Skip to main content
. 2018 Oct 29;147:e33. doi: 10.1017/S0950268818002807

Table 2.

Summary of the structure of the spatio-temporal models discussed in the reviewed paper

IDa References Year Space Time Space–time
1 Astutik et al. [34] 2013 SARa
2 Chien and Yu [49] 2014 CARb Cubic spline
3 Costa et al. [41] 2013 CAR
4 Fernandes et al. [33] 2009 CAR
5 Ferreira and Schmidt [43] 2006 CAR
6 Honorato et al. [39] 2014 CAR
7 Hu et al. [51] 2011 CAR
8 Hu et al. [40] 2012 CAR
9 Jaya et al. [36] 2016 CAR
10 Johansson et al. [32] 2009 Normal CSSc
11 Kikuti et al. [38] 2015 CAR
12 Lekdee and Ingsrisawang [52] 2013 CAR
13 Lowe et al. [26] 2011 CAR AR(1)d
14 Lowe et al. [27] 2013 CAR AR(1)
15 Lowe et al. [28] 2014 CAR AR(1) AR(1)
16 Lowe et al. [48] 2016 CAR AR(1)
17 Martínez-Bello et al. [47] 2018 Leroux CAR RW1e Normal
18 Martínez-Bello et al. [46] 2017 Leroux and BYMf CAR
19 Mukhsar et al. [37] 2016a Temporal trend CAR
20 Mukhsar et al. [53] 2016b Temporal trend CAR
21 Pepin et al. [44] 2015 Gravity model
22 Restrepo et al. [50] 2014 CAR
23 Samat and Percy [54] 2012 CAR
24 Sani et al. [35] 2015 Temporal trend CAR
25 Vargas et al. [42] 2015 Kernel quartic function
26 Vazquez-Prokopec et al. [31] 2010 Markov random field P-splinesg
27 Wijayanti et al. [29] 2016 Normal Normal Normal
28 Yu et al. [30] 2011 BMEh
29 Yu et al. [55] 2014 BME–SIR
30 Yu et al. [56] 2016 BME
31 Zhu et al. [45] 2016 Normal
a

Spatial autoregressive (SAR).

b

Conditional autoregressive (CAR).

c

Cubic spline smoothing (CSS).

d

First-order autoregressive (AR(1)).

e

First-order random walk (RW1).

f

Besag–York–Mollié (BYM).

g

Penalised splines (P-splines).

h

Bayesian Maximum Entropy (BME).