Skip to main content
. 2018 Nov 22;90(2):219–226. doi: 10.1136/jnnp-2018-318440

Table 3.

Stepwise linear regression of EDSS in multiple sclerosis

Model summary+predictors Regression
coefficient
95% CI P values
MRI metrics
EDSS score Adj.R2=0.185
NABV, cm3 −0.0041 (−0.0077 to −0.00043) 0.029
Age, years 0.081 (0.044 to 0.12) < 0.001
Female −0.73 (−1.66 to 0.20) 0.125
MRI metrics+network measures
EDSS score Adj.R2=0.205
NABV, cm3 −0.0021 (−0.0061 to 0.0019) 0.297
Edge density, % −0.13 (−0.26 to −0.0014) 0.047
Age, years 0.087 (0.051 to 0.12) < 0.001
Female −0.60 (−1.53 to 0.33) 0.202
Adj.R2=0.221
NABV, cm3 −0.0037 (−0.0073 to −0.00016) 0.041
Global efficiency −0.0026 (−0.0048 to −0.00058) 0.013
Age, years 0.072 (0.036 to 0.11) < 0.001
Female −0.52 (−1.44 to 0.40) 0.266
Adj.R2=0.206
NABV, cm3 −0.0041 (−0.076 to −0.00049) 0.026
mLE −0.0019 (−0.0038 to −0.000044) 0.045
Age, years 0.073 (0.036 to 0.11) < 0.001
Female −0.57 (−1.50 to 0.37) 0.231
Adj.R2=0.229
NABV, cm3 −0.0016 (−0.005 to 0.007) 0.551
mCC −0.029 (−0.051 to −0.0075) 0.008
Age, years 0.078 (−0.0042 to 0.0022) < 0.001
Female −0.30 (−1.26 to 0.66) 0.534
Final model
EDSS score Adj.R2=0.259
Edge density, % −0.17 (−0.28 to −0.060) 0.003
Global efficiency −0.0031 (−0.0051 to −0.0011) 0.003
Age, years 0.081 (0.047 to 0.12) < 0.001

P values in bold denote statistical significance at p<0.05.

EDSS, Expanded Disability Status Scale; NABV, normal-appearing brain volume; mCC, mean clustering coefficient; mLE, mean local efficiency.