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The authors wish to update the Abstract and Section 3 in their paper published in the International
Journal of Environmental Research and Public Health (IJERPH) [1].

They would like to rewrite the abstract as follows:

Abstract: Foodborne diseases have a big impact on public health and are often underreported. This
is because a lot of patients delay treatment when they suffer from foodborne diseases. In Hunan
Province (China), a total of 21,226 confirmed foodborne disease cases were reported from 1 March
2015 to 28 February 2016 by the Foodborne Surveillance Database (FSD) of the China National Centre
for Food Safety Risk Assessment (CFSA). The purpose of this study was to make use of the daily
number of visiting patients to forecast the daily true number of patients. Our main contribution is
that we take the reporting delays into consideration and apply a Bayesian hierarchical model for this
forecast problem. The data shows that there were 21,226 confirmed cases reported among 21,866
visiting patients, a proportion as high as 97%. Given this observation, the Bayesian hierarchical model
was established to predict the daily true number of patients using the number of visiting patients. We
use several scoring rules to assess the performance of different nowcasting procedures. We conclude
that Bayesian nowcasting with consideration of right truncation of the reporting delays has a good
performance for short-term forecasting and could effectively predict the epidemic trends of foodborne
diseases. Meanwhile, this approach could provide a methodological basis for future foodborne disease
monitoring and control strategies, which are crucial for public health.

In the end of the first paragraph in Section 3, the authors would like to update the last two
sentences of the paragraph and add some citations. The revised sentences are as follows:

In this paper, we apply a Bayesian nowcasting model proposed by Höhle and an der Heiden [2]
to forecast the daily total number of cases. Thanks to Salmon et al. [3], who provided a convenient
R package “surveillance”, the inference for the model could be easily performed. The R package
surveillance also contains a few other nowcasting methods that we also tried and did comparisons
with using the scoring rules implemented in the package. The results are shown in Section 4. Below
we review the model.
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The authors revised Section 3.2 to describe the inference approach proposed by Höhle and an der
Heiden (in Section 3.2 of [2]) in some greater detail. This part is now as follows:

For the convenience of the reader, we describe the inference approach proposed by Höhle and an
der Heiden (in Section 3.2 of [2]) in some greater detail.

Define pd as the (time-homogeneous) probability that a case will have a reporting delay of d days.
The pd’s satisfy the following equation:

∑D
d=0 pd = 1. Following Kalbfleisch and Lawless’s previous

work [4] and Zeger et al.’s previous work [5], we assume that the occurrence time of cases follows
an underlying inhomogeneous Poisson process. A reasonable data generating process for the daily
number of cases is thus as follows:

Nt|λt∼ Po(λt)

(nt,D, nt,D−1, · · · , nt,0)′|Nt, p∼MN(Nt, (pD, pD−1, · · · , p0)′)

where Po(λ) denotes the Poisson distribution with expectation λ > 0 and MN(N, p) denotes the
multinomial distribution with size parameter N and probability vector p. Nowcasting for a given time
T can thus be divided into steps of determining the λt’s, estimating the unknown delay distribution (i.e.,
the pd’s), and finally predicting the unobserved nt,d’s in order to compute the total Nt. As T increases,
and if the assumption about a time-homogeneous delay distribution is acceptable, the available data
make it possible to estimate the delay distribution better and better, and hence the quality of the
predictions near T improves with time.

Consider a fixed time T and define pT = (pT,D, pT,D−1, · · · , pT,1)′ as the probability vector denoting
that a case is reported with a delay of d days given the observed incomplete information at time T, i.e.,
the set of nt,d, where t + d ≤ T. We choose as prior distribution the generalised Dirichlet distribution
GD(α,β) with fixed constants α = (α0,α1, · · · ,αD)′ and β = (β0, β1, · · · , βD)′. Now we use Property
3 in the Web appendix of [2] that shows that the posterior of p under right-truncated multinomial
sampling is again a GD distribution with parameters α∗T,β∗T given by

α∗T,i= αi +
T−D+i∑
τ=0

nτ,D−i

β∗T,i= βi +
T−D+i∑
τ=0

(Nτ,τ+D−i − nτ,D−i), i ∈ {0, · · · , D− 1}.

hence, for a given T we can assume the following model hierarchy for the time points t ∈ {T −D, · · · , T}:

pT∼ GD
(
α∗T,β∗T

)
λt∼ Ga(aλ, bλ)

Nt|λt∼ Po(λt)

Nt,T |Nt, pT∼ Bin(Nt, qT,T−t),

where qT,d =
∑d
δ=0 pT,δ is the proportion reported within a delay of d days. We denote by Ga(aλ, bλ)

the gamma distribution with parameters aλ > 0, bλ > 0. For this hierarchical model, the marginal
distribution of Nt is a negative binomial distribution with the following mean and variance:

E(Nt)= µλ = aλbλ

Var(Nt)= µλ +
µ2
λ

aλ
.

To estimate Nt given the observed counts nt,d at time T, we have to perform two steps: (1) update
the delay distribution qT and (2) update the prediction for Nt:
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(1) For the given T we compute α∗T, β∗T as stated above. We then draw for k = 1, . . . , K random vectors

p(k)
T ∼ GD

(
α∗T,β∗T

)
by the algorithm of Wong [6] and calculate

q(k)T,d =
d∑
δ=0

p(k)T,δ.

(2) Given the updated delay distribution q(k)
T and the observed counts nt,d, we can now update the

prediction of Nt, t = T −D, · · · , T. For n ∈ {0, 1, 2, · · ·}we approximate by Monte Carlo sampling

f (Nt = n|Nt,T) ≈
1
K

K∑
k=1

f (k)n,t , t ∈ {T −D, · · · , T}

An application of Bayes theorem provides f (k)n,t = f̃ (k)n,t /c(k)t , where c(k)t =
∑
∞

n=0 f̃ (k)n,t is the
normalization constant and

f̃ (k)n,t = f (Nt,T |Nt = n, q(k)T,T−t) f (Nt = n|λt) f (λt)

for all t ∈ {T −D, · · · , T}. The factors of the last equation can be evaluated using the distributional
assumptions of the model hierarchy. For numerical convenience we do not sum over the entire
support {0, 1, 2, · · ·} to get the normalization, but instead approximate

c(k)t ≈

Nmax∑
n=0

f̃ (k)n,t ,

where Nmax is chosen sufficiently large.

Finally, the authors would like to update “proposed in this paper” to “described in this paper”.
The changes do not affect the results. The manuscript will be updated and the original will remain

online on the article webpage, with a reference to this addendum.
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