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Abstract
Objective  To evaluate whether structural brain network 
metrics correlate better with clinical impairment and 
information processing speed in multiple sclerosis (MS) 
beyond atrophy measures and white matter lesions.
Methods  This cross-sectional study included 51 healthy 
controls and 122 patients comprising 58 relapsing–
remitting, 28 primary progressive and 36 secondary 
progressive. Structural brain networks were reconstructed 
from diffusion-weighted MRIs and standard metrics 
reflecting network density, efficiency and clustering 
coefficient were derived and compared between subjects’ 
groups. Stepwise linear regression analyses were used 
to investigate the contribution of network measures 
that explain clinical disability (Expanded Disability 
Status Scale (EDSS)) and information processing speed 
(Symbol Digit Modalities Test (SDMT)) compared with 
conventional MRI metrics alone and to determine the 
best statistical model that explains better EDSS and 
SDMT.
Results C ompared with controls, network efficiency and 
clustering coefficient were reduced in MS while these 
measures were also reduced in secondary progressive 
relative to relapsing–remitting patients. Structural 
network metrics increase the variance explained by the 
statistical models for clinical and information processing 
dysfunction. The best model for EDSS showed that 
reduced network density and global efficiency and 
increased age were associated with increased clinical 
disability. The best model for SDMT showed that lower 
deep grey matter volume, reduced efficiency and 
male gender were associated with worse information 
processing speed.
Conclusions S tructural topological changes exist 
between subjects’ groups. Network density and global 
efficiency explained disability above non-network 
measures, highlighting that network metrics can provide 
clinically relevant information about MS pathology.

Introduction
Multiple sclerosis (MS) is a chronic disease of the 
central nervous system. Inflammation and demye-
lination are predominant in relapsing–remitting MS 
(RRMS), while neurodegeneration is more promi-
nent in the progressive phases (primary progressive 
MS (PPMS), secondary progressive MS (SPMS)).1 
Because measures obtained through conventional 
MRI techniques show incomplete correlation 
with patients’ disability,2 more advanced tech-
niques have been used demonstrating that grey 

matter (GM) atrophy3 and abnormalities outside 
white matter (WM) lesions4 also relate to cogni-
tive dysfunction. A very common cognitive domain 
affected is information processing speed and is 
assessed by Symbol Digit Modalities Test (SDMT).5 
Neurological impairment with particular emphasis 
on ambulation status is evaluated by another widely 
used measure, the Expanded Disability Status Scale 
(EDSS).6

Brain network analysis has been used to study 
topological alterations in pathology.7 For MS, 
diffusion-derived networks have shown reduced 
efficiency correlating with physical disability8 
and network changes that suggest adaptations to 
preserve cognitive function.9 Whether network 
metrics explain disability beyond routine imaging 
metrics is unknown. Only one study addressed this 
but using only motor network efficiency.10 Addi-
tionally, network reconstruction techniques have 
not addressed tractogram biases.11 Recent tech-
nical work has improved the biological accuracy 
of streamline tractography,12–14 highlighting the 
necessity of state-of-the-art techniques in network 
studies. To our knowledge, these techniques have 
not yet been applied to MS.

In this cross-sectional study, using advanced 
network reconstruction methods, we aimed (1) 
to compare structural networks between study 
subgroups, (2) to investigate whether network 
metrics explain EDSS and SDMT above conven-
tional MRI metrics, and (3) to determine the best 
statistical model that explains better EDSS and 
SDMT.

Methods
Participants
We recruited 122 patients with MS (58 RRMS, 
28 PPMS and 36 SPMS) who had not experi-
enced relapses within the preceding 4 weeks and 
classified as per Lublin and Reingold criteria.15 
Fifty-one healthy controls (HC) were also exam-
ined. Participants underwent MRI and neuro-
logical assessment using EDSS.6 Verbal SDMT 
was performed in a subset of MS participants 
(n=60) (online supplementary etable 1) to screen 
for information processing speed. Fatigue (visual 
analogue scale), depression and anxiety (Hospital 
Anxiety and Depression Scale (HADS)) were also 
assessed in some patients (online supplementary 
etable 2).

http://jnnp.bmj.com/
http://dx.doi.org/10.1136/jnnp-2018-318440
http://dx.doi.org/10.1136/jnnp-2018-318440
http://crossmark.crossref.org/dialog/?doi=10.1136/jnnp-2018-318440&domain=pdf&date_stamp=2019-01-11
https://dx.doi.org/10.1136/jnnp-2018-318440
https://dx.doi.org/10.1136/jnnp-2018-318440
https://dx.doi.org/10.1136/jnnp-2018-318440
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Figure 1  Flowchart of brain network reconstruction. For each subject, (A) T1-weighted image is segmented into grey matter (B) and white matter (C). The 
grey matter segmentation is parcellated into cortical and deep grey matter regions (B), which serve as network nodes (D) in the subsequent network-based 
analysis. From a diffusion-weighted image (DWI) (E), voxel-wise fibre orientation distribution (FOD) (F) is estimated and whole-brain tractography undertaken 
(G), with the white matter segmentation (C) used to prevent this from spilling into grey matter (see main text for details). Finally, nodes and tractogram are 
modelled into a network (H). Connections are weighted by the sum of the pairwise streamline weights.

MRI data acquisition
MRI data were acquired on a Philips Achieva 3T MR scanner 
(Philips Healthcare, Best, Netherlands) with a 32-channel head 
coil using (1) 3D sagittal T1-weighted scans with a fast-field 
echo scan, (2) whole brain High Angular Resolution Diffusion 
Imaging scan with echo planar imaging consisted of a cardi-
ac-gated spin-echo sequence and (3) dual-echo proton density/
T2-weighted axial oblique scans. All data were acquired with 
slices aligned with the anterior commisure - posterior commisure 
(AC-PC) line to minimise the effect of head positioning on data 
analysis.

Structural imaging processing
A non-rigid transformation was performed to register the 
subject’s non-filled T1-weighted bias-field corrected image 
to the corresponding diffusion-weighted image (DWI) using 
BrainSuite V.15b16 resulting in a structural image of resolution 
2×2×2 mm3. The lesion-filled T1-weighted images17 were then 
segmented into different tissue types and parcellated according 
to Desikan-Killiany-Tourville atlas protocol using GIF.18 The 
volumes of the various tissue types were estimated (normal-ap-
pearing brain volume (NABV), GM, cortical GM (CGM), deep 
GM (DGM)). Reduction of these volumes reflects atrophy. Lesion 
load (LL) was also computed as a measure of WM damage.

Diffusion-weighted imaging processing and tractography
The mean b0 image was rigid registered to the first b0 image. 
Then, the same rigid transformation was applied to the 61 DWI 
volumes. FSL V.5.0.9 was used on the DWI data to correct for 
eddy currents and head motion19 and BrainSuite V.15b to correct 
for Echo-planar imaging (EPI) distortions using the T1-weighted 
image as the registration template for the diffusion data.16 For 
probabilistic tractography, we used second-order integration 
over fibre orientation distributions (iFOD2) estimated with 
constrained spherical deconvolution (CSD).20 A total of 107 
streamlines were generated implementing the anatomically 
constrained tractography (ACT) algorithm12 followed by spher-
ical-deconvolution informed filtering of tractograms (SIFT2)13 
(MRtrix3 V.0.3.14 package).

Network reconstruction and metrics
We constructed a symmetric matrix consisting of 120 nodes. 
Each network edge was defined as the sum of weights of stream-
lines connecting a pair of nodes.13 Figure  1 summarises the 
pipeline. We extracted a range of standard network measures 
using TractoR21: Edge density, also known as connectivity, is the 
ratio of the connections exist relative to the number of potential 
connections. Global efficiency is a network integration metric 
that describes the information flow over the entire network 
while local efficiency is considered a local homolog quantifying 
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Figure 2  Descriptive pairwise univariable associations in patients. The reported value in each entry of the matrix corresponds to the pairwise Pearson 
correlation coefficient (r). Gender is a binary variable in which 0 is male and 1 female. CGM, cortical grey matter; DGM, deep grey matter; ED, Edge density; 
EDSS, Expanded Disability Status Scale; GE, global efficiency; GM, grey matter; LL, lesion load; mCC, mean clustering coefficient; mLE, mean local efficiency; 
MRI, magnetic resonance imaging; NABV, normal appearing brain volume; NAWM, normal appearing white matter; SDMT, Symbol Digit Modalities Test.

information transfer within local networks. Finally, clustering 
coefficient reflects the number of connections between neigh-
bouring nodes and is related to network segregation 22 (for 
further details on MRI parameters and analysis see online 
supplementary methods).

Statistical analysis
Statistical analysis was performed using R software (https://www.​
r-​project.​org/ V.3.3.0). For all the models, we explored whether 
there was a violation of normality assumption of the residuals. 
Data are reported as mean±SD, unless otherwise stated. P values 
<0.05 were considered statistically significant.

Preliminary analysis
To assess network differences between subjects’ groups, ANOVA 
analysis was used, adjusting for age, gender, LL and total 
intracranial volume (TIV) to correct for head size. To explore 
possible associations of all the variables in patients, we used 
bivariate Pearson’s correlations. The variables include network 
metrics (edge density, global efficiency, mean local efficiency 
and mean clustering coefficient), atrophy measures (NABV, GM, 

CGM, DGM), WM damage metrics (LL), clinical scores (EDSS 
and SDMT) and patient age and gender (figure 2). In this study, 
atrophy measures and WM lesions are also referred to as MRI 
metrics. Volumetric differences between HC and patients with 
MS were also assessed (online supplementary etable 3).

Network measures and volumetric parameters in explaining 
EDSS and SDMT
We performed stepwise linear regression analyses using each of 
the volume metrics (in turn) as independent variables and age, 
gender and LL as covariates to explain clinical scores (dependent 
variable). We also controlled for the presence of disease-modi-
fying treatments (DMTs). We selected the best model as assessed 
with the adjusted R2 (Adj.R2) and then added each network 
metric, in turn, as an independent variable. For SDMT, we 
performed a post hoc analysis controlling for education level as 
a categorical and afterwards as a continuous variable to investi-
gate a possible linear relationship between education level and 
SDMT. To assess whether the effect for each network metric 
in explaining disability is group dependent, we stratified the 
MS population based on their clinical profile by creating an 

https://dx.doi.org/10.1136/jnnp-2018-318440
https://dx.doi.org/10.1136/jnnp-2018-318440
https://www.r-project.org/
https://www.r-project.org/
https://dx.doi.org/10.1136/jnnp-2018-318440
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Table 1  Demographic, clinical, MRI, and network metrics

HC (n=51)
Patients with MS 
(n=122) RRMS (n=58) PPMS (n=28) SPMS (n=36)

Demographics

 � Age, years 41±13 48±11 42±10 52±9 53±7

 � Gender (M/F) 25/26 36/86 18/40 10/18 8/28

 � Disease duration, years – 15±10 11±8 14±7 22±10

 � % (n) patients of DMTs – 58 (67) 84 (48) 13 (3) 47 (16)

 � % (n) patients who relapsed in 
the previous 2 years

– 51 (38) 68 (32) 0 (0) 24 (6)

Clinical scores

 � EDSS, median – 5.5 (0–8.5) 2 (0–7) 6 (3–8) 6.5 (4–8.5)

 � SDMT 65.08±8.31 45.50±13.27 51.04±14.28 42.86±9.46 39.00±10.88

MRI metrics

 � NABV (cm3) 1158±102 1042±120 1070±123 1060±122 984±93

 � GM (cm3) 679±57 625±65 641±64 632±67 593±52

 � CGM (cm3) 640±54 591±61 606±61 597±65 561±50

 � DGM (cm3) 39.00±3.39 34.18±4.02 34.86±4.09 35.41±3.50 32.12±3.54

 � NAWM (cm3) 480±49 418±59 429±62 429±60 391±45

 � LL (mL) – 14.37±15.92 12.78±15.72 16.56±19.83 15.23±12.73

Network metrics

 � Edge density, (%) 92.6±2.7 90.6±3.2 90.8±3.3 90.5±3.0 90.3±3.0

 � Global efficiency 3881±121 3783±175 3827±137 3763±196 3729±199

 � Mean local efficiency 3975±139 3889±200 3934±160 3868±220 3831±229

 � Mean clustering coefficient 247±9.2 223±18.3 227±17.2 224±20.5 217±16.8

CGM, cortical grey matter; DGM, deep grey matter; DMT, disease-modifying treatment; EDSS, Expanded Disability Status Scale; GM, grey matter; HC, healthy controls; LL, lesion 
load; MS, multiple sclerosis; NABV, normal-appearing brain volume; NAWM, normal-appearing white matter; PPMS, primary progressive MS; RRMS, relapsing remitting MS; 
SDMT, Symbol Digit Modalities Test; SPMS, secondary progressive MS.

interaction term, for example the product between the network 
metric and a categorical variable for MS subgroup (RRMS, 
PPMS, SPMS), ‘network metrics×MS subgroup’, that was then 
included in the model as an explanatory variable. For SDMT, 
we explored possible associations between network metrics and 
MRI variables in HC.

Final models to explain EDSS and SDMT
To find the best model that explains disability, a stepwise forward 
selection linear regression strategy was employed. All variables 
of interest were sequentially added to the model and kept only if 
significant, culminating in two final models, one per each clinical 
score.

Results 

Demographic, clinical, MRI and network data from patients 
with MS and HC are summarised in table 1.

Differences in network metrics in MS population and 
subtypes
There was a significant decrease in global efficiency (regres-
sion coefficient (RC)=−71.23, p=0.016), mean local effi-
ciency (RC=−72.53, p=0.031) and mean clustering coefficient 
(RC=−14.84, p<0.0001) in the whole MS group when 
compared with HC. For the subtypes, there was reduced global 
efficiency in PPMS (RC=−85.82, p=0.027) and in SPMS 
(RC=−145.34, p=0.0002) relative to HC and also decrease 
in this metric in SPMS relative to RRMS (RC=−111.90, 
p=0.0008). Mean local efficiency was reduced in SPMS 
compared with HC (RC=−158.42, p=0.0002) and to RRMS 
(RC=−128.21, p=0.0007). Relative to HC, mean clustering 

coefficient was reduced in RRMS (RC=−14.84, p<0.0001), 
PPMS (RC=−13.42, p<0.0001) and SPMS (RC=−20.30, 
p<0.0001) while relative to RRMS it was reduced in SPMS 
(RC=−8.30, p=0.0033). There was also a significant decrease 
in SPMS compared with PPMS (RC=−6.88, p=0.037). All 
models were adjusted for age, gender, LL and TIV (table 2).

Descriptive associations among study variables in patients
Pairwise associations among clinical, volume and network 
metrics, LL age and gender study variables are shown in figure 2. 
Higher LL was associated with lower connectivity (r=−0.3), 
lower values of global (r=−0.3) or local (r=−0.2) efficiency 
and reduced clustering (r=−0.6). Also, lower connectivity 
and lower clustering coefficient were associated with reduced 
volumes of NABV, GM, CGM, DGM and normal-appearing 
WM (NAWM) (r=between 0.2 and 0.5). Moreover, we found 
associations between clinical scores and network measures; for 
example, higher EDSS and lower SDMT scores were associated 
with lower connectivity values, global and local efficiency and 
clustering coefficient (r=between 0.2 and 05). Additionally, 
correlation analyses between clinical scores and volume metrics 
demonstrated that higher EDSS scores and lower SDMT were 
associated with reduced volumes of NABV, GM, CGM, DGM 
and NAWM (r=between 0.2 and 0.5). Higher LL was also asso-
ciated with decreased SDMT (r=−0.4) but showed very little 
correlation with EDSS score (r=0.1). We also found that higher 
EDSS score is associated with lower SDMT score (r=-0.5). 
Gender showed weak associations with network metrics (r=be-
tween −0.1 and 0.2). For age, we found that older participants 
show lower values of network metrics (r=−0.1 and 0.2) except 
edge density that shows weak linear relationship (r<0.05).
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Table 2  Exploratory network differences between different groups

HC RRMS PPMS

RC 95% CI P values RC 95% CI P values RC 95% CI P values

Edge density 

 � MS −0.65 (−1.69 to 0.38) 0.210

 � RRMS −0.71 (−1.84 to 0.42) 0.219

 � PPMS −0.72 (−2.1 to 0.67) 0.310 −0.011 (−1.27 to 1.25) 0.987

 � SPMS −0.45 (−1.78 to 0.88) 0.507 0.258 (−0.93 to 1.43) 0.670 0.27 (−1.12 to 1.66) 0.707

Global efficiency

 � MS −71.23 (−129.47 to −13.00) 0.016

 � RRMS −33.44 (−95.11 to 28.25) 0.287

 � PPMS −85.82 (−161.6 to −9.96) 0.027 −52.38 (−121.08 to 16.34) 0.135

 � SPMS −145.34 (−218.38 to −72.28) 0.0001 −111.90 (−176.47 to −47.31) 0.0008 −59.52 (−135.72 to 16.67) 0.126

Mean local efficiency

 � MS −72.53 (−138.60 to −6.46) 0.031

 � RRMS −30.21 (−100.16 to 39.74) 0.396

 � PPMS −85.68 (−171.68 to 0.34) 0.051 −55.46 (−133.39 to 22.47) 0.162

 � SPMS −158.42 (− 241.26 to −75.58) 0.0002 −128.21 (−201.44 to −54.96) 0.0007 −72.74 (−159.16 to 13.68) 0.099

Mean clustering coefficient

 � MS −14.84 (−19.89 to −9.79) <0.0001

 � RRMS −12.00 (−17.51 to −6.48) <0.0001

 � PPMS −13.42 (−20.19 to −6.64) 0.0001 −1.42 (−7.55 to 4.73) 0.650

 � SPMS −20.30 (−26.84 to −13.76) <0.0001 −8.30 (−14.07 to −2.52) 0.0033 −6.88 (−13.69 to −0.06) 0.037

Analysis of variance was performed. P values in bold denote statistical significance at p<0.05 when the groups on the left were compared with the reference group (top row) 
and adjusted for age, gender, lesion load and total intracranial volume.
HC, healthy controls; MS, multiple sclerosis; PPMS, primary progressive MS; RC, regression coefficient; RRMS, relapsing–remitting MS; SPMS, secondary progressive MS.

Statistical modelling of EDSS score
We found that NABV was the only significant independent 
variable of EDSS after adjusting for age, gender and LL. For 
each millilitre decrease in NABV, there was an increase in the 
EDSS score of 4.06×10–3 (95% CI −7.68×10–3 to −4.3×10–3, 
p=0.029, Adj.R2=0.185; table 3). We did not find any signifi-
cant adjusted associations between the other volume metrics and 
EDSS.

When network metrics were added to the model reported 
above as independent variable, in turn, we found that they were 
each associated with EDSS independently of NABV. Specifi-
cally, for each percentage point decrease in edge density, there 
was an increase in the EDSS score of 0.13 (95% CI −0.27 to 
−1.49×10–3, p=0.047, Adj.R2=0.205), and for each unit 
decrease in global efficiency, there was an increase in EDSS of 
2.67×10–3 (95% CI −4.75×10–3 to −5.81×10–4, p=0.013, Adj.
R2=0.221). For each unit decrease in mean local efficiency, there 
was an increase in EDSS of 1.90×10–3 (95% CI −3.76×10–3 
to −4.40×10–5, p=0.045, Adj.R2=0.206), and for each unit 
decrease in mean clustering coefficient, there was an increase 
in EDSS of 3.98×10–2 (95% CI −6.34×10–2 to −1.61×10–2, 
p=0.011, Adj.R2=0.235) (table 3). We did not find any signif-
icant difference in the effect of any of the network measures in 
any of the MS subgroups examined. All the above models were 
adjusted for age, gender, LL and DMTs.

The best model to explain EDSS using the stepwise forward 
selection linear regression analysis showed that lower edge 
density, lower global efficiency and increased participants’ age 
explained 26% of the variance in EDSS (table 3). The explained 
variance is higher compared with 18.5% for NABV alone or 
with 20% for global efficiency (−0.02, 95% CI −0.0049 to 
−0.00063, p=0.012) or with 20% for edge density (−0.16, 
95% CI −0.28 to −0.035, p=0.012).

Statistical modelling of SDMT score
We repeated the multiple linear regression analyses to explain 
SDMT. When only volume metrics were included, the best 
model fit was achieved by DGM as independent variable, 
showing that for each 1 cm3 decrease in the volume of DGM, 
there was a decrease in the SDMT of 1.61 (95% CI 0.79 to 2.43, 
p<0.001, Adj.R2=0.361; table 4), that is, smaller DGM volumes 
were associated with worse information processing speed in the 
whole MS group.

When we added network metrics, in turn, in our multiple regres-
sion analysis that included DGM, we found that global efficiency, 
mean local efficiency and mean clustering coefficient were able to 
significantly explain additional variance in SDMT. For each unit 
increase in global efficiency, there was an increase in the SDMT 
of 0.02 (95% CI 0.01 to 0.04, p=0.008, Adj.R2=0.396). For 
each unit increase in mean local efficiency, there was an increase 
in the SDMT of 0.02 (95% CI 0.002 to 0.03, p=0.018, Adj.
R2=0.380), and finally for each unit increase in mean clustering 
coefficient, there was an increase in the SDMT of 0.21 (95% CI 
0.05 to 0.38, p=0.013, Adj.R2=0.387). There was no evidence of 
change of SDMT per percentage increase in edge density (0.44, 
95% CI −0.56 to 1.44, p=0.38, Adj.R2=0.374; table 1). Addi-
tionally, there was no significant difference in the effect of any 
of the network metrics in any of the subgroups examined while 
the statistical models do not explain SDMT in HC. All the above 
models were adjusted for age, gender, LL and DMTs.

The best model to explain SDMT using the stepwise forward 
selection linear regression analysis showed that greater DGM 
volume, greater global efficiency and female gender were all 
associated with better information processing speed (table  1). 
This model explained 39.6% of the variance in SDMT scores 
compared with 36% for the DGM alone (1.61, 95% CI 0.79 to 
2.43, p<0.001).
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Table 3  Stepwise linear regression of EDSS in multiple sclerosis

Model 
summary+predictors

Regression
coefficient 95% CI P values

MRI metrics

EDSS score Adj.R2=0.185

NABV, cm3 −0.0041 (−0.0077 to −0.00043) 0.029

Age, years 0.081 (0.044 to 0.12) <0.001

Female −0.73 (−1.66 to 0.20) 0.125

MRI metrics+network measures

EDSS score Adj.R2=0.205

NABV, cm3 −0.0021 (−0.0061 to 0.0019) 0.297

Edge density, % −0.13 (−0.26 to −0.0014) 0.047

Age, years 0.087 (0.051 to 0.12) <0.001

Female −0.60 (−1.53 to 0.33) 0.202

Adj.R2=0.221

NABV, cm3 −0.0037 (−0.0073 to −0.00016) 0.041

Global efficiency −0.0026 (−0.0048 to −0.00058) 0.013

Age, years 0.072 (0.036 to 0.11) <0.001

Female −0.52 (−1.44 to 0.40) 0.266

Adj.R2=0.206

NABV, cm3 −0.0041 (−0.076 to −0.00049) 0.026

mLE −0.0019 (−0.0038 to −0.000044) 0.045

Age, years 0.073 (0.036 to 0.11) <0.001

Female −0.57 (−1.50 to 0.37) 0.231

Adj.R2=0.229

NABV, cm3 −0.0016 (−0.005 to 0.007) 0.551

mCC −0.029 (−0.051 to −0.0075) 0.008

Age, years 0.078 (−0.0042 to 0.0022) <0.001

Female −0.30 (−1.26 to 0.66) 0.534

Final model

EDSS score Adj.R2=0.259

Edge density, % −0.17 (−0.28 to −0.060) 0.003

Global efficiency −0.0031 (−0.0051 to −0.0011) 0.003

Age, years 0.081 (0.047 to 0.12) <0.001

P values in bold denote statistical significance at p<0.05.
EDSS, Expanded Disability Status Scale; NABV, normal-appearing brain volume; mCC, mean 
clustering coefficient; mLE, mean local efficiency.

Table 4  Stepwise linear regression of SDMT in multiple sclerosis

Model 
summary+predictors

Regression
coefficient 95% CI P values

MRI metrics

SDMT score Adj.R2=0.361

DGM, cm3 1.61 (0.79 to 2.43) <0.001

Lesion load, mL −0.17 (−0.34 to −0.0014) 0.048

Female 12.16 (5.51 to 18.82) <0.001

MRI metrics+network measures

SDMT score Adj.R2=0.352

DGM, cm3 1.52 (0.61 to 2.43) 0.001

Lesion load, mL −0.17 (−0.34 to 0.0069) 0.059

Edge density, (%) 0.24 (−0.75 to 1.23) 0.624

Female 11.94 (5.18 to 18.70) <0.001

Adj.R2=0.396

DGM, cm3 1.93 (1.21 to 2.65) <0.001

Global efficiency 0.021 (0.0055 to 0.035) 0.008

Female 10.97 (4.37 to 17.56) 0.002

Adj.R2=0.380

DGM, cm3 2.01 (1.28 to 2.75) <0.001

mLE 0.015 (0.0028 to 0.028) 0.018

Female 11.43 (4.79 to 18.06) 0.001

Adj.R2=0.387

DGM, cm3 1.45 (0.63 to 2.28) <0.001

mCC 0.21 (0.047 to 0.38) 0.013

Female 9.92 (2.98 to 16.85) 0.006

Final model

SDMT score Adj.R2=0.396

DGM, cm3 1.93 (1.21 to 2.65) <0.001

Global efficiency 0.021 (0.0055 to 0.035) 0.008

Female 10.97 (4.36 to 17.56) 0.002

P values in bold denote statistical significance at p<0.05.
DGM, deep grey matter; SDMT, Symbol Digit Modalities Test; mCC, mean clustering 
coefficient; mLE, mean local efficiency.

Discussion 

This study showed structural network topological changes within 
the various MS groups. We also demonstrated that markers of 
structural network disruption explain EDSS and SDMT scores 
above metrics of tissue atrophy and WM lesions.

Structural network differences between subjects’ groups
We detected network topological changes in MS. Relative 
to HC, SPMS had reduced global and local efficiency, PPMS 
reduced global efficiency while there was no efficiency change 
in RRMS. These changes reflect network alterations due to 
diffuse WM pathology including impaired long-distance and 
short-distance connections, characteristics that are more promi-
nent in the progressive types. Previous studies focused mainly on 
RRMS reporting decreases in this metric in structural8 21 22 and 
functional22–24 networks while others, in accordance with this 
work, found no differences.25 Intriguingly, increased efficiency 
in RRMS in the first year from onset in the absence of clinical 
impairment is suggestive of structural adaptations to maintain 
normal function.9 Our RRMS cohort has a relatively long disease 
duration with high EDSS due to accrual of baseline disability as a 
result of incomplete recovery from relapses explaining partly the 
absence of this effect. Yet, only one study considered SPMS and 

PPMS group reporting reduced global efficiency, in accordance 
with our findings.21 Moreover, we demonstrate reduced global 
and local efficiency in SPMS relative to RRMS, a result likely 
to reflect the neurodegenerative component in this progressive 
subtype.

Clustering coefficient is a ‘small-world’ metric and reduc-
tion suggests a more random architecture26 related to increased 
disability as shown in our study and elsewhere.27 Previous struc-
tural studies reported increased clustering coefficient in RRMS 
compared with HC9 28 29 and is thought to reflect transient 
compensatory changes. No change was reported in functional 
networks.23 30 Here, we report a decrease in clustering coeffi-
cient in RRMS compared with HC, in agreement with a study 
that investigated both structural and functional networks.22 We 
also extend these findings demonstrating reduction of this metric 
in the progressive phases. Clustering coefficient was further 
reduced in SPMS relative to RRMS and PPMS indicating that 
impaired local information flow is linked to the disease severity. 
Nonetheless, further investigations with bigger sample sizes and 
longitudinal study design should confirm the study findings.

Network measures explain additional variance of disability
Whole brain atrophy is a relatively strong predictor of EDSS. 
Our study shows that the addition of network metrics into 
the model, singly and together, explains more EDSS variance, 
leading to our final model (table  3), according to which edge 
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density and global efficiency explain 26% of the variance, that 
is 7% more compared with NABV alone (19%). Loss of connec-
tivity could reflect neurodegeneration due to continuous inflam-
mation31 while reduced global efficiency could indicate impaired 
structural long-range connections probably due to inflammatory 
activity and neuroaxonal loss.32 The fact that these measures 
integrate information beyond local tissue damage and atrophy 
measures may account for the increased explained variance.

SDMT was most strongly associated with DGM atrophy and 
WM damage.33 Previous structural and functional studies demon-
strated the relationship between network disruption and cogni-
tive impairment.4 33 34 Our study findings showed that global 
efficiency is associated with SDMT as previously shown and 
it also explained additional variance (table 1) highlighting that 
intact network integration is important for efficient information 
processing beyond participant’s education level and treatment. 
These findings are also consistent across WM diseases35 signi-
fying the relevance of network efficiency as potential marker of 
cognitive disability.

MS is a heterogeneous disease. This study included patients 
with MS with the main disease phenotypes in order to provide 
a representative snapshot of structural networks throughout 
the entire disease course. Our regression analyses show that the 
behaviour of the network metrics was similar in all MS subtypes 
suggesting that these measures could be useful across the whole 
MS disease spectrum. The same statistical models did not explain 
SDMT in HC. This negative result is not surprising given the 
narrow distribution of the SDMT variable in HC compared with 
patients (see table 2 for mean and SD). Furthermore, due the 
small number of HC for which we have SDMT (n=12), these 
results should be interpreted with caution. Future studies could 
assess whether the findings presented here are replicated in other 
cohorts.

Descriptive associations among study variables in patients
Our univariate associations in patients revealed some inter-
esting patterns. Low values of network metrics were associated 
with clinical impairment and worse information processing 
speed in accordance with previous studies.8 22 25 Interestingly, 
reduced clustering showed the strongest association out of 
network metrics with worse SDMT indicating that network 
randomisation impairs information processing speed as shown 
previously.27 Our multivariate analysis though demonstrated 
that reduced network integration and tissue atrophy can more 
strongly affect SDMT performance. In line with previous work,8 
WM lesions impair the communication between brain regions 
at the global and local level as demonstrated by the reduced 
network efficiencies. As shown in the exact same cohort, we did 
not find any association between WM lesions and EDSS10 and 
only weak association between WM lesions and SDMT, and this 
highlights the need to explore non-conventional MRI metrics to 
explain disability. Also, there was no association between edge 
density and any of the network efficiencies. Although this could 
be the result of wiring cost and efficiency,26 we argue that direct 
comparison between binary and weighted network is not valid.

In our approach, we used CSD to model intravoxel crossing 
fibres,20 and ACT and SIFT2 to improve connection and stream-
line density,12 13 respectively, with the assumption that the FOD 
amplitude corresponds to the underlying fibre density.36 These 
advanced methods improve tractogram reconstruction without 
the need of various scaling techniques.14 We also provided 
anatomical prior of the WM ensuring that no streamlines 
are incorrectly terminated in the WM due to lesions (online 

supplementary efigure 1). In fact, we identified an association 
between LL and connectivity, but this correlation is not that high 
(r=−0.3), which highlights that our current approach is not 
overly influenced by lesions.

Limitations and future directions
This study has several limitations. In our approach, we applied 
techniques to address some of the reconstruction biases and 
to ensure that no streamlines were abnormally terminated in 
WM.12–14 However, histological validation studies are required 
to make direct links between imaging measures and underlying 
pathology. Additionally, the cross-sectional design of the study 
does not allow to determine the clinical relevance of network 
measures over time. Moreover, we used SDMT scores for 
approximately half of MS cohort (n=60 vs n=122), but this 
subcohort had similar proportions of MS subgroups to the 
whole cohort (online supplementary etable 1). Also, the effects 
of fatigue, depression and anxiety can be investigated in future 
studies with larger cohorts. A post hoc analysis revealed depres-
sion and anxiety scores showed mild correlations with SDMT 
whereas fatigue did not. It is difficult to investigate their influ-
ences in our cohort as the HADS and fatigue scores were not 
collected in all subjects with SDMT. Finally, although the effect 
of cortical lesions in clinical scores is limited,37 it is possible that 
they may influence our study outcomes.

The study findings could provide the basis for future work. 
There are different scales that we could study MS from, including 
micro, meso and macro scales.38 Network analysis offers a 
framework at the macroscale to study whole brain connectivity 
patterns beyond focal pathology while TBSS, for example, is 
currently considered a leading technique for the voxel-wise DTI 
analysis.4 Future investigations could focus in the comparison 
between scales and their link with clinical outcome. Additionally, 
further studies could follow a subnetwork or nodal rather than 
global network analysis and perhaps derive integrative measures 
of structural and functional networks and investigate if these 
parameters explain additional variance.

Conclusion
In conclusion, we found distinct network organisation in the 
various groups. Also, network metrics and in particular global 
efficiency explains disability over and above non-network 
metrics supporting the relevance of intact long-distance connex-
ions mainly, to maintain normal function. These results highlight 
the potential of network parameters as biomarkers for disease 
diagnosis, prognosis and in clinical trials.
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