Skip to main content
. 2019 Apr 19;16(8):1410. doi: 10.3390/ijerph16081410

Table 5.

Overall balance test and matching results from three kinds of matching method.

Sample Overall Balance Matching Results Bootstrap Results
Pseudo R2 LR chi2 P > chi2 Mean Bias Median Bias ATT S.E. T-stat S.E. z-Value p-Value 95%CI
(lower, upper)
AA
 Raw sample before matching 0.275 1321.76 0.000 32.2 25.7 −0.01 0.02 −0.68
 kernel matching 0.003 16.50 0.927 2.8 2.0 −0.03 0.03 −2.05 0.03 −2.42 0.042 −0.08 to 0.02
 k-nearest neighbor matching (k = 1) 0.004 22.07 0.896 3.7 2.8 −0.04 0.03 −2.18 0.04 −2.62 0.038 −0.11 to 0.03
 local linear regression matching 0.006 19.16 0.919 3.3 2.6 −0.02 0.03 −1.59 0.04 −1.77 0.073 −0.07 to 0.02
AD
 Raw sample before matching 0.233 879.57 0.000 30.2 21.3 0.22 0.01 16.57
 kernel matching 0.003 3.42 0.943 2.2 1.4 0.19 0.03 13.87 0.02 14.28 0.000 0.17 to 0.25
 k-nearest neighbor matching (k = 1) 0.012 4.06 0.933 2.9 2.1 0.17 0.05 11.15 0.04 11.56 0.000 0.15 to 0.19
 local linear regression matching 0.019 12.79 0.712 5.4 5.6 0.16 0.02 11.00 0.02 11.48 0.000 0.14 to 0.20

AA, the appropriateness of admission; AD, the appropriateness of disease; S.E., standard error; CI, confidence interval. All results are computed using the Stata module of psmatch2. The S.E. reported by matching result did not consider the fact that the propensity score was estimated (that is, assuming the propensity score is the true value, and then deducing the S.E.), so we considered to get a more accurate S.E. and 95%CI using the bootstrap method.