, while no
shift in diameter was found in any other fibre type (Fig. 1b—
¢). Examination of H-E-stained sections revealed evidence of
muscle damage in Stk25 transgenic mice as indicated by in-
tracellular inclusions, small angular degenerating fibres, focal
necrosis, infiltration of mononuclear inflammatory cells and
adipocyte replacement; these features were rarely seen in
wild-type muscle (Fig. 1f). TEM showed the presence of
well-defined myofibrils and sarcomeric pattern with organised
A- and I-bands, Z-discs and M-lines in wild-type muscle
(Fig. 1g). In contrast, Stk25 transgenic muscle fibres displayed
disorganised myofibril architecture and irregularities of sarco-
mere elements (Fig. 1g).

Picrosirius Red staining for collagen revealed that
perimysial fibrosis was increased in Stk25 transgenic vs
wild-type muscle and endomysial fibrosis, not present in
wild-type muscle, was readily observed in transgenic muscle
(Fig. 1h). Consistently, hydroxylated proline, a main constit-
uent of collagens, was 1.6 +0.2-fold higher in Stk25 transgen-
ic muscle homogenates (Fig. 11).

STK25 overexpression in mice augments fat storage and
impairs mitochondrial function in skeletal muscle We mea-
sured the intramyocellular lipid accumulation in the fibre
types with the highest lipid content (type I, Ila and IIx) in
gastrocnemius muscle of Szk25 transgenic and wild-type mice
fed a high-fat diet. The relative area of these muscle fibres
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Fig. 1 Morphology and fibre
composition in gastrocnemius
muscle of Stk25 transgenic and
wild-type mice. (a)
Representative
immunofluorescence images
double-stained with antibodies for
MHC type I, IIa, IIx or IIb (green)
and laminin (red); nuclei stained
with DAPI (blue). White bars,
wild-type mice fed high-fat diet;
black bars, transgenic mice fed
high-fat diet. Scale bar, 50 um.
Histogram shows quantification
of fibre types (b—e) Fibre size
distribution. White circles, wild-
type mice fed high-fat diet; black
circles, transgenic mice fed high-
fat diet. (f) Representative images
stained with H-E showing the
presence of intracellular
inclusions (black single
arrowhead), small angular
degenerating fibres (open single
arrowheads), focal necrosis
(arrows), infiltration of
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staining with lipophilic dye Nile Red was approximately 1.3-
to 1.6-fold higher in Stk25 transgenic mice (Fig. 2a). In con-
trast, the relative area of these muscle fibres staining with
MitoTracker Red, a fluorescent dye that specifically accumu-
lates within respiring mitochondria, was approximately 1.2-
fold lower in Stk25 transgenic mice compared with wild-type
mice (Fig. 2b). Consistent with a reduced MitoTracker Red
signal, histochemical stainings revealed that Stk25 transgenic
muscle exhibited repressed pigment retention in enzymatic
activity assays for NADH, succinate dehydrogenase (SDH)
and cytochrome ¢ oxidase (COX), commonly used as markers
of oxidative metabolism (Fig. 2c).

TEM demonstrated that a significant fraction of mitochondria
in Stk25 transgenic, but not wild-type, muscle were structurally
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distorted and appeared swollen, and displayed disarrayed cristae,
reduced electron density of the matrix and/or internal vesicles
(Fig. 2d, ESM Fig. 3). TEM also revealed the presence of large
lipid droplets in transgenic but not wild-type muscle (Fig. 2d).
Mitochondrial DNA (mtDNA) copy number, and the expression
of key transcriptional activators mediating mitochondrial biogen-
esis—PGCla (Ppargela), PGCI3 (Ppargelb) and nuclear re-
spiratory factor 1 (Nrfl)—were similar in Stk25 transgenic vs
wild-type muscle (ESM Figs 4, 5).

Our previous studies have shown that the glycogen content
was similar in gastrocnemius muscle homogenates of Stk25
transgenic and wild-type mice [10]. Consistent with these
findings, PAS staining in glycogen-rich type Ila and IIx fibres
was similar between the genotypes (Fig. 2e).
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Fig. 2 Lipid storage,
mitochondrial function and
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Overexpression of STK25 induces lipid accumulation and
represses mitochondrial function in myoblasts The global
overexpression of STK25 in transgenic mice does not allow
us to address whether the impact of STK25 on skeletal mus-
cle lipid metabolism is direct or secondary to the action of
STK25 in tissues other than muscle. To study the cell-
specific role of STK25 in muscle cells, we transiently
transfected the rat myoblast cell line L6 with the STK25
expression plasmid or an empty control plasmid (mock;
Fig. 3a). Subsequent to transfection, the cells were exposed
to oleic acid, which efficiently induces steatosis in vitro and
thereby mimics the dietary challenge in mice. To analyse
lipid deposition, cells were stained with Oil Red O. STK25
overexpression increased lipid accumulation 1.8+0.1-fold
based on quantification of Oil Red O staining (Fig. 3b).
Notably, staining with MitoTracker Red was 2.8 +0.05-fold
lower in cells overexpressing STK25 suggesting an impair-
ment of mitochondrial function (Fig. 3c). Consistent with

the reduced MitoTracker Red signal, there was a tendency
(p=0.09) for a lower rate of [3-oxidation in cells overex-
pressing STK25 (ESM Fig. 6a).

As with the results obtained in Stk25 transgenic vs
wild-type muscle (see above), mtDNA copy number and
the expression of key transcriptional activators mediating
mitochondrial biogenesis (PGCla, PGCI3 and Nrfl) were
largely similar in cells transfected with the STK25 expres-
sion plasmid and vector control (ESM Fig. 6b, c). Our pre-
vious studies have shown that in skeletal muscle of Stk25
transgenic mice fed a high-fat diet, the mRNA expression of
carnitine palmitoyltransferase 1 (CPT1), the rate-limiting en-
zyme in fatty acid oxidation in mitochondria, was signifi-
cantly reduced [10]. Surprisingly, Cpt/ mRNA levels were
markedly increased in STK25-overexpressing L6 cells (ESM
Fig. 6¢); while the significance of this observation remains
unclear, in view of other data suggesting repressed mito-
chondrial function.
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Fig. 3 Analysis of lipid accumulation and mitochondrial function in
rodent myoblasts overexpressing STK25. L6 cells were transiently
transfected with S7k25 expression plasmid or vector control (mock) and
incubated with oleic acid for 24 h. (a) Representative western blot with
anti-STK25 antibodies; actin was used as a loading control (endogenous
STK25 48 kDa, FLAG-tagged STK25 51 kDa). (b) Representative cell
images stained with Oil Red O (scale bar, 50 um) and quantification of
Oil Red O staining. (¢) Representative cell images stained with
MitoTracker Red (scale bar, 20 um) and quantification of MitoTracker
staining. Data are mean+ SEM from 3-5 wells. **p<0.01

Overexpression of STK2S5 in mice reduces skeletal muscle
[3-oxidation, while lipid uptake and synthesis remain un-
altered We further characterised lipid metabolism in skeletal
muscle of Stk25 transgenic and wild-type mice fed a high-fat
diet ex vivo. Consistent with the reduced MitoTracker Red
staining and repressed activity of oxidative metabolism
markers, the muscle homogenates of Stk25 transgenic mice
displayed a lower (3-oxidation rate (75% of the capacity of
wild-type; Fig. 4a). Notably, no significant difference in the
level of acylcarnitines, the by-products of incomplete fatty
acid oxidation and markers of skeletal muscle insulin resis-
tance, was observed in muscle homogenates comparing the
genotypes (ESM Fig. 7).

In addition, we incubated isolated skeletal muscle from
Stk25 transgenic and wild-type mice with radiolabelled oleate
and observed that cell-associated radioactivity was not signif-
icantly altered between the genotypes, indicating similar fatty
acid influx (Fig. 4b). Furthermore, skeletal muscles isolated
from both genotypes displayed similar incorporation of oleate
into triacylglycerol (Fig. 4c).

Stk25 transgenic mice have reduced running performance
To assess the impact of the disorganised myofibril architecture
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and fibrosis observed in Stk25 transgenic muscle on endur-
ance exercise capacity, we next compared the responses of
Stk25 transgenic and wild-type mice fed a high-fat diet to
treadmill running. A markedly reduced exercise performance
was found in Stk25 transgenic mice compared with wild-type
littermates both in terms of running time and distance to fa-
tigue (Fig. 5a, b). The post-exercise concentration of plasma
lactate, a by-product of anaerobic glycolysis, was comparable
between the genotypes (Fig. 5¢).

Stk25 transgenic mice display reduced in vivo insulin-
stimulated glucose uptake in skeletal muscle The observa-
tion that STK25 overexpression increased intramyocellular
lipid levels and favoured fat storage rather than oxidation in
the muscle prompted us to investigate whether these changes
would affect skeletal muscle insulin sensitivity. To this end,
euglycaemic—hyperinsulinaemic clamp experiments with a
glucose tracer were performed in Stk25 transgenic and wild-
type mice fed a high-fat diet. Insulin infusion significantly
increased plasma insulin concentration at the end of the clamp
for both genotypes (ESM Fig. 8a). There was no difference in
glucose infusion rate or blood glucose level at steady state of
the clamp comparing the two genotypes (ESM Fig. 8b).
Insulin-stimulated glucose uptake was 1.5+0.1-fold and 1.6
+0.1-fold lower in gastrocnemius and quadriceps muscles of
Stk25 transgenic mice, respectively, with a similar tendency
seen in EDL and soleus muscles (Fig. 5d).

Global phosphoproteomic analysis of skeletal muscle in
Stk25 transgenic and wild-type mice To identify potential
downstream mediators of STK25 action in skeletal muscle
metabolism in an unbiased manner, global quantitative
phosphoproteomic analysis was performed in the gastrocne-
mius muscle of Stk25 transgenic and wild-type mice fed a
high-fat diet with multiplexed isobaric labelling and phospho-
peptide enrichment coupled to tandem MS (MS/MS)
(Fig. 6a). The analysis also included quantification of non-
phosphorylated peptides to determine possible changes in to-
tal protein abundance (Fig. 6a). A total of 4918 distinct pep-
tides and 129 phosphopeptides, corresponding to 943 and 80
unique proteins, respectively, were quantified (Fig. 6b, c). We
observed that the abundance of 39 peptides representing 28
unique proteins was differentially regulated, by a factor of
1.15-fold or more, in Stk25 transgenic muscle relative to the
wild-type controls (Fig. 6b, Table 1). Furthermore, we found
that the phosphorylation level of 26 peptides derived from 21
proteins was differentially regulated, by a factor of 1.15-fold
or more, comparing the genotypes (Fig. 6c, Table 2). No dif-
ference in the abundance of the total proteins corresponding to
the altered phosphorylation sites was observed, indicating that
changes in phosphopeptide levels were a direct result of alter-
ations in their phosphorylation status.
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Assessment of the known cellular localisation of the dif-
ferentially expressed proteins revealed a marked enrichment
of the targets located to mitochondria (Fig. 6d, Table 1).
Among these candidates, carbonyl reductase 4 (CBR4), an
enzyme in the mitochondrial fatty acid synthesis pathway
[24], reticulon 4 interacting protein 1 (RTN4IP1), enoyl
coenzyme A hydratase, short chain, 1 (ECHS1), and
NADH dehydrogenase (ubiquinone) 1 beta subcomplex 7
(NDUFB7)—all involved in mitochondrial oxidation
[25-27]—as well as two mitochondrial aldehyde dehydro-
genases (ALDH2 and ALDHG6A1 [28, 29]) were

|J_h A .
0

Soleus EDL Soleus

fed high-fat diet. Data are mean+ SEM from 16-18 (a) or 11-12 (b, ¢)
mice per genotype. *p <0.05. HFD, high-fat diet; OA, oleic acid; TAG,
triacylglycerol; TG, transgenic; WT, wild-type

upregulated in transgenic muscle. In addition, mitochondrial
fission factor (MFF) and microtubule-associated protein 1S
(MAP1S), which control mitochondrial morphology by reg-
ulating dynamic fission and fusion process [30, 31], were
differentially expressed comparing the genotypes. Apart
from these candidates with relatively well-known functions,
several additional proteins with poorly described roles in
mitochondria were differentially expressed in transgenic
muscle, including von Willebrand factor A domain-
containing protein 8 (VWAS) and glyoxalase domain-
containing 4 (GLOD#4).

Fig. 5 Assessment of endurance a .. b .0- C 5.
running capacity and insulin ’
sensitivity in Stk25 transgenic and 25 4 T ~ T = 0
wild-type mice. (a) Time and (b) o) * E 3001 5 7
distance to fatigue during a E 20 = * g 1
treadmill run. (¢) Plasma lactate g § Py 151
levels measured directly after g B g 2007 g
exercise using an L-Lactate Assay by 0 5 o 101
Kit (Abcam, Cambridge, UK). (d) g £ g
Insulin-stimulated glucose uptake 5 & A 05 4
in individual tissues determined
during a euglycaemic— 0 0
hyperinsulinaemic clamp. White WTHFD TG HFD WT HFD TG HFD WT HED TG HFD
bars, wild-type mice fed high-fat
diet; black bars, transgenic mice d
fed high-fat diet. Data are mean 140 1
+SEM from 8-9 mice per
genotype. *p <0.05. BAT, brown =
adipose tissue; eWAT, epididymal E 1201
white adipose tissue; Gas, T
gastrocnemius muscle; HFD, i 100
high-fat diet; Quad, quadriceps g
muscle; Sol, soleus muscle; % 0]
sWAT, subcutaneous white =
adipose tissue; TG, transgenic; % ® "
WT, wild-type % 204
) . |
EDL Sol Gas Quad Heart SWAT eWAT BAT Liver Brain
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Fig. 6 Global quantitative
phosphoproteomic analysis in
gastrocnemius muscle of St25
transgenic and wild-type mice. (a)
Experimental design. Summary
of the quantified (blue bars) and
differentially regulated (red bars)
(b) proteome and (c)
phosphoproteome. The
subcellular location of the (d)
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Analysis of proteins containing differentially regulated
phosphosites, on the other hand, revealed an enrichment of
the targets with known location in the Z-disk, where actin-
containing thin filaments from neighbouring sarcomeres
overlap cross-linked by alpha-actinin, and in the myosin-
containing A-band of the sarcomere (Fig. 6e, Table 2).
These myofibril-associated candidates included proteins with
well-characterised roles in regulation of contractile properties
of the skeletal muscle, such as titin (TTN), myosin regulatory
light chain (MYLPF), creatine kinase (CKM), tropomyosin 1,
alpha (TPM1), actinin alpha 3 (ACTN3) and myosin heavy
chain II beta (MYH4 or MHCIIB), as well as proteins with
less defined roles, such as myozenin 1 and 2 (MYOZ1 and 2)
and LIM domain binding 3 (LDB3). Interestingly, the

@ Springer

phosphorylation of the three enzymes in the glycolytic path-
way—aldolase A, fructose-bisphosphate (ALDOA), enolase
3, beta muscle (ENO3) and glyceraldehyde-3-phosphate de-
hydrogenase (GAPDH)—was altered in Stk25 transgenic
compared with wild-type muscle. Of the 26 differentially reg-
ulated phosphosites, 24 were annotated in PhosphoSitePlus
[32]. However, the functional implication of the phosphory-
lation at these sites has only been described for TPM1, where
phosphorylation at a single Ser-283 residue has been associ-
ated with increased Ca”* activated ATPase activity [33] and
regulation of Ca”* sensitivity [34].

Notably, our previous studies have shown that overex-
pression of STK25 repressed lipolysis in mouse and hu-
man hepatocytes, which probably contributed to the
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Fig. 7 Schematic illustration of

metabolic responses at the whole
body level as well as in skeletal

muscle fibres of Stk25 transgenic
mice vs wild-type littermates. Up-
or downregulation is indicated by
green and red arrows, respectively

Wild-type

Skeletal muscle

Skeletal muscle fibre

increased lipid storage observed in these cells [7, 8]. The
global phosphoproteomic analysis by MS/MS did not de-
tect any lipases above the level of quantification in the
skeletal muscle. However, we also measured the skeletal
muscle mRNA and protein levels of two lipases (ATGL
and HSL) by quantitative real-time PCR and western blot,
respectively, and observed no differences between the ge-
notypes (ESM Fig. 9). Recently, the levels of the lipid
droplet binding proteins Perilipin 2 (PLIN2 also known
as adipose differentiation-related protein [ADRP]) and
Perilipin 3 (PLIN3), as well as the activity of AMP-
activated protein kinase (AMPK), have been implicated
in the regulation of lipid content in muscle cells [35,
36]. PLIN3 was quantified by MS/MS analysis without
any alterations in total protein abundance observed be-
tween the genotypes, while PLIN2 and AMPK were be-
low the level of quantification. However, we found that
the skeletal muscle mRNA of Plin2 and Plin3, and protein
abundance of PLIN2 measured by western blot, were not
changed when comparing the genotypes (ESM Fig. 9).
Furthermore, our previous studies have shown that
AMPK activity, measured by AMPK« Thr172 phosphor-
ylation, was similar when comparing the skeletal muscle
of Stk25 transgenic and wild-type mice [10].
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Discussion

Insulin resistance in skeletal muscle is a major and early fea-
ture in the pathogenesis of type 2 diabetes [37]. In this study,
we provide compelling evidence that overexpression of pro-
tein kinase STK25 in transgenic mice challenged with a high-
fat diet increases myocellular lipid storage and impairs skele-
tal muscle mitochondrial function as well as sarcomeric ultra-
structure, thereby reducing endurance exercise capacity and
repressing muscle insulin responsiveness (Fig. 7).
Furthermore, we found enhanced lipid accumulation and im-
paired mitochondrial function in rodent myoblasts overex-
pressing STK25, demonstrating an autonomous action of
STK25 in muscle cells. These results are consistent with our
previous studies showing that Stk25 transgenic mice fed a
high-fat diet develop aggravated whole body glucose intoler-
ance and insulin resistance compared with wild-type litter-
mates [10].

The main finding of this study is the substantially increased
presence of ultrastructural abnormalities of both
subsarcolemmal and intermyofibrillar mitochondria in Stk25
transgenic skeletal muscle, which was associated with reduced
MitoTracker Red staining, lower abundance of oxidative me-
tabolism markers and suppressed (-oxidation. Previous
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studies using TEM have demonstrated alterations in mito-
chondrial morphology in skeletal muscle of humans and ro-
dent models with insulin resistance and type 2 diabetes
[38—40]. In addition, reduced in vivo mitochondrial oxidative
capacity has been reported in the skeletal muscle of patients
with type 2 diabetes [41-43]. Furthermore, studies in healthy
elderly individuals and insulin-resistant offspring of parents
with type 2 diabetes have demonstrated that repressed mito-
chondrial function may predispose these individuals to
intramyocellular lipid accumulation and insulin resistance
[44]. Moreover, coordinated reduction in the expression of
genes involved in mitochondrial function and oxidative phos-
phorylation was reported in skeletal muscle from type 2 dia-
betes patients, but also from individuals with insulin resistance
but normal glucose tolerance [45, 46]. Based on this evidence,
impaired mitochondrial function observed in Stk25 transgenic
muscle probably contributed to increased myocellular lipid
storage and development of skeletal muscle insulin resistance.

We further explored the underlying mechanisms involved
in the regulation of the mitochondrial structure and activity by
STK25. We failed to detect any accumulation of STK25 pro-
tein in skeletal muscle mitochondria (ESM Fig. 2¢), and there-
fore, STK25 is likely to control mitochondrial function indi-
rectly through the regulation of abundance and/or phosphory-
lation pattern of, as yet, unknown mitochondrial target pro-
teins. Interestingly, global phosphoproteomic analysis re-
vealed that the two key regulators of mitochondrial fusion
and fission process were differentially expressed, with MFF
protein levels decreased and MIP1S protein levels increased,
in Stk25 transgenic vs wild-type muscle. MFF knockdown in
mammalian cells resulted in an interconnected tubular net-
work of mitochondria, whereas MFF overexpression stimulat-
ed mitochondrial fission [31, 47]. Accumulation of MAP1S,
on the other hand, was associated with irreversible aggrega-
tion of mitochondria [48]. Based on this evidence, we specu-
late that altered protein abundance of MFF and MAP1S may
be one underlying mechanism for impaired mitochondrial
morphology in Stk25 transgenic muscle.

We also found disorganised myofibril architecture and pro-
nounced fibrosis in Stk25 transgenic muscle, which probably
contributed to reduced endurance exercise capacity. This was
not observed in wild-type muscle. Notably, global
phosphoproteomic analysis revealed a marked enrichment of
the differentially phosphorylated proteins located in the myo-
fibril, in particular to the Z-disk and A-band of the sarcomere,
in Stk25 transgenic vs wild-type muscle. However, at present
it is not known whether these changes have contributed to the
disrupted sarcomere organisation in transgenic muscle.
Interestingly, recent evidence shows that perturbations in skel-
etal muscle sarcomere ultrastructure in individuals with heart
failure and type 2 diabetes can be improved by stimulating
mitochondrial function [49], which supports a close functional
connection between mitochondrial alterations and muscle

damage, and suggests that mitochondrial abnormalities ob-
served in Stk25 transgenic muscle may have contributed to
altered myofibril architecture.

The metabolic changes in the skeletal muscle of Stk25 trans-
genic mice are consistent with our previous observations in
mouse and human liver cells, where STK25 overexpression in
conditions of excess dietary fuels increased intrahepatocellular
lipid deposition while repressing mitochondrial function and in-
sulin sensitivity [7-9]. Taken together, these findings suggest that
STK25 may regulate the shift in the metabolic balance from lipid
use to lipid storage in several tissues prone to diabetic damage,
contributing to the pathogenesis of whole body insulin resistance
and type 2 diabetes.

In this study, we characterised the skeletal muscle phenotype
of Stk25 transgenic and wild-type mice challenged with a high-
fat diet in order to mimic conditions in high-risk individuals.
Notably, our previous investigations have shown that liver lipid
deposition and whole body insulin sensitivity were not signif-
icantly altered comparing Stk25 transgenic vs wild-type mice
fed regular chow [9, 10]. Moreover, we found that skeletal
muscle triacylglycerol content and fibrosis were not increased
in Stk25 transgenic mice fed regular chow compared with cor-
responding wild-type littermates (ESM Fig. 10). These data
suggest that overexpression of STK25 leads to significant met-
abolic alterations in mice only after a dietary challenge.

To date, it remains unknown whether any physiological
situations occur in which the STK25 protein abundance is
enhanced to a level observed in the Stk25 transgenic muscle,
which is a limitation of the animal model. Notably, our find-
ings in Stk25 transgenic muscle are reciprocal to our previous
observations of increased (3-oxidation and improved insulin
action in STK25-deficient myoblasts [11] as well as reduced
lipid accumulation and enhanced insulin sensitivity in the
skeletal muscle of Stk25” mice fed a high-fat diet [6], rein-
forcing the physiological validity of the results.

In light of the current epidemic of type 2 diabetes, research
aimed at understanding the interplay between
intramyocellular lipid storage, mitochondrial energetics, and
insulin action in skeletal muscle is of utmost importance for
the development of new therapeutic strategies. This study pro-
vides several layers of evidence that STK25 is an interesting
new mediator in the interconnected metabolic network con-
trolling skeletal muscle insulin sensitivity, and that the devel-
opment of STK25 antagonists for therapeutic applications in
type 2 diabetes and related metabolic disease is warranted.

Data availability The datasets generated and analysed during the cur-
rent study are available from the corresponding author on reasonable
request.
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