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SUMMARY.

In environmental and nutritional epidemiology and in many other fields, there is increasing interest 

in estimating the effect of simultaneous exposure to several agents (e.g., multiple nutrients, 

pesticides, or air pollutants) on a health outcome. We consider estimating the effect of a 

multivariate exposure that includes several continuous agents and their interactions—on an 

outcome, when the true confounding variables are an unknown subset of a potentially large 

(relative to sample size) set of measured covariates. Our approach is rooted in the ideas of 

Bayesian model averaging: the exposure effect is estimated as a weighted average of the estimated 

exposure effects obtained under several linear regression models that include different sets of the 

potential confounders. We introduce a data-driven prior that assigns to the likely confounders a 

higher probability of being included into the regression model. We show that our approach can 

also be formulated as a penalized likelihood formulation with an interpretable tuning parameter. 

Through a simulation study, we demonstrate that the proposed approach identifies parsimonious 

models that are fully adjusted for observed confounding and estimates the multivariate exposure 

effect with smaller mean squared error compared to several alternatives. We apply the method to 

an Environmental Wide Association Study using National Heath and Nutrition Examination 

Survey to estimate the effect of mixtures of nutrients and pesticides on lipid levels.
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1. Introduction

With the rapidly increasing availability of environmental exposure data, there is growing 

interest in studying the multitude of exposures, often referred to as the exposome, that may 

influence complex diseases (Wild, 2005; Louis and Sundaram, agents for associations with 

health outcomes and biological endpoints (Patel et al., 2013; Patel and Ioannidis, 2014). 

Increasingly, research is focused on estimating the health risks associated with simultaneous 

exposure to a mixture of multiple agents, rather than single-agent analyses (Zanobetti et al., 

2014; Bobb et al., 2015).

Due to the predominant reliance on observational data, confounding remains a common 

consideration when estimating the effects of multiple agents. Methods for confounding 

adjustment in this context are met with the challenge that the proliferation of data on 

multiple agents is typically accompanied by a similar proliferation in measurement of 

possible confounding factors. As a consequence, researchers are confronted with the need to 

develop data-driven approaches to prioritize which of a high-dimensional set of possible 

confounders to include in a statistical model for adjustment (Hirano and Imbens, 2001; 

Vansteelandt et al., 2012; Wang et al., 2012, 2015; Wilson and Reich, 2014; Ghosh et al., 

2015).

We consider data-driven confounder selection in the context of estimating the effect of a 

change in exposure to several continuous agents, X = (X1, …, Xm)T, on a health outcome Y. 

Specifically, in the situation where the number of agents is large and the effect of a change in 

X on Y includes interactions between agents. Three distinguishing features characterize this 

work: 1) estimating the health effect of exposure to a large number of continuous agents and 

their interactions; 2) confronting the need to choose from a high-dimensional set of possible 

confounders, and 3) accounting for the uncertainty in the selection of confounders.

The problem of confounding adjustment for estimating effects of multiple agents has been 

considered in causal inference literature rooted to the potential-outcomes framework (Rubin, 

1978). Taubman et al. (2009) use g-estimation (Robins, 1986) to estimate the effects of joint 

treatment that may vary over time. Hernán et al. (2001) consider the related problem of 

multiple, time-varying treatments using marginal structural models. Imbens (2000) proposed 

the generalized propensity score for multivalued treatments. Imai and van Dyk (2004) 

develop a propensity function approach for multiple continuous agents that relies on 

matching or subclassification by the multivariate propensity function. Importantly, all of this 

and related work operates under the assumption that the confounders required for effect 

estimation are known and specified a priori.

To accommodate settings where the confounders required for effect estimation are not 

known a priori, there has been recent interest in methods to select or prioritize confounders 

from a possibly high-dimensional set of covariates. Brookhart et al. (2006) provided 

simulation evidence to motivate the importance of model selection for causal inference. 

Hirano and Imbens (2001) proposed a method based on univariate tests with both the 

propensity score and mean outcome model. Several recent approaches are based on 

evaluating the change in estimates produced with different confounding sets including 
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methods based on cross-validation (Brookhart and Van Der Laan, 2006), on the mean square 

error of effect estimates (Vansteelandt et al., 2012), or change-in-deviance coupled with 

change-in-estimate (Crainiceanu et al., 2008). Targeted maximum likelihood estimation uses 

an outcome model, an exposure model, and a “targeting” step to optimize the bias-variance 

trade-off of the parameter of interest while the super learner adds ensemble learning to select 

confounders for a single binary treatment, multiple binary treatments, or a single continuous 

agent (van der Laan and Rose, 2011; Kreif et al., 2015). For estimating effects with a 

regression model, Wang et al. (2012) proposed Bayesian adjustment for confounding (BAC), 

which uses the ideas of Bayesian model averaging (BMA, Raftery et al., 1997) to prioritize 

confounders based jointly on a regression model for the exposure and a regression model for 

the outcome, with extensions of this approach in Wang et al. (2015) and Lefebvre et al. 

(2014). Ghosh et al. (2015) and Wilson and Reich (2014) propose lasso-style estimators, the 

former based on the predictive distribution between full and reduced models and the latter 

embedded in a Bayesian decision theoretic approach. Hahn et al. (2016) take a regularization 

approach to regression adjustment with shrinkage priors. Importantly, existing work for 

confounder selection and prioritization is primarily grounded in settings where interest lies 

in the effect of a single agent. Wilson and Reich (2014) extend their approach to selecting 

confounders when estimating the additive effect of multiple agents. None of these 

approaches consider confounder selection in the context of multiple continuous agents 

including interactions between agents.

In this article, we adopt an approach with conceptual ties to BAC in its focus on estimating 

effects with a linear regression model, which is well suited to the setting where interest lies 

in exposure to multiple continuous agents and their interactions. The goal is to provide a 

data-driven approach to prioritize confounders while respecting the full nature of 

confounding in settings of multiple agents and their interactions. Using the principles of 

BMA, the method accounts for the model uncertainty inherent to the choice of confounding 

variables.

2. Effects of Simultaneous Exposure to Multiple Agents: Notation, 

Estimand, and Confounding

We begin by formulating notation, defining the estimand of interest, and clarifying notions 

of confounding. Each of the quantities defined in this section are assumed available for a 

sample of i = 1, …, n individuals, but quantities are defined for a single individual for ease 

of exposition. Let X = (X1, X2, … , Xm) denote the levels of m agents, for example, 

measures of m persistent pesticides measured in a person’s blood. Let Y denote the 

measured health outcome of interest. In addition, we observe a large vector of covariates, C 

= (C1, …, Ck), all assumed to be unaffected by X and Y.

Let δ be an m-dimensional vector that denotes a change in each of the m agents that could 

arise from a (possibly hypothetical) intervention on X. Formally, interest lies in the change 

in Y that would result from a change in simultaneous exposure to the m agents, that is, a 

shift from x to x + δ. When m > 1, there is a key distinction between the agents and what we 

term the multivariate exposure because simple shifts in each of the m agents may produce 
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complicated changes to the multivariate exposure comprised of the individual agents and any 

functions of the agents (e.g., interactions). Let Z = z(X), where z( · ) is a pre-specified 

deterministic function, denote the r-dimensional multivariate exposure comprised of the m 
individual agents and functions of the agents. We focus on Z containing all agents and 

pairwise multiplicative interactions between agents (thus r > m).

In order to be explicit about the estimand of interest and the threat of confounding, we use 

the potential outcomes notation (Rubin, 1978). Let Y(z) = Y(z(x)) denoting the potential 

outcome that would be observed under multivariate exposure z induced by the agents x. We 

define the average causal effect of a shift in Z from z = z(x) to z′ = z(x + δ) as:

Δ = E Y z′ − Y(z) = E[Y(z(x + δ)) − Y(z(x))] . (1)

The estimand in (1) can be estimated from observed data under the assumption of strongly 
ignorable multivariate exposure assignment:

Y(z(x)) ╨ z(X) |C (2)

for all possible values of x and z(x). Note that the deterministic relationship between X and Z 

induces some implicit redundancy in the notation employed above, as potential outcomes 

could be equivalently indexed by X or Z = z(X). In order to be explicit about notions of 

confounding in the multivariate exposure context, we continue to index potential outcomes 

by Z = z(X). For example, empirical manifestation of confounding with respect to levels of z 

(X) occurs as covariate imbalance across levels of the multivariate exposure and may include 

imbalance across levels of the interactions, even if there is balance across levels of the 

individual agents. Web Appendix A outlines a simple illustration.

Under the conditional independence from (2), ∆ is identifiable from the observed data as

Δ = E[E Y z(X + δ) = Z′, C − E Y z(X) = Z, C ], (3)

analogous to the g-formula (Robins, 1986), using parametric or non-parametric methods 

(Lunceford and Davidian, 2004).

We consider a minimal set of covariates sufficient to satisfy (2) as the confounders 

(VanderWeele and Shpitser, 2013), denoted by C* ⊆ C. When C is high-dimensional, it is 

often necessary to choose which of the available C belong to C*. We introduce a data-driven 

method to estimate which covariates are members of C* while accounting for uncertainty.
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3. Model

3.1. Approach

The above discussion of confounding is not tied to any specific statistical model. However, 

in this article, we develop an estimation approach under a linear regression model. We 

assume

Y i = β0
α + Zi

Tβα + ∑
j = 1

k
C jiα jη j + ϵi . (4)

In (4),α j ∈ 0, 1  is an unknown parameter that indicates whether a covariate Cj is included 

into the model. Conditionally on α = α1, …, αk
T, we can estimate the posterior distribution 

of the observed data contrast in (3), Pr Δ
αl |Z, C, Y, αl  , using standard methods. To account 

for uncertainty about the choice of αl, we define the model averaged posterior distribution of 

∆ as

Pr (Δ Z, C, Y) ≈ ∑
l ∈ 𝒜

Pr Δ
αl Z, C, Y, αl Pr αl Z, C, Y (5)

where Pr αl |Z, C, Y ∝ Pr Y |Z, C, αl Pr αl , Pr αl , Pr (αl) is the prior on al, and l € A 

indexes the 2k possible values of αl and, therefore, all the possible combinations of observed 

covariates (Raftery et al., 1997). Note that the approximation in (5) derives from the fact that 

not all ∆αl are interpretable as the causal effect ∆. Specifically, let 𝒜* ⊆ 𝒜 be the class of 

regression models that always contain the minimal set of confounders C* and potentially 

others covariates. Following Wang et al. (2012), we can re-write (5) as

Pr (Δ Z, C, Y) ≈ ∑
l ∈ 𝒜*

Pr Δ
αl Z, C, Y, αl Pr αl Z, C, Y

+ ∑
l ∈ 𝒜\𝒜*

Pr Δ
αl Z, C, Y, αl Pr αl Z, C, Y ,

(6)

where only the models in the first summation over l € A* are unbiased for ∆ because those 

models contain C*. For models in 𝒜\𝒜*, the second summation, the posterior mean of ∆αl 

will be a biased estimator of ∆ because such models omit some of the key confounders. The 

key idea of this article is to specify a prior distribution on αl, for l € A, such that most of the 

posterior mass on the model space will be assigned to A*, whereas A\A* will have a 

posterior probability close to zero. The extent of the proposed method’s ability to apportion 

posterior mass to A* and away from A\A* will dictate the extent of approximation, with (5) 

nearing equality as nearly all posterior mass concentrates on A*.
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For settings where prior scientific knowledge cannot inform which Cj are required to satisfy 

(2), we develop a prior specification for α that prioritizes covariates for inclusion into the 

regression model based on their association with Z.

3.2. Construction of Prior to Adjust for Confounding

Our goal is to leverage the information on (Z, C) to construct a prior distribution on the 

model space A that results in most of the posterior mass on models in A*. For each covariate 

Cj, we specify Pr(αj = 1) which indicates the prior probability for including Cj into the 

regression model in (4). Our rationale is: under the assumption that the full model provides 

an unbiased estimate of ∆ (i.e., no unmeasured confounding and correct model 

specification), we assume a priori that if Cj is highly associated with Z then omitting Cj from 

the model is likely to lead to confounding bias. Therefore, it is likely that C j ∈ C*. For these 

covariates, we then assume a priori that Pr(αj = 1) is very large. Our ideas on constructing 

this prior leverage previous work by our own team (Wang et al., 2012; Zigler and Dominici, 

2014; Wang et al., 2015; Cefalu et al., 2017) and by others who developed a data-dependent 

prior for variable selection in the context of sparse prediction (e.g.,Yuan and Lin, 2005).

To construct the prior on α, we start by calculating the confounding bias for ∆ that would 

occur if model (4) were fit without any adjustment, for example, α = 0. This is the difference 

between the posterior mean of ∆α under a model that includes all observed covariates and 

that of ∆α under a model that includes no covariates. With flat priors on βα and ηα and 

inverse-gamma prior on σα
2, the confounding bias of Δα = z′ − z T βα under these two models 

is

E Δα Y, Z, C, α = 1 − E Δα Y, Z, C, α = 0
= z′ − z T ZTZ −1ZTC CTPZ

⊥C −1CTPZ
⊥Y,

(7)

where PZ = Z ZTZ −1ZT and PZ
⊥ = I − PZ. The bias in (7) is zero when ZTZ −1ZTC = 0 or 

CTPZ
⊥Y = 0 and, therefore, is zero when C is linearly independent of either Z or Y.

Under the assumption that the shift in exposure being studied is in the column space of the 

observed multivariate exposures, z′ − z = aTZ for some vector a, (7) is equal to 0 if:

∑
l = 1

r
ζlql

T CTPZ
⊥C −1CTPZ

⊥Y
2

= 0 (8)

where CTPZC = ∑i = 1
k ζlqql

T is the spectral decomposition.

We construct our informative prior for α by: 1) isolating the part of (8) that is a function 

only of Z and C, so as not to have the prior depend on the outcome Y; and 2) assigning 
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higher prior inclusion probabilities to the covariates that are linearly dependent with Z and 

therefore contribute most to the confounding bias in (8). Specifically, the prior on αj is 

Bernoulli with mean π j(Z, C, λ) = Logit −1 λω j(Z, C) , where 

ω(Z, C) = ∑l = 1
r ζlql

T CTPZ
⊥C −1 2

 is a k-vector taken from (8), ωj(Z, C) is the jth element 

of ω (Z, C), and λ ≥ 0 is a tuning parameter. Hence, λωj (Z, C) is the prior log-odds of 

including Cj into the model in (4).

This prior specification has the following desirable properties. If Cj is linearly independent 

of Z then ωj (Z, C) = 0 and the prior probability of including Cj is Pr α j = 1|Z, C, λ = 0.5. 

When λ > 0, if Cj is linearly dependent with Z then ωj (Z, C) > 0, and 

Pr α j = 1|Z, C, λ ∈ (0.5, 1) is governed by the strength of this association. The stronger the 

association between Cj and Z, the larger the potential confounding bias that could result 

from omitting Cj, and the higher prior odds (larger ωj, (Z, C)) that Cj is included in the 

regression model.

This prior for α allows for covariates that are associated only with Z and independent from 

Y to be excluded from the model. These variables are known to reduce precision. We 

address this with the tuning parameter λ. When λ ∞ any covariate that is linearly 

associated with Z (even weakly) is forced into the model regardless of whether it is 

associated with Y. In this situation (large λ), we prioritize confounding adjustment over 

model parsimony. In contrast, when λ = 0 the prior on α is flat,π j(Z, C, 0) = 0.5 ∀ j, and we 

prioritize model parsimony over confounding adjustment. Hence, the structure of the prior 

comes from ωj,(Z, C) and the strength of the prior comes from the choice of the tuning 

parameter λ.

We complete the Bayesian specification for the model following that of Raftery et al. (1997) 

and provide details in Web Appendix B. We compare the proposed prior with alternatives 

and show details of the calculations used in this section in Web Appendix B.

3.3. Relation to a Penalized Likelihood Approach and Selecting λ

The proposed approach can be formulated as a penalized likelihood problem where the prior 

Pr (α |Z, C, λ) translates to a penalty that reflects the goal of minimizing confounding bias 

while maximizing model parsimony. This will guide the selection of the tuning parameter λ.

We approximate the posterior model probability of 

Pr (α |Y, X, C) ∝ Pr (Y |Z, C, α) × Pr (α |Z, C, λ) using the Bayesian information criterion 

(BIC; Schwarz, 1978) as
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BIC(α) = − 2 × ll Y, X, C; α, βα, ηα, σα
2 − 2λ ∑

j = 1

k
α jω j

(Z, C) + log(n) ∑
j = 1

k
α j .

(9)

The three terms on the right hand side of (9) are, from left to right: 1) the negative profile 

log-likelihood of the normal linear regression model which is minimized when covariates 

predictive of Y are included into the regression model; 2) the negative prior log-odds of 

covariate inclusion defined in Section 3.2; and 3) the BIC sparsity penalty.

The second and third terms of (9) can be combined and viewed as a single penalty where λ 
controls the balance between confounder adjustment (large λ) and model parsimony (small 

λ). The penalty for including covariate j is α j log(n) − 2λω j(Z, C) . This penalty can be either 

positive, acting as a penalty, or negative, acting as an incentive for covariate inclusion.

This provides a theoretical basis to select a value of λ that balances parsimony and 

confounder adjustment. We balance these competing interests by choosing λ so that the 

penalty is on average zero:0 = k−1∑ j = 1
k α j log(n) − 2λω j(Z, C) . The balancing penalty is

λ* = klog(n)
2∑ j = 1

k ω j(Z, C)
. (10)

In practice, λ = λ* can be seen as a benchmark choice. By taking λ > λ*, we include more 

covariates and take a more conservative approach to confounder adjustment at the expense 

of less parsimony. Alternatively λ < λ* prioritizes sparsity over confounder adjustment.

4. Simulation

4.1. Simulation Scenario 1

The first simulation scenario includes a multivariate exposure containing two agents and 

their interaction, Z = (X1, X2, X1X2_T and 100 covariates C. We generate data so that: C1,

…,C15 are associated with Y and X1 and/or X2; C16,…,C20 are associated with Y and X1X2; 

C21,…, C30 are associated with Y but not with Z (predictors of Y); C31,…,C35 are 

associated with Z but not Y (instrumental variables) and should not be included in the 

model; and C36, …, C100 are independent of both Y and Z (noise). The true model contains 

only covariates C1, …,C30. The minimal set of confounders is {C1,…, C20}. Specifically, for 

n ∈ 200, 500  observation, we simulate 1000 data sets with C ji N(0, 1) for j = 1, …, 100. 

The two agents are generated X1i N 11−1/2∑ j = 1
10 C ji, 11−1/2  and 

X2i N 21−1/2 ∑ j = 6
15 C ji + X1i∑ j = 16

20 C ji + ∑ j = 31
35 C ji , 21−1/2 . The outcome is generated as 

Y i N Zβ + ∑ j = 1
30 η jC ji, 1 . For X1i and X2i the regression coefficients 11−½ and 21−½ are 
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chosen so that both agents have variance one. Finally, β j j = 1
3

 and η j j = 1
30

, are simulated 

as independent Uniform(0.2, 0.5).

We compare the proposed method, henceforth ACPME (adjustment for confounding in the 

presence of multivariate exposures), to five alternatives: 1) BMA (equivalent to ACPME 

with λ = 0, that is Pr α j = 1|Z, C, λ = 0.5 ∀ j); 2) BayesPen (Wilson and Reich, 2014) using 

one exposure model for each agent but not for the interactions; 3) the full Bayesian 

regression model that includes all 100 covariates; 4) the true Bayesian regression model that 

includes only covariates 1 to 30; and 5) the unadjusted Bayesian regression model that 

regresses the outcome on Z with no covariate adjustment. For ACPME, we use λ = λ* as 

described in Section 3.3. We estimate the effect of a simultaneous change in both agents 

from 0 to 1.

Figure 1 shows the prior (panel 1a and b) and posterior (panel 1c and d) inclusion 

probabilities for each Cj with ACPME. The posterior inclusion probabilities for the C j ∈ C*

(j = 1, …, 20) with ACPME are all near one. Covariates associated with Z and not Y (j = 31,

…, 35) have high prior inclusion probabilities but posterior inclusion probabilities less than 

0.5. Hence, setting λ = λ* balances the goals of parsimony and confounder adjustment and 

does not force covariates associated with Z and not Y into the model.

For comparison, Figure 1c and d show the mean posterior inclusion probability with BMA 

and the covariate selection rate with BayesPen. BMA has lower posterior inclusion 

probabilities than ACPME for the confounders. BayesPen selects true confounders at a high 

rate but includes covariates independent of the outcome at a higher rate than ACPME.

Table 1 shows results for estimating ∆. At both sample sizes, ACPME has lower root mean 

square error (RMSE) compared to all the alternatives except for the true model. In addition, 

ACPME has credible interval coverage near or at the nominal level. Estimates of ∆ from 

BMA are biased and have larger RMSE because the approach does not include all 

confounders. BayesPen had lower RMSE than the full model but higher than ACPME. We 

repeated this scenario with β= 0, a weaker association between C and Y, but the same 

association between C and Z. The proposed approach forces Z into the model regardless of 

whether there is a true exposure effect or not. Including Z in the model when null and 

strongly confounded resulted in decreased selection of true confounders and decreased 

interval coverage (0.90 for n = 200 and 0.93 for n = 500) (Web Appendix Table S1).

4.2. Simulation with Large Number of Agents

The second scenario evaluates model performance in the context of a high-dimensional 

multivariate exposure for n = 200 and n = 500. For n = 200, the number of agents is allowed 

to vary from m = 2 to m = 13 and includes all pairwise interactions so that Z has m + m(m – 

1)/2 columns (ranging from 3 to 91 including main effects and interactions). For n = 500, the 

number of agents is allowed to vary from m = 2 to m = 25 so that the columns of Z ranges 

from 3 to 325. For both sample sizes there are 100 covariates.
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We simulate the covariates so that: C1 …, C15 are associated with at least one of the agents 

X1,…,Xm and Y; C16,…,C25 are associated with Y and at least one of the interactions 

between agents; C26, …, C30 are predictors of Y that are independent of Z; and C31, …, 

C100 are independent of both Y and Z. The true model includes C1 …, C30 and the minimal 

set of confounders is C1 …, C25. Web Appendix C contains the exact data generating 

mechanism.

Figure 2 shows the RMSE for estimating the change in Y due to a one unit increase in all 

agents. These results are presented in table format in Web Appendix C along with additional 

measures: bias, SD, interval coverage, and true and false selection rates. At n = 200, 

ACPME and BayesPen both have lower RMSE than the full model. ACPME has slightly 

lower RMSE than BayesPen, except for when the total model size approaches n and the full 

model, which is used to construct the ACPME prior, is challenging to estimate. When n ≈ p, 
ACPME maintains lower RMSE than the full model but has inflated type I error rate.

5. Analysis of the NHANES Data

5.1. Overview of the Data and Analysis

We apply ACPME to the National Health and Nutrition Examination Survey (NHANES) 

data previously described by Patel et al. (2012). The data include blood serum and urine 

biomarker measurements of 132 nutrients and persistent pesticides (agents). We consider 

three lipid levels as outcomes: 1) low-density lipoprotein-cholesterol (LDL), 2) high-density 

lipoprotein-cholesterol (HDL), and 3) triglyceride. In an EWAS analysis, Patel et al. (2012) 

screened these agents independently for their marginal associations with each of the three 

outcomes, controlling for a small set of pre-specified covariates but not other co-exposures. 

We perform a reanalysis of these data that extends to group-level analyses, pairwise 

interaction between agents, and adjustment for confounding by exposure to other agents.

We group the 132 agents into 24 mutually exclusive exposure groups of related agents, 

defined by Patel et al. (2012), that may affect the same biological pathways. We are 

interested in estimating the effect of a simultaneous 1 standard deviation increase in 

exposure to all agents on each of the three outcomes. We conduct separate analyses to 

estimate the exposure effect of each of the 24 groups on the three outcomes (72 models 

total). The multivariate exposure includes all agents within each of the 24 groups and their 

pairwise interactions. The potential confounders include: agents in the other groups that are 

measured in the same subsample; nine body measurements; and 13 demographic and 

socioeconomic status variables. Details on data processing and a list of potential 

confounders are included in Web Appendix D.

Table 2 shows the 24 exposure groups, the sample size (n ranging from 158 to 1370), 

number of agents in each group (m ranging from 1 to 22), and the number of potential 

confounders (k ranging from 22 to 92). The ratio p/n ranges from 0.03 to 0.77.
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5.2. Estimate of the Multivariate Exposure Effect

We estimate the multivariate exposure effect with ACPME, the full model including all 

potential confounders, the unadjusted model that controls for no potential confounders, 

BMA, and BayesPen. Figure 3 presents the point estimates and 95% posterior intervals.

To highlight the advantage of ACPME, we focus on the volatile compounds group. In this 

group, there are n = 179 individuals, k = 82 potential confounders, m = 10 agents and all 45 

pairwise interactions (dim(Z) = 55), and the p to n ratio is 0.77 (138/177). The effect of 

volatile compounds on HDL and triglyceride both change sign with confounder adjustment 

using ACPME and with the full model relative to the unadjusted model. In addition, using 

ACPME resulted in approximately a 30% decrease in posterior standard deviation of ∆ 

compared to the full model for all three outcomes as shown in Figure 4.

Across all groups the ACPME point estimates are generally similar to the full model. This 

suggests that all important confounders are included using ACPME. In contrast, the 

unadjusted estimates are notably different in several cases. Relative to the full model, 

estimates with ACPME had smaller variance on average due to decreased model size (Figure 

4).

Figure 3 also shows significance at the 0.05 and 0.01 posterior probability level after 

Bonferroni adjustment. Using the unadjusted model, four groups (carotenoid, vitamin B, 

vitamin C, and cottoning) had a statistically significant effect on HDL levels and one group 

(carotenoid) has a significant effect on LDL levels. Only the effects of carotenoid on HDL 

and LDL are significant after adjustment with ACPME and the fully adjusted model.

There are two cases where the posterior probability of a positive exposure effect 

substantially increased with ACPME compared to the full model. Vitamin C was significant 

for LDL at the 0.01 level using ACPME but only at the 0.05 level with the full model and 

not at all with the unadjusted model nor in the original analysis by Patel et al. (2012). 

Finally, the effect of vitamin D on HLD is significant at the 0.05 level only with ACPME.

5.3. Model Diagnostics

When using regression adjustment, it is imperative that the model is correctly specified as 

lack of balance can exacerbate sensitivity to model misspecification. We have assumed 

homoskedastic normal errors and a linear relationship between covariates and outcome. To 

assess whether these model assumptions are reasonable, we have plotted the standardized 

residuals verse the observed covariates (Cj’s), the standardized residuals verse the fitted 

values Y i , and qq-plots (see Web Appendix D figures and further discussion). There were 

no signs of misspecification.

6. Discussion

We address the challenge of estimating the health effect of a multivariate exposure when 

there is uncertainty about which of the many measured covariates are confounders. When 

the number of observed covariates is large, it is imperative to identify a parsimonious model 

that is fully adjusted for confounding. We consider the special case of a multivariate 
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exposure that includes several continuous agents and all their pairwise interactions. Using 

the BMA framework, we develop an informative prior on covariate inclusion to adjust for 

confounding. As shown by our simulation study, the proposed method identifies a 

parsimonious model that includes important confounders.

The proposed approach relies on specification of a parametric linear regression model, 

which is appealing in this situationbecause it naturally allows for estimation of the effect of a 

large multivariate exposure comprised of many agents and their interactions. Other 

approaches such as stratification based on the propensity function for each agent (e.g., Imai 

and van Dyk, 2004) require an unfeasible number of subclasses as the number of agents 

increases. The parametric regression model approach also permits the use of model-

averaging computations and provides a framework for constructing the proposed prior 

distribution.

The proposed approach has limitations. There is an implicit assumption that the model is 

fully adjusted for confounding when all the observed covariates are included into the model 

as linear terms. This may not always be the case and the results could be prone other biases 

such as M-bias (Greenland, 2003). As such, the method can only be considered a causal 

estimator under fairly strict conditions. These include that the linear model is correctly 

specified and no unmeasured confounding.

The proposed approach is designed for a multivariate exposure with a large number of 

potential confounders that could be correlated with each other and also with the multivariate 

exposure. Our approach is challenged in the following situations. The first situation is when 

the potential confounders are very highly correlated with each other (e.g., a large number of 

pairwise correlations ≥0.8). In this situation, our proposed approach will lead to posterior 

inclusion probabilities that are spread across the group of correlated covariates and not 

concentrated on models that include the true confounders. This is a situation where BMA 

and many other variable selection approaches are also challenged. In this context, we could 

orthogonalize C which has been showed to improve BMA performance for prediction 

(Clyde et al., 1996). The second situation is when the true effect of Z on the outcome is null 

and the confounders are strongly associated with Z and weakly with Y. In this context, the 

model forces Z into the regression model despite being null and can under-adjust for 

confounding. Our simulations indicated that in this situation our approach has an increased 

type I error rate and some bias, but lower RMSE than the full model. To overcome this issue, 

we could choose a larger value of the tuning parameter to be conservative with confounder 

adjustment. The third situation is when p/n ≃ 1 and dimension of Z is large and always 

forced into the model. In this situation, the model also had increased type I error rate, but 

lower RMSE than the full model. Finally, when the sample size is very large relative to the 

total number of parameters (n ≫ p) no dimension reduction is needed and the full model can 

be used.

We applied the method to the previous analysis of Patel et al. (2012) which featured separate 

analyses of many agents grouped into multiple exposure groups (each group consisting of 

multiple related agents). To most closely parallel Patel et al. (2012), our reanalysis used the 

same groups but added group-level analyses, pairwise interactions between agents in each 
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group, and adjusting for agents in other exposure groups. This presents an inconsistency 

with the required assumption that confounders be measured pre-exposure: volatile 

compounds cannot simultaneously be regarded “pre-exposure” in the analysis of phenols 

when a separate analysis regards phenols as “pre-exposure” in the analysis of volatile 

compounds. This should be regarded as a limitation of the data illustration designed to 

compare with the existing analysis of Patel et al. (2012), not as a general feature of the 

proposed method.

With increased availability of high-dimensional exposure data there is growing interest in 

understanding the effect of the exposome on complex diseases (Wild, 2005; Louis and 

Sundaram, 2012). However, there is often uncertainty as to which covariates to include in 

the model to estimate the multivariate exposure effect. The proposed method fills a 

methodological gap to adjust for confounding when estimating multivariate exposure effects.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Prior (top) and posterior (bottom) inclusion probabilities for each covariate in simulation 

scenario 1 for our proposed method. The box plots show the distribution of prior and 

posterior probabilities across 1000 simulated data sets. For comparison, the lines in panel 1c 

and d show the average posterior inclusion probability for BMA (solid line) and the 

proportion of times each covariate was selected into the model with BayesPen (dashed line). 

The variable types, denoted by the letters on the top of each panel and by color, are: (A) 

correlated with Y and X (covariates 1–15); (B) correlated with Y and a exposure interaction 

(16–20); (C) predictor of Y independent of Z (21–30); (D) correlated with X only (31–35); 

and (E) noise variables (36–100). This figure appears in color in the electronic version of 

this article.
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Figure 2. 
RMSE of the estimated exposure effect for simulation scenario 2 for n = 200 (panel 2a) and 

n = 500 (panel 2b). The x-axis shows the number of agents and in parentheses the dimension 

of the multivariate exposure including all main effects and two-way interactions. In all cases, 

there are 100 additional covariates in the model of which 30 are true confounders or and 

predictors of the outcome that should be included in the model. The true model only 

includes the 30 important covariates, the multivariate exposure, and an intercept. These data 
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are also presented in Web Appendix Tables S2 and S3. This figure appears in color in the 

electronic version of this article.
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Figure 3. 
Point estimates and 95% credible intervals of the association between the multivariate 

exposure Z and each of the three outcome adjusted by the exposure to the other 23 groups 

and baseline covariates. Results are reported under the ACPME model, the full model (α = 
1), the unadjusted model (α = 1), BMA, and BayesPen. Omitted estimates were flagged for 

potentially selection bias. The black asterisks indicate 0.05 (*) and 0.01 (**) significance 

levels after Bonferroni adjustment for multiple comparisons. Omitted estimates were flagged 
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for potentially selection bias (see Web Appendix D for details). The four panels have 

different y-axis scales. This figure appears in color in the electronic version of this article.
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Figure 4. 
Ratio of the posterior standard deviation of exposure effect estimate under the ACPME 

model compared to the full model. Results are showed ranked by groups with the largest 

(left) to the smallest (right) p/n. In general, the estimates from ACPME have lower SD 

because of the reduced model size. Faded estimates were flagged for potentially selection 

bias (see Web Appendix D for details). This figure appears in color in the electronic version 

of this article.
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