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Abstract

Background—Beta cell function in type 1 diabetes is commonly assessed as the average plasma 

C-peptide concentration (CPAVE) following a mixed meal. Monitoring of disease progression and 

response to disease-modifying therapy would benefit from a simpler, more convenient and less 
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costly measure. Therefore, we determined if CPAVE could be reliably estimated from routine 

clinical parameters.

Method—Clinical and fasting biochemical data from eight randomised therapy trials involving 

participants with recently-diagnosed type 1 diabetes were used to develop and validate linear 

models to estimate CPAVE and to test their accuracy in estimating loss of beta cell function and 

response to immune therapy.

Results—A model based on disease duration, body mass index, insulin dose, HbA1c, fasting 

plasma C-peptide and fasting plasma glucose most accurately estimated loss of beta cell function 

(area under ROC 0.89; 95% CI 0.87, 0.92) and was superior to the commonly used insulin dose-

adjusted HbA1c (IDAA1C) measure (area under ROC 0.72; 95% CI 0.68, 0.76). Model-estimated 

CPAVE (CPEST) reliably identified treatment effects in randomised trials. CPEST, compared to 

CPAVE, required only a modest (up to 17%) increase in sample size for equivalent statistical 

power.

Conclusion—CPEST, approximated from six parameters at a single time-point, accurately 

identifies loss of beta cell function in type 1 diabetes and is comparable to CPAVE for identifying 

treatment effects. CPEST could serve as a convenient and economical measure of beta cell function 

in the clinic and as a primary outcome measure in trials of disease-modifying therapy in type 1 

diabetes.
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Introduction

Therapies targeting pancreatic islet autoimmunity are being tested for their ability to 

preserve insulin-secreting beta cells and modify the natural history of type 1 diabetes after 

diagnosis [1]. The widely accepted measure of their efficacy is the average plasma C-peptide 

concentration during the first two hours of a mixed meal test (CPAVE) [2]. However, the 

measurement of CPAVE requires ingestion of a liquid meal and at least seven venous blood 

samples. A more convenient measure would streamline the assessment of beta cell function, 

particularly when disease-modifying therapies enter routine clinical practice.

In clinical trials, the biologic agents rituximab, teplizumab and abatacept have been shown 

to improve beta cell function for at least one year in people with recently-diagnosed type 1 

diabetes [3–5]. Improved CPAVE in these trials was associated with a decrease in insulin 

requirement and in HbA1c, suggesting these routine clinical measures may be useful 

surrogates of beta cell function. Indeed, insulin dosage and HbA1c are used to calculate 

‘insulin dose-adjusted HbA1c’ (IDAA1C), which identifies type 1 diabetes children with 

residual beta cell function [6, 7]. Other studies in children and adults at high risk of 

developing type 1 diabetes have shown that HbA1c, age and body mass index (BMI) 

correlate with the C-peptide response to oral glucose [8–10], again suggesting that these 

routine measures could also serve as useful surrogates of beta cell function in the clinic.
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We aimed to develop a simple and reliable model that could accurately estimate CPAVE, 

based on a combination of routine clinical measures and fasting plasma C-peptide (FCP). 

Data from eight trials involving people with recently-diagnosed type 1 diabetes [3, 4, 11–16] 

were used to build predictive models to approximate CPAVE and derive estimates of 

variability for use in future trial design.

Methods

Study participants gave informed consent if adult and assent if aged under 18 years. All 

studies were approved by the responsible ethics committee and were carried out in 

accordance with the Declaration of Helsinki as revised in 2008. Clinical and biochemical 

data from the TrialNet (TN)-02, −05, −08, −09 and −14 clinical trials (Table 1) [3, 11–13] 

were extracted from the TrialNet data repository in April 2014. In all of these trials, 

predominantly white participants were assessed at 0, 3, 6 and 12 months after enrolment 

and, for TN-08 and TN-14, also at 9 months. Additional data from the Immune Tolerance 

Network (ITN)-27, −28 and −45 trials [14–16] were extracted in February 2016 and 

comprised clinical and biochemical measures obtained at the 0-, 6- and 12-month time 

points. Data from Australian adults with recently-diagnosed type 1 diabetes participating in 

an ongoing clinical trial of empagliflozin in recently-diagnosed type 1 diabetes 

(ACTRN12617000016336) were obtained April 2018. Plasma C-peptide concentrations in 

TrialNet and ITN trials were determined to sensitivities of 0.017 and 0.05nmol/L with 

TOSOH 2000 and TOSOH 1800 autoanalysers (TOSOH, South San Francisco, CA), 

respectively. In Australia, C-peptide and HbA1c were measured by Melbourne Health 

Pathology (Parkville, Australia) using ARCHITECT (Abbott, Wiesbaden, Germany) and 

Ultra2 (Primus Diagnostics, Kansas City, MO) kits respectively.

After receipt of the archived data, missing weight, height, insulin dose and HbA1c values 

were imputed where possible by filling backward or forward from the nearest time point (if 

within 1 month) or by averaging values either side of the missing value. Undetectable C-

peptide concentrations observed in TrialNet and ITN datasets were assigned values of half of 

the lower limit of detection. Because daily insulin requirements are ~20% lower with insulin 

pump compared to injection therapy [17], the daily insulin dose of TrialNet participants who 

reported using insulin pumps was multiplied by 1.25.

Correlation and receiver-operator curve (ROC) analyses were performed using Prism 

software (v6.0g for Mac; GraphPad, CA). Data modelling was performed using R software 

v3.3.2 (www.r-project.org). Half of the participants aged<21 years at baseline were 

randomly assigned to train the Linear Mixed Models to determine the estimated CPAVE 

(CPEST) and a Validation Dataset, comprising data from the remaining participants aged<21 

years at baseline, was used to identify the best models. CPAVE was log-transformed after 

adding 1 [18] and eight covariates were chosen for inclusion in the prediction model: age, 

sex, body mass index (BMI), diabetes duration, insulin dose per kilogram body weight, 

fasting plasma C-peptide (FCP), fasting plasma glucose (FG) and HbA1c. Participant ID was 

added as a random effect to account for the repeated measurements from the same 

individual. The ‘dredge’ function in the MuMIn library (v1.15.6) was used to construct 256 

models from all possible combinations of variables and these models were ranked by Akaike 
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Information Criterion (AIC), corrected for a finite sample size. To validate the rankings of 

the models, the lmer function in the lme4 library (v1.1–13) was used to rebuild the models in 

the Validation Dataset based on the relevant inputs, thereby enabling their AIC values to be 

determined. To compare treatment arms of clinical trials, mixed models were fitted using 

lmer with a random intercept per participant and adjusted for sex, age and baseline 

loge(CPAVE+1) or loge(CPEST+1). The lmer-Test package was used to calculate p values 

based on F statistics for treatment comparisons.

Power calculations for the comparison of two groups with equal variance were performed 

using placebo-group data from the Validation Dataset and Stata (v14.2) software (StataCorp 

LLC, TX). They were based on the mean and standard deviation (SD) of the loge(CPAVE+1) 

values and a conservative approximation of the SD of loge(CPEST+1) values, calculated by 

combining the variance of loge(CPAVE+1) values with an estimated variance of the 

difference between the loge(CPAVE+1) and loge(CPEST+1) values according to the formula:

SDAPPROX = σ2
[loge(CPAVE + 1)] + σ2

[loge(CPAVE + 1)] − [loge(CPEST + 1)]

A standard trial design that assumed a treatment effect of 50% increase in loge(CPAVE+1) at 

12 months, two-tailed α= 0.05, power = 0.8 and 2:1 (active:placebo) randomisation was 

used to estimate the required number of participants.

Results

Developing and validating equations to interpolate beta cell function

The baseline characteristics of participants whose data were used to develop the models are 

presented according to clinical trial and treatment assignment in Table 1. Initially, we used 

data from participants aged less than 21 years to fit and test linear models for three reasons: 

i) this age group accounts for over 75% of classic type 1 diabetes presentations [19]; ii) beta 

cell function declines more slowly in older people [20, 21]; and iii) preservation of beta cell 

function is more characteristic of younger participants in trials of biologic agents [22]. Half 

of the participants were randomly assigned to train linear models to estimate CPAVE using 

one or more of the eight input variables of age, sex, body mass index (BMI), diabetes 

duration, insulin dose per kilogram, fasting C-peptide (FCP), fasting glucose (FG) and 

HbA1c. Based on one to eight predictor variables, the Akaike Information Criterion (AIC) 

was used to identify the most accurate models, hereafter referred to as M1 to M8. The 

coefficients and associated standard errors of the variables included in the eight models are 

provided in ESM Table 1. Data from the remaining half of the participants were used to 

validate the models. Model 6 (M6), which is based on BMI, diabetes duration, insulin dose 

per kilogram, FCP, FG and HbA1c, was chosen for subsequent testing because its AIC was 

lowest in the Validation Dataset (Figure 1). Within the Validation Dataset, M6-modelled 

CPAVE (hereafter called CPEST) and observed CPAVE were strongly correlated (r2=0.816, 

p<0.001). The equation for M6 is loge(CPEST +1) = 0.317 + 0.00956×BMI(kg/m2) - 

0.000159×duration(days) + 0.710×FCP(nmol/l) - 0.0117×FG(mmol/l) - 0.0186×HbA1c(%) - 

0.0665×insulin(U/kg) (ESM Method file).
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Because M6 did not require age as an input, we determined if it might also be accurate in the 

150 trial participants aged over 21 years whose data were not included in either the Training 

or Validation datasets (baseline characteristics presented in ESM Table 2). Correlation 

analysis of data from 554 meal tests performed during the first trial year again demonstrated 

a strong correlation between CPAVE and CPEST (r2=0.729, p<0.001). Strong agreement 

between CPAVE and CPEST (r2=0.869, p<0.001) was also observed when M6 was applied to 

data from 31 meal tests from 10 participants (3 females, 7 males, aged 18 to 37 years at 

diagnosis; ESM Table 3) in an ongoing Australian trial of empagliflozin in recently-

diagnosed type 1 diabetes.

Applying CPEST to clinical practice

Receiver-operator curve (ROC) analysis of the Validation Dataset was performed to 

determine how accurately CPEST identified significant loss of beta cell function at 3, 6 and 

12 months after clinical trial entry, defined as a decrease of 7.5% or more of the baseline 

CPAVE [20, 23]. The ROC curves (Figure 2) show areas under the curve ranging from 0.86 

(95% CI 0.81, 0.91) to 0.91 (95% CI 0.87, 0.95). When tested for the ability to identify 

significant loss of beta cell function at 3, 6 and 12 months compared to baseline, CPEST 

furnished an area under the ROC (AUROC) of 0.89 (95% CI 0.87, 0.92). The corresponding 

AUROC for trial participants aged over 21 years was 0.88 (95% CI 0.84, 0.91). We also 

determined how accurately insulin dose-adjusted HbA1c (IDAA1C), an extant clinical 

measure of beta cell function [6], identified trial participants who had lost significant beta 

cell function. The AUROC of the ratio of baseline to 3-, 6- and 12-month IDAA1C was 

markedly lower at 0.72 (95% CI 0.68, 0.76).

Implications for clinical trial design

The potential suitability of CPEST as an alternative primary outcome measure for clinical 

trials was then assessed. All available data from participants (children and adults) in the 

TN-05 rituximab [4], TN-09 abatacept [3] and ITN-27 teplizumab [15] trials were analysed. 

The major conclusion from each trial, that the active therapy preserved beta cell function 

over the first year after diagnosis, held regardless of whether CPAVE or CPEST was used to 

compare treatment groups (Figure 3). We also applied CPEST to data from the other five 

negative trials and observed similar treatment effects (ESM Figure).

To examine implications for clinical trial design, the standard deviation (SD) of loge(CPEST

+1) values was conservatively estimated by combining the variance of loge(CPAVE+1) values 

with the variance of the difference between the loge(CPAVE+1) and loge(CPEST+1) values, as 

outlined in Methods. Using 12-month placebo-group data from the Validation Dataset from 

participants aged<21 years, the mean±SDs of loge(CPAVE+1) and loge(CPEST+1) were 

0.320±0.218 and 0.331±0.166, respectively. The variance of the difference between these 

values was 0.0087, resulting in an estimated SD for loge(CPEST+1) of 0.237. When the 

loge(CPAVE+1) mean±SD and the estimated SD for loge(CPEST+1) were applied to a 

standard trial design that assumed a treatment effect of 50% increase in loge(CPAVE+1) at 12 

months (i.e. Δ=0.160), two-tailed α=0.05 and 2:1 (active:placebo) randomisation, the 

number of participants required to achieve 80% power was 69 for loge(CPAVE+1) and 81, 

i.e. 17% higher, for loge(CPEST+1). When the validation data were combined with placebo-
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group data from adult participants aged over 21 years (Combined Dataset), the mean±SD for 

loge(CPAVE+1) and loge(CPEST+1) increased to 0.370±0.227 and 0.377±0.174, respectively, 

and the estimated SD for loge(CPEST+1) to 0.247, yielding Δ=0.185 and a requirement for 

57 participants if loge(CPAVE+1) was the primary outcome measure, and 66, i.e. 16% higher, 

if loge(CPEST+1) was used. If geometric means for loge(CPAVE+1) were instead used as the 

basis for power calculations, the use of loge(CPEST+1) as the primary outcome measure 

required 17% and 13% more participants, respectively, in the context of the Validation 

Dataset and Combined Dataset.

Discussion

Using six, single time point measures, we describe a model (CPEST) for estimating CPAVE 

that reliably identifies loss of beta cell function in children and adults with recently-

diagnosed type 1 diabetes. The accuracy of CPEST was comparable to that of CPAVE and was 

superior to that of IDAA1C. When applied to data from the active and placebo arms of three 

trials of immune modulators that preserved beta cell function, CPEST identified differences 

in beta cell function over the first year that were similar to those identified using CPAVE. 

These findings reinforce the strong correlation between FCP and CPAVE in people with 

recently-diagnosed type 1 diabetes [8, 20] and suggest that the relatively simple biochemical 

measurement of HbA1c, FCP and FG combined with BMI, insulin dose and disease duration 

may be sufficient to assess an individual’s response to disease-modifying therapy.

CPEST did not require age as an input despite the known strong association of age with beta 

cell function and with its rate of decline following diagnosis [20, 24]. Whereas age was an 

input for Model 4, it was not used in the optimal models that incorporated 5 or 6 inputs, 

which instead used HbA1c, BMI and insulin dose. Clearly these other clinical measures 

accounted for the effect of age on beta cell function. During model development with the 

Training Dataset, using age as an input did not always increase accuracy. For example, of the 

eight models based on four inputs that were more accurate than Model 3, only two 

(including Model 4) included age as an input. Similarly, of the six models based on five 

inputs that were more accurate than Model 4, only three used age.

Power calculations, based on a conservative estimate of the SD of loge(CPEST+1), indicated 

that sample size would need to increase by up to 17% if CPEST was used as a primary 

outcome measure. However, because the SD of loge(CPEST+1) was lower than the SD of 

loge(CPAVE+1), it is possible that modelled values are inherently less variable and therefore 

more accurate measures of beta cell function. This may be explained by the fact that a single 

fasting test eliminates variation attributable to meal ingestion and multiple sampling. 

Alternatively, incorporation of fasting glucose in the model may account for day-to-day 

variation in insulin sensitivity [25], which in turn could alter beta cell function [26] and 

increase CPAVE variability between meal tests. It will be important to establish the power of 

CPEST relative to CPAVE in future trials because CPEST is simpler and much more 

convenient. Even if subsequent testing shows that using CPEST would require a modest 

increase in sample size, this would need to be balanced against its potential to improve 

participant recruitment and satisfaction. CPEST also enables more frequent assessment of 
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beta cell function during a trial and obviates the need to admit participants to a clinical trials 

unit for a meal test, thereby reducing trial costs.

In the clinical setting, the ability of CPEST to identify individuals who lose beta cell function 

commends it for routine use in monitoring an individual’s beta cell function over time and 

determine their response to disease-modifying therapy. CPEST is also likely to be useful for 

larger Phase 3 and 4 trials, and for studies of type 1 diabetes cohorts that aim to identify 

factors associated with disease progression and the relationship between C-peptide 

preservation and long-term complications such as hypoglycaemia unawareness and rates of 

micro- and macro-vascular disease.

IDAA1C is a measure of beta cell function that has gained acceptance in clinical practice 

because it reliably identifies children with type 1 diabetes who have substantial beta cell 

reserve, defined as a peak plasma C-peptide response to a mixed meal of greater than 

0.3nmol/l (0.9ng/ml) [6, 7]. However, our analysis shows that IDAA1C has relatively poor 

accuracy for diagnosing significant loss of beta cell function, in accord with an earlier study 

that showed IDAA1C was not a reliable surrogate of CPAVE during the first 4 years 

following the diagnosis of type 1 diabetes [21]. Therefore, compared to modelled CPEST, 

IDAA1C is not suitable for assessing disease-modifying therapy.

Lastly, several caveats are in order. Our cohort comprised participants who were mostly of 

European descent and had type 1 diabetes for no more than 100 days when CPAVE was first 

measured. Therefore, the accuracy of our model in other ethnic groups or those with longer-

standing type 1 diabetes is uncertain. In addition, despite the model’s accuracy in the two 

adult populations tested, caution should be exercised in applying it to other adult populations 

until its accuracy is further confirmed. Finally, because FCP and HbA1c were measured at 

only three laboratories, the generalisability of CPEST should be determined in the context of 

other laboratories and assay platforms.

In summary, CPEST modelled from six routine clinical and biochemical parameters is an 

accurate measure of beta cell function in children and young adults with recently-diagnosed 

type 1 diabetes. The simplicity and convenience of CPEST combined with its superior 

accuracy when compared to IDAA1C argues for its implementation and further validation in 

assessing beta cell function in clinical trials and during the course of routine clinical care.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FCP fasting C-peptide

IDAA1C insulin dose-adjusted HbA1c
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ITN Immune Tolerance Network

M6 model 6

ROC receiver operator curve

SD standard deviation
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Research in context

What is already known about this subject?

• Measuring average C-peptide after a mixed meal, the gold standard measure 

of beta cell function in type 1 diabetes, is laborious and inconvenient.

• Insulin dose-adjusted HbA1c (IDAA1C), based on HbA1c and insulin dose, is 

widely used as a simple measure of beta cell function in routine care but this 

measure is not accurate and is not ideal for assessing responses to disease-

modifying therapy.

What is the key question?

• Can a more accurate measure of beta cell function in type 1 diabetes be 

developed from routine clinical measures?

What are the new findings?

• Estimated C-peptide (CPEST), based on six routine measures, accurately 

identifies significant loss of beta cell function and reliably identifies treatment 

effects in randomised trials of immune therapy for type 1 diabetes.

• CPEST is more accurate than IDAA1C

How might this impact on clinical practice in the foreseeable future?

• CPEST could serve as a simple measure of beta cell function in routine 

practice and as a more economical and acceptable primary outcome measure 

in future trials of disease-modifying therapy.
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Figure 1. Performance characteristics of eight models to estimate loge(CPAVE+1) from single-
time point data
The components of each model are indicated below the graph of the Akaike Information 

Criterion (AIC) against the number of model variables in the context of the Validation 

Dataset. Model 6 was used to calculate CPEST values. FCP: fasting C-peptide; FG: fasting 

glucose; BMI: body mass index.
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Figure 2. CPEST accuracy
ROC analysis to determine how accurately CPEST identified participants whose CPAVE 

decreased by more than 7.5% of the baseline value at 3 (a), 6 (b), 12 (c) months after clinical 

trial entry. The ROC analysis for 7.5% decrease of CPAVE at 3, 6 or 12 months is shown at d. 

The respective AUROCs (95% CIs) for a-d were 0.86 (0.81, 0.91), 0.88 (0.84, 0.92), 0.91 

(0.87, 0.95) and 0.89 (0.87, 0.92). These analyses used the Validation Dataset, which was 

derived from half of the participant population and was fully independent of the dataset used 

to develop the CPEST model.
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Figure 3. Outcomes of TN-05 (rituximab), TN-09 (abatacept) and ITN-27 (teplizumab) trials 
according to CPAVE and CPEST
Outcomes for active (filled circles) and placebo (open squares) participants in TN-05 (a,b; 

51 active and 29 placebo participants), TN-09 (c,d; 74 active and 31 placebo participants) 

and ITN-27 (e,f; 54 active and 25 placebo participants) are shown as mean ± SEM. CPAVE 

measured by meal test is presented in the top panels (a,c,e) and CPEST measured from single 

time point measures is presented in the bottom panels (b,d,f). Differences between treatment 

groups were determined using a mixed model that corrects for baseline CPAVE (or CPEST), 

age and sex, with significance between treatment groups indicated as *, ** and *** for 

p<0.05, <0.01 and <0.001 respectively.
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