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Abstract

Background: Dysregulation of adipogenesis causes metabolic diseases, like obesity and fatty liver. Migratory birds
such as geese have a high tolerance of massive energy intake and exhibit little pathological development.
Domesticated goose breeds, derivatives of the wild greyleg goose (Anser anser) or swan goose (Anser cygnoides),
have high tolerance of energy intake resembling their ancestor species. Thus, goose is potentially a model species
to study mechanisms associated with adipogenesis.

Results: Phenotypically, goose liver exhibited higher fat accumulation than adipose tissues during fattening (liver
increased by 3.35 fold than 1.65 fold in adipose), showing a priority of fat accumulation in liver. We found the
number of differentially expressed genes in liver (13.97%) was nearly twice the number of that in adipose (6.60%).
These differentially expressed genes in liver function in several important lipid metabolism pathways, immune
response, regulation of cancer, while in adipose, terms closely related to protein binding, gluconeogenesis were
enriched. Typically, genes like MDH2 and SCD, which have key roles in glycolysis and fatty acids metabolism, had
higher fold change in liver than in adipose tissues. Three hundred two differentially expressed long noncoding
RNAs involved in regulation of metabolism in liver were also identified. For example, lncRNA XLOC_292762, which
was 5.7 kb downstream of FERMT2, a gene involved phosphatidylinositol-3,4,5-trisphosphate binding, was
significantly down-regulated after the high-intake feeding period. Further investigation of documented obesity-
related orthologous genes in goose suggested that understanding the evolutionary split from mammals in
adipogenesis will make goose fatty liver a better resource for future research.

Conclusions: Our research reveals that goose uses liver as the major tissue to regulate a distinct lipid synthesis and
degradation flux and the dynamic expression network analyses showed numerous layers of positive responses to
both massive energy intake and possible pathological development. Our results offer insights into goose
adipogenesis and provide a new perspective for research in human metabolic dysregulation.
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Background
The balance of energy storage and energy expenditure is
critical for normal adipose deposition and lipid metabol-
ism. Adipose tissue has been recognized as a major
endocrine organ and acts as the host for adipogenesis in
mammals [1]. Excessive energy intake results in an in-
crease in the volume and weight of adipocytes and
causes dysregulation of lipid metabolism in the body [2].
Such dysregulation is reflected by variable lipid depos-
ition in different adipose tissues, and it is usually associ-
ated with abnormal liver lipid accumulation, which can
lead to steatosis and obesity [3]. In contrast to mammals,
migratory birds show distinct lipid deposition patterns
and use liver instead of adipose tissue as the main organ
for lipid metabolism [4–6].
As a typical species domesticated from a migratory

bird, goose (Anser anser or Anser cygnoides) has a com-
pletely different mechanism of lipid deposition from
mammals and from some terrestrial poultry, such as
chicken [7, 8]. A goose has the capability of depositing
excess lipid in its liver. Research has demonstrated that
the formation of goose fatty liver shares similar pheno-
typic changes with human non-alcoholic fatty liver, but
differs in pathological development because goose fatty
liver only shows a low level of inflammation and other
immune responses [7, 9, 10]. This distinct difference in
the phenotype indicates that goose fatty liver might be-
come a resource for better understanding lipid depos-
ition in birds and for human fatty liver research.
Previous research on the synthesis and delivery of fatty
acids focused on goose liver without considering adipose
tissues [7, 11, 12]. To explore the dynamic genetic pat-
tern behind the regulation of lipid deposition in goose,
we have built a weight-gain model to investigate the
mechanism. We collected and performed RNA-seq on
liver, subcutaneous adipose, and abdominal adipose to
better understand the expression network. Through
comprehensive analysis, we showed that goose regulates
lipid metabolism differently to mammals and that liver
plays the most important role in this metabolic process.
We envision that goose is a model for understanding
lipid metabolism.

Results
Phenotypic changes of liver and adipose tissues after
high-intake feeding
Body weight increased 32.3% by the end of the fattening
process (p-value = 8.30*10− 4, fold-change = 1.32) and
the high intake group was significantly heavier
beginning at day 10 of the fattening period (Fig. 1a,
Additional file 7). Tissues related to lipid metabolism
were heavier after fattening, with liver increasing the
most in relative weight by 3.35 fold (p-value = 0.0011,
Fig. 1b, Additional file 8), comparing to abdominal

adipose increased by 1.65 fold. Moreover, after we
assessed the lipid content of liver, we found it increased
drastically from 6.22 ± 0.83% to 73.56 ± 1.14% (Fig. 1c),
which largely contributed to the increased weight of the
fatty liver. Red oil staining followed by integrated op-
tical density (IOD) also confirmed substantial lipid de-
position in liver (Fig. 1c, Additional file 1).

Transcriptomic difference of liver and adipose tissues
after high-intake feeding
To investigate dynamic expression changes induced by
high-intake feeding, we generated an average of ~ 11.50 Gb
high-quality RNA-seq data. We identified an average of
77.44% protein-coding genes with FPKM ≥0.1 and 1702 pu-
tative lncRNAs (Most lncRNAs were sense intergenic
lncRNAs (44.6%), followed by divergent lncRNAs, and other
3 categories, Additional file 2). These lncRNAs showed simi-
lar expression characteristics with other research [13].
There were substantial differences between tissues in

both mRNA profiles and lncRNA profiles (weighted
average proportion variance = 0.47 and 0.55, respect-
ively), followed by either interaction between treatment
and tissue (weighted average proportion variance = 0.16
in mRNA profiles) or treatment (weighted average pro-
portion variance = 0.16 in lncRNA profiles), indicating
the major driver of the differences in expression is tissue,
and the treatment effect on lncRNA expression patterns is
bigger than mRNA expression patterns (Additional file 3).
Unsupervised clustering also recapitulated the distinct

expression pattern between liver and adipose tissues
(Fig. 2a). Tissue-dominated clustering patterns and the
distinct between-group liver clustering patterns revealed
the overwhelming differences between tissues, and liver
was more affected by treatment. Within-group correl-
ation between tissues also confirmed the lower correl-
ation between adipose and liver than between two
adipose tissues (Fig. 2b). Control-group sample C2-SA
showed lower correlation to adipose tissues in general,
we hypothesize that this sample is partially contaminated
with tissues such as skin.

Protein coding genes involved in dynamic lipid metabolism
We found more than 6000 DEGs between liver and adi-
pose tissues (under both normal and high-intake feeding
conditions), compared to only ~ 400 DEGs between the
two adipose tissues. We identified 1930 DEGs in liver
(13.97% of 13,815 expressing genes with FPKM > 0.1), com-
pared to 1045 (6.60% of 15,829 genes with FPKM > 0.1) and
891 DEGs (4.73% of 18,839 genes with FPKM > 0.1) in ab-
dominal adipose and subcutaneous adipose after high-intake
feeding, respectively (Fig. 2c). The detection of more than
twice the number of DEGs in liver compared to adipose,
and the large number of liver-specific DEGs supports the
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hypothesis that liver has a role in lipid metabolism during
high-intake feeding.
As expected from the changes observed in phenotype,

DEGs found in liver were significantly involved in metabolic
pathways such as amino acids metabolism, carbon metabol-
ism, and immune response. These genes tended to be func-
tional in ATP binding, protein binding, oxidation-reduction
process, and gluconeogenesis (Fig. 3a). Similar enrichment of
DEGs found in abdominal adipose and subcutaneous adipose
was observed and most of the enriched pathways and GO
terms were related to metabolism as expected. The changes
in metabolic processes were related to up-regulation of
expression in the liver upon excess energy intake
(Additional file 4). We also noticed that down-regulated
DEGs were more involved in immune response, especially
cancer-related pathways (Additional file 4). The association
between expression changes and little or no pathological de-
velopment in goose should be further investigated.
We found expression of 14 out of 20 previously identified

goose mitochondria and important nuclear mitochondria-re-
lated genes [14]. The mitochondrial genes did not show a

substantial response to high-intake feeding and most did not
exhibit significant changes in expression in the 3 tissues we
examined (Additional file 5). Gene enrichment analysis
showed that nuclear genes related to the mitochondrial func-
tions oxidation-reduction (adjusted p-value = 3.96*10− 4) and
mitochondrial matrix (adjusted p-value = 8.54*10− 10) were
significantly up-regulated (Additional file 6). Genes such as
malate dehydrogenase 2 (MDH2) was up-regulated after
high-intake feeding with liver showed the biggest change
(fold-change = 2.01, 0.92 and 0.94 in liver, abdominal adipose
and subcutaneous adipose, respectively). The increased in-
tensity of mitochondrial metabolism is suggestive of elevated
energy production and consumption, expected from the
phenotypic changes and treatment.

Long noncoding RNAs are related to fatty liver formation
Differences between liver and adipose tissues were also
reflected by lncRNAs. Similar to protein coding genes,
more differentially expressed (DE) lncRNAs were identi-
fied in liver (302 DE lncRNAs, 19.24% of 1570 lncRNAs
with FPKM > 0.1) than adipose tissues (52 for abdominal

Fig. 1 Phenotypic differences between normal and high-intake fed geese. a Sequential changes in weight. b Absolute weight and relative
weight of tissues. Relative weight = absolute weight/body weight. c Enlarged photos of liver, corresponding frozen sectioned red oil staining and
Soxhlet extraction of lipid content of livers. Photos of geese and livers were taken from the geese used in this study
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adipose, 3.13% of 1662 lncRNAs with FPKM > 0.1 and
41 for subcutaneous adipose, 2.43% of 1689 lncRNAs
with FPKM > 0.1), and the majority of these DE
lncRNAs were specific to liver (Fig. 2c). To determine
the role of lncRNAs in the formation of fatty liver, DEGs
that were highly correlated to specific lncRNAs with the
highest fold change after the high-intake feeding period
showed a strong relationship to metabolism. Enriched
terms included amino acids metabolism, protein binding,
and endoplasmic reticulum, which was found as a usual
response to high-intake feeding, suggesting lncRNAs
may act as possible trans-acting regulators of protein
coding genes (Fig. 3b). By narrowing down to different
categories of lncRNAs, strong enrichment for metabol-
ism and immune functions was also observed within
each type (Fig. 4a). Among protein coding genes spatially
associated with each type of lncRNA, an average of 8.5%
of them were differentially expressed. Genes involved in
fatty acid metabolism, cGMP metabolic processes, and

oxidation-reduction were significantly enriched.
Among protein coding genes located within 10 kb of the
lncRNA, we found the genes ZFAT, GJD2, HOXA10, and
B3GALT2 (Additional file 9) that are related to metabolism,
degradation of endoplasmic reticulum protein and tran-
scription factors [15–17]. These nearby lncRNA-mRNA
pairs are suggestive of cis-acting regulation of lipid metab-
olism during high-intake feeding. For example, FERMT2,
which is involved phosphatidylinositol-3,4,5-trisphosphate
binding, was possibly down-regulated by a downstream (−
5.7 Kb) intergenic antisense (convergent) lncRNA
XLOC_292762 that was up-regulated after the high-intake
feeding period (Fig. 4b). Antisense lncRNAs have
been identified functional in mammalian gene net-
work. For example, they can regulate the expression
of mRNA by forming an RNA-RNA duplex at the 5′
end of the mRNA which is important to 5′
end-dependent degradation pathways. The further ex-
ploration of antisense lncRNAs and other types of

Fig. 2 Transcriptomic changes for each tissue and each group. a Pearson’s correlation matrix for mRNA profiles and lncRNA profiles. b Within-
group correlation of each pair of tissues. c Venn diagram of number of differentially expressed genes between normal fed geese and high-intake
fed geese. AA – abdominal adipose, SA – subcutaneous adipose. T – high-intake group, C – control group
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Fig. 3 (See legend on next page.)
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lncRNAs could provide more details about the regula-
tory functions of them.

Discussion
The accumulation of lipid, mostly triacylglycerol (TAG),
within hepatocytes is the key prerequisite for the develop-
ment of non-alcoholic fatty liver disease (NAFLD) in
humans. Serum non-esterified fatty acids (NEFA) are the
most dominant source for lipid accumulation in liver [3].
The major sources contributing to the level of serum
NEFA include NEFA derived from fatty acid flux in adi-
pose tissues and from chylomicrons through lipoprotein
spillover [18]. Fatty acid flux in adipose tissues uses the de
novo lipogenesis pathway to synthesize fatty acids from
2-carbon precursors made from dietary glucose. Research
has shown non-alcoholic fatty liver disease patients have
elevated masses of visceral and subcutaneous adipose tis-
sues. Current therapeutic strategies for NAFLD patients
are focusing on the reduction of adipose tissue fatty acid
flux [19], indicating the important role of adipose tissues
in the regulation of lipid metabolism.
Among goose adipose tissues and liver, our results

showed that goose liver was the only lipogenic tissue
with significantly increased weight (Fig. 1b). However,
another study using Tianfu geese showed a significant
increase in abdominal adipose weight [20]. Other re-
search has shown breed differences in capability to de-
posit fat [21]. In our study, we only found an increasing
trend for abdominal adipose. In earlier work, aside from
weight change, the percentage of lipid content in adipose
tissue did not significantly change, while the percentage
of lipid content in liver increased significantly [20]. This
is consistent with our results and in contrast to fat con-
tent accumulation in mammalian adipose, which is the
prioritized tissue for lipid deposition. In fact, the obesity
in human was widely considered as a metabolic syn-
drome in adipose tissues [22], suggesting the important
role of adipose tissues in mammals. These results indi-
cated that lipid deposition in goose under high-intake
feeding is different from mammals and this distinct dif-
ference in lipid deposition in liver and adipose tissues
under high-intake feeding, compared to normal intake,
implies there may be an intrinsic difference in transcrip-
tional regulation. This adaptation may be related to
long-distance migration, because poultry species like
duck have a similar ability, whereas terrestrial poultry
like chicken do not deposit lipid in similar way [7].
Interestingly, leg muscle also showed a significant

increase in weight. We hypothesize this is an adaptation
to the increased weight during the feeding process and
an increase in the amount of intramuscular fat [23, 24].
Further experiments need to be done to determine
whether it is an increase in muscle cell volume or an in-
crease in the amount of intramuscular fat.
By investigating the expression patterns of protein-coding

genes, the phenotypic difference was also reflected by the
transcriptome-wide patterns. The clear segregation of liver
expression profiles in protein coding genes and the lack of
a dominant pattern of expression among adipose profiles
showed that there was distinct difference between goose
livers but not adipose tissues after normal feeding and
high-intake feeding (Fig. 2a). The higher average correlation
coefficients between the two adipose tissues also showed
the high similarity between geese from the two feeding
groups (Fig. 2b). Similar results have been observed in
chickens that showed larger changes in liver than adipose
tissues [25].
However, what we found by clustering the

transcriptome-wide expression patterns does not neces-
sarily reveal which genes are the drivers of the responses
to feeding treatment. In order to accommodate more en-
ergy, it is reasonable to expect an increase in metabolism
with high-intake feeding. Indeed, through our differential
expression analysis, we revealed that genes related to
metabolism were upregulated in liver and adipose tissues
under this feeding treatment. For example, glycolysis,
the first major metabolic pathway that breaks down glu-
cose, was intensely upregulated after high-intake feeding.
Phophoglucomutase-1 that controls the irreversible step
of glycolysis was up-regulated [26]. Another important
aspect about the formation of goose fatty liver is the bal-
ance between the storage and secretion of newly synthe-
sized endogenous lipids and exogenous lipids in the
plasma [7]. Key genes such as FADS1 and APOB in this
process were regulated, leading to lipid deposition in
liver. We found the elevated level of stearoyl-CoA desa-
turase (SCD), an essential enzyme that transforms satu-
rated fatty acids into unsaturated fatty acids [10], that
was expressed nearly 3-fold higher in liver for geese fed
a high-intake diet. This gene was also expressed 1.7-fold
higher in abdominal adipose for the same diet, but not
significantly differentially expressed in subcutaneous adi-
pose. In the goose reference genome sequence [7] there
were more SCD gene copies than chicken and expres-
sion of SCD was significantly increased after overfeeding.
Moreover, we found FADS family and DGAT2, which

(See figure on previous page.)
Fig. 3 Enrichment of differentially expressed genes and lncRNA-correlated genes. a Top 10 GO/KEGG pathways of differentially expressed genes
in liver, abdominal adipose and subcutaneous adipose. Left – enrichment of KEGG pathways, right – enrichment of GO terms. b Exhibition of the
enrichment results of 5 lncRNAs correlated with differentially expressed genes (DEGs). Correlated genes were defined as genes associated with
lncRNAs that have correlation coefficients over 0.80 and p-value < 0.05
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Fig. 4 (See legend on next page.)
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both are involved in balancing lipid storage and degrad-
ation, were upregulated. This result demonstrates there
is similarity between goose and mammals for lipid flux
in adipose tissue, whereby the adipose tissue is contrib-
uting to the serum NEFA pool even though it may not
be the major source of NEFA.
During the desaturation process mediated by SCD,

two-carbon acetyl-CoA enters the citric acid cycle to gen-
erate ATP. The last few reactions of the citric acid cycle
take place in mitochondria, instead of in the cytoplasm,
and these steps are the final steps for beta-oxidation of
fatty acids as well. Even though our results showed that
genes from the mitochondrial genome were not differen-
tially expressed, nuclear mitochondria-related genes were
upregulated. These genes include MDH2, which encodes
mitochondria-located malate dehydrogenase 2 and plays a
central role in the malate-aspartate shuttle [27]. Our re-
sults are consistent with previous research who has identi-
fied five nuclear mitochondria-related genes were
up-regulated in goose fatty liver [28], and again, the differ-
ences in expression levels of these genes in liver, abdom-
inal adipose tissue, and subcutaneous adipose tissue
support our observation that liver played the key role in
the regulation process.
Usually, uncontrolled NAFLD will turn into nonalco-

holic steatohepatitis, which is a more severe disease with
liver cell inflammation and cell damage [29]. Nonalco-
holic steatohepatitis is also a precursor for liver cancer.
In our results, we found an interesting down-regulation
of some important cancer pathways such as the
PI3K-Akt and cGMP-PKG signaling pathways. These
pathways are largely involved in processes like tumori-
genesis [30, 31]. Our results showed the key genes of
these pathways such as PI3K and PKG were
down-regulated. Though it is too early to conclude the
meaning of the down-regulation of these pathways, we
believe our results provide evidence that goose develops
little pathological development in fatty liver.
In addition to regulation by protein-coding genes, long

noncoding RNAs have been recently identified in many
species and function in many regulatory processes [32].
Typically, they are transcripts over 200 bp and are typic-
ally expressed at lower levels than protein-genes in cells
[33]. they have been demonstrated to be functional in
many biological processes [13, 32–34] who tend to be
involved in many processes as cis- or trans-acting regu-
lators [13]. To thoroughly understand the transcriptomic
changes, we identified lncRNAs in goose for the first

time and showed their possible roles in lipid metabolism.
Expression patterns of lncRNAs were similar to protein
coding genes in liver and the expression patterns of
lncRNAs remained unclustered in adipose tissues. Our
functional prediction for lncRNAs revealed the high pos-
sibility that they are actively involved in lipid metabolism
and other processes in response to high-intake feeding.
LncRNAs show high variation between species, which
makes them hard to annotate based on sequence.
Current computational prediction of the function of
lncRNAs is based on correlated expression and their
genomic location relative to protein coding genes. Al-
though further functional validation is needed, our re-
search has provided some evidence for the role of
lncRNAs in goose.
Recently, non-alcoholic fatty liver has been strongly

associated with obesity in humans [35]. More than 1500
genes are strongly associated with obesity, in general, in
mammals [36]. Among the more than 190 GO terms
that have undergone rapid or slow evolution between
goose and terrestrial birds based on previous research,
GO terms including lipid binding, carbohydrate meta-
bolic process and phosphatidylinositol phospholipase C
activity were identified [7]. These results suggested that
obesity-related genes may also be under selection to
adapt to massive energy intake. There was a strong
orthologous relationship between these obesity genes
from mammals and goose genes (Fig. 5a), 1190 goose
genes out of the 1518 mammalian genes identified to be
orthologous to each other, the majority of orthologous
genes shared a 1:1 orthologous relationship to human
(74.66%). We think this suggests that genes related to
obesity showed more sequence-level variants rather than
change in copy number. Additionally, obesity-related
genes had a significantly higher proportion of DEGs
(Chi-square p-value = 4.42*10− 4), suggesting a possible
functional regulation of obesity as well [36]. Most DEGs
shared a 1:1 orthologous relationship with human (or
chicken) and accounted for 18% of all goose-human 1:1
obesity genes (or 18.49% of goose-chicken 1:1 obesity
genes) (Fig. 5b).
Given that we found ~ 80% of obesity genes were 1:1

orthologs in chickens and humans, and the fact that do-
mesticated goose does not develop pathological hepatic
steatosis upon high-intake feeding, we believe fully un-
derstanding the genetic mechanism behind the forma-
tion of goose fatty liver will help to uncouple the effects
of obesity and human non-alcoholic fatty liver.

(See figure on previous page.)
Fig. 4 Prediction of lncRNA functions. a Enrichment of highly correlated mRNAs of different lncRNA types. LncRNAs were divided into 5 panels
based on their type and were designated with a distinct color in the pie chart. Pie charts show the percentage of differentially expressed genes
(DEGs) among correlated genes. b Exhibition of possible cis-acting lncRNA XLOC_292762 which locates at 5700 bp downstream. The expression
scale of XLOC_292762 is different to FERMT2
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Conclusions
In this study, we found that the goose uses liver as the major
tissue to regulate a distinct lipid synthesis and degradation
flux. To process extra energy, the regulation of gene expres-
sion is stronger in goose liver than in adipose tissues. This is
different from the expression profiles in mammals. We
demonstrated by dynamic expression network analyses that
there are numerous layers of positive responses to both
massive energy intake and possible pathological develop-
ment. The ability to deposit large amounts of fatty acids in
liver instead of adipose tissues, and the upregulation of
many metabolic genes need further analysis to reveal the
genetic mechanism behind. Our results offer insights into
goose adipogenesis and provide a new perspective for re-
search in human metabolic dysregulation.

Methods
Animals and their treatment
All animal handling procedures were approved by Si-
chuan Agricultural University Animal Welfare Commit-
tee. Twenty healthy 126-day-old males of the Tianfu
meat geese breed were obtained from Sichuan Agricul-
tural University Waterfowls Breeding Farm. Tianfu is a
lean Chinese commercial breed that is an A. anser x A.
cygnoides hybrid. The breed is a composite of 87.5%
Landes (A. anser) and 12.5% of Sichuan White (A.
cygnoides). The population used in this study is closed
and has been under selection for over 10 generations.
We randomly assigned geese to two groups (N = 10). All
geese had free access to water at all times. All geese were
given the same diet (14.29MJ/Kg metabolizable energy,
8.09% crude protein and 0.14% methionine) but the two
groups differed in daily feeding times. The control group

had access to diet freely the whole day and on average
consumed 325 g (energy level 4.64MJ/Kg) of feed a day.
The feeding procedure for the high-intake feeding group
was similar to what is used in the industry to produce
foie gras. The birds were artificially force fed two times a
day for days 1–3, 3 times a day for days 4–6, 4 times a
day for days 7–17, and 3 times on day 18. The meals on
day 1 were 130 g and were increased by 5 g every day. By
the end of the feeding period the difference in energy in-
take between the two group was 72.81MJ for each
goose. On day 18, the day before the birds were sacri-
ficed, all geese were deprived of feed overnight and they
were sacrificed the following morning at 145 days of age
through cervical dislocation. Body weight was recorded
every 3 days for each goose.

Sample collection and total RNA-seq
We collected liver, abdominal adipose, subcutaneous
adipose, heart, breast muscle, leg muscle, duodenum,
gizzard, glandular stomach, spleen and bursa of fabricius
from each goose. Tissue weights were collected and tis-
sue samples were put into liquid nitrogen immediately
after being extracted from body.
For total RNA sequencing, we randomly selected 3 in-

dividuals as biological replicates from both the normal
and the high-intake feeding group. Total RNA from
liver, abdominal adipose, and subcutaneous adipose for
each individual (a total of 18 samples) were extracted
with the using RNeasy Mini Kit (QIAGEN, Germany)
following the manufacturer’s instructions. RNA integrity
was checked by Agilent Bioanalyzer 2100 (Agilent Tech-
nologies, CA, USA). Samples with average RIN value =
7.59 (from 7 to 8.6) were then sent to Novogene

Fig. 5 Orthologous relationship of 1519 mammal obesity genes. a Orthologous relationship of obesity genes between goose and chicken or
goose and human. b Proportion of DEGs in each relationship category. Numbers marked on the bar show the total number of gene families in
that category. Most of these genes shared a 1:1 orthologous relationship to human (74.66%) and more genes were 1:1 orthologous to chicken
genes (80.53%). Some gene families showed either contraction (7.16 and 5.34% to human and chicken, respectively) or expansion (1.96 and 8.08%
to human and chicken, respectively). Differentially expressed genes identified in liver also showed strong enrichment among these obesity genes
(Chi-square p-value = 4.42*10− 4). Most DEGs shared a 1:1 orthologous relationship with human (or chicken) and accounted for 18% of all goose-
human 1:1 obesity genes (or 18.49% of goose-chicken 1:1 obesity genes)
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(Tianjin, China) to generate paired-end libraries. All li-
braries were sequenced by Illumina Hiseq X 10 following
Illumina’s protocols by Novogene with a read length of
150 bp. Standard quality control and filtering of low
quality reads was performed by Novogene and clean
reads were provided for further analysis.

Transcriptome alignment and assembly
Clean reads were mapped against goose reference genome
that includes the mitochondrial genome (AnsCyg_PRJ-
NA183603_v1.0) using Bowtie2 [37] and the spliced reads
aligner, Tophat2 [38] with default arguments. Tophat2 uti-
lizes splicing information from the reference annotation
file (GTF file) to guide the mapping of RNA-seq reads.
BAM files for each library were then assembled by Cuf-
flinks (V2.1.1) [39] using the –g argument, which invokes
assembly of transcripts based on the reference annota-
tions, de novo assembly of transcripts using a probabilistic
model, and quantifies the expression of assembled tran-
scripts at the same time. Relative expression was reported
as fragments per kilobase of transcripts per million
mapped reads (FPKM). Cufflinks generated assembled
transcripts in GTF file format for all individuals and these
were later merged by tissue using Cuffmerge. For all anno-
tated genes, Pearson’s correlation coefficients of expres-
sion were calculated across the 18 samples. Principle
variance components analysis (PVCA) was carried out
using the R package pvca (https://www.bioconductor.org/
packages/release/bioc/html/pvca.html).

Identification of long noncoding RNAs
We used a homology-based method and constructed a
personalized pipeline to identify putative long noncoding
RNAs (lncRNAs). First, transcripts in the 6 merged GTF
files (3 tissues × 2 treatments) were compared to the ref-
erence annotations using Cuffcompare and those tran-
scripts that were in the reference GTF file or had a large
overlap with a known transcript were removed. Re-
moved transcripts were marked as “c” or “=” by the cus-
tom Python script. By default, transcripts shorter than
200 bp were not be retained. Protein-coding score were
then calculated for remaining transcripts using CPC
[40]. The protein-coding score is derived from compari-
son of a support vector machine learning classifier
against a selected protein database. We calculated cod-
ing potential against UniRef 90 and transcripts with
scores larger than 1 were filtered because of their high
coding potential. Surviving transcripts were then
scanned for potential of coding small peptides or func-
tional protein domains using Infernal cmscan [41],
which makes prediction using a Hidden Markov Model
against a selected protein database. Here we used also
UniRef 90 and again we filtered transcripts with high
coding potential. Survived transcripts were then

compared by blastx [42] to the NCBI NR database and
UniRef 90. We filtered any transcripts that only had one
exon and retained the rest of them as putative lncRNAs.
As we did for protein coding genes, we used Cufflinks to
quantify the expression of the lncRNAs, and we per-
formed principle variance components analysis and hier-
archical clustering analysis.

Identification of differentially expressed genes and
functional enrichment analysis
Cuffdiff was used to identify differentially expressed
genes (DEGs) between tissues within the same treatment
and between treatments for each tissue. Cuffdiff per-
forms a pair-wise test for each pair of genes and corrects
for multi-test bias at the same time using an FDR cor-
rection. Enrichment analysis between treatments was
performed using the DAVID online enrichment tool
(https://david.ncifcrf.gov) [43]. We first extracted the
HGNC gene symbol for DEGs. We then converted
HGNC symbols to human ENSEMBL IDs and applied
these in DAVID. We performed the enrichment analysis
for 3 gene ontology (GO) terms (biology process, mo-
lecular function, cellular component) and KEGG path-
ways. We separated enriched GO terms and KEGG
pathways, and based on an adjusted Benjamini p-value,
we selected the top 10 enriched GO terms and KEGG
pathways for each tissue. We also separated DEGs into
up-regulated and down-regulated DEGs and repeated
the enrichment analysis.

Analysis of putative lncRNAs
We calculated the average length and number of exons
of lncRNAs. Briefly, we categorized putative lncRNAs
into sense intergenic lncRNAs, sense genic lncRNAs,
convergent lncRNAs, divergent lncRNAs, and antisense
intergenic lncRNAs [44]. As a prediction of possible
functions of lncRNAs, we annotated the lncRNAs based
on their proximity to nearby protein-coding genes. Spe-
cifically, lncRNAs that were within 10 kb upstream or
downstream of a protein-coding gene were marked as
possible cis-acting lncRNAs. Correlation analysis for ex-
pression of all genes and lncRNAs was performed by
using the R package Hmisc (https://cran.r-project.org/
web/packages/Hmisc/). LncRNA and mRNA pairs with
correlation coefficients > 0.80 and p < 0.05 were identi-
fied as correlated pairs. Customized python scripts were
used to extract pairs that were both correlated and close
to each other.

Identification of orthologous gene families
We downloaded the coding sequences (CDS) and pep-
tide sequence of goose, human, and chicken from NCBI.
When there was more than one alternative transcript of
a gene, we only kept the transcript with the longest CDS
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and we filtered any transcripts that coded for fewer than
50 amino acids. Protein sequences from the final set of
transcripts were subjected to BLAST [42] to obtain the
similarity between sequences (e-value was set to 1*10− 5).
Hcluster_sg (https://github.com/douglasgscofield/hclus-
ter) was used to cluster the results and T-Coffee [45] to
rank the clusters. Finally, a customized script was used
to categorize gene families (such as single-copy gene
families, multi-copy gene families, and species-specific
gene families).
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