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Abstract

Background: In resource-limited settings, HIV-1 drug resistance testing to guide antiretroviral 

therapy (ART) selection is unavailable. We retrospectively conducted genotypic analysis on 

archived samples from Nigerian patients who received targeted viral load testing to confirm 

treatment failure and report their drug resistance mutation patterns.

Methods: Stored plasma from 349 adult patients on non-nucleoside reverse transcriptase 

inhibitor (NNRTI) regimens were assayed for HIV-1 RNA viral load and samples with >1,000 

copies/ml were sequenced in the pol gene. Analysis for resistance mutations utilized the IAS-US 

2011 Drug Resistance Mutation list.

Results: 175 samples were genotyped; majority subtypes were G (42.9%) and CRF02_AG 

(33.7%). Patients were on ART for a median of 27 months. 90% had the M184V/I mutation, 62% 

had ≥ 1 thymidine analogue mutations, and 14% had the K65R mutation. 97% had a NNRTI 

resistance mutation, and 47% had ≥ 2 etravirine associated mutations. In multivariate analysis 

tenofovir based regimens were less likely to have ≥ 3 nucleoside reverse transcriptase inhibitor 

(NRTI) mutations after adjusting for subtype, previous ART, CD4 and HIV viral load (p<0.001, 

OR 0.04). 70% of patients on tenofovir based regimens had at least 2 susceptible NRTIs to include 

in a second-line regimen compared with 40% on zidovudine based regimens (p=0.04, OR=3.4).

Conclusions: At recognition of treatment failure, patients on tenofovir based first-line regimens 

had fewer NRTI drug resistant mutations and more active NRTI drugs available for second-line 
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regimens. These findings can inform strategies for ART regimen sequencing to optimize long-term 

HIV treatment outcomes in low resource settings.
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INTRODUCTION

Unprecedented scale up of antiretroviral therapy (ART) for over 2.4 million HIV positive 

patients in resource limited countries has been achieved through the support of the 

President’s Emergency Plan For AIDS Relief (PEPFAR) in partnership with the Global 

Fund to fight AIDS, Tuberculosis and Malaria and national governments [1]. There is 

mounting evidence that monitoring clinical and immunological parameters, as opposed to 

HIV-1 RNA viral loads, may increase HIV-1 drug-resistant mutations and therefore limit 

options for second-line regimens [2,3,4]. New World Health Organization (WHO) guidelines 

recommend either tenofovir (TDF) or zidovudine (AZT) as the preferred nucleoside reverse 

transcriptase inhibitor (NRTI) for first-line regimens [5], but there is an increased focus on 

using TDF because its drug resistance patterns lead to less resistance in alternative 

thymidine analogue drugs [6]. However, there is limited reported data comparing drug 

resistance patterns between TDF or AZT containing first-line regimens and their impact on 

second-line options in low-resource settings.

Nigeria’s HIV-1 prevalence rate of 4.4% combined with a population over 140 million 

generates the second highest HIV/AIDS burden in the world [7], dominated by subtypes G 

and CRF02_AG [8,9,10]. In 2002, the government of Nigeria began providing subsidized 

ART [11] which expanded in 2005 through PEPFAR supported HIV/AIDS treatment 

services, to treat over 300,000 Nigerians by the end of 2009 [12]. There is evidence that with 

ART exposure, non-B subtypes may have genetic differences contributing to their pattern of 

drug resistance [13,14,15,16], and thus, mutations arising in Nigeria’s diverse subtype 

population could have cross-resistance to second-line options. In this study, we report 

antiretroviral drug-resistant mutations from Nigerian patients failing different first-line 

regimens and predict second-line NRTI options for effective long-term HIV treatment.

METHODS

We conducted a retrospective cross-sectional study performing genotypic sequencing 

analysis on pre-existing blood samples from patients who received targeted viral load testing 

to confirm virological failure.

Study Population

The Institute for Human Virology-Nigeria (IHVN), a PEPFAR implementing partner, 

provides ART to over 60,000 public sector patients through the AIDS Care and Treatment in 

Nigeria (ACTION) program. This study was conducted at IHVN supported sites, University 

of Abuja Teaching Hospital (UATH) and National Hospital Abuja (NHA). Patients were 

ETIEBET et al. Page 2

AIDS. Author manuscript; available in PMC 2019 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



included in the present study if they received HIV-1 RNA testing between November 2006 

and December 2007; were over 18 years; were on NNRTI based first-line regimens; and had 

not received any protease inhibitor (PI) based therapy.

This study was approved by the National Health Research Ethics Committee of Nigeria, the 

University of Abuja Teaching Hospital, National Hospital Abuja, and the University of 

Maryland Baltimore Institutional Review Board.

Clinic Procedures and Data Collection

Clinical care protocols for eligibility, regimen choice and monitoring followed Nigerian 

national guidelines [17]. During ACTION, six first-line treatment regimens were prescribed: 

zidovudine, lamivudine and nevirapine or efavirenz (AZT/3TC/NVP or EFV); stavudine, 

lamivudine, and nevirapine or efavirenz (d4T /3TC/NVP or EFV); and tenofovir, 

emtricitabine and nevirapine or efavirenz (TDF/FTC/NVP or EFV). First-line regimens were 

categorized according to type of NRTI prescribed [AZT, d4T, TDF]. Participants who were 

prescribed multiple first-line regimens (>1NRTI) were further categorized as being given 

AZT and d4T sequentially and in either order or substituting a first regimen containing AZT 

or D4T with TDF. Every 6 months, patients provided blood for CD4 counts and toxicity 

monitoring and received intensified adherence counseling.

Targeted viral load testing was implemented to guide accurate switching decisions in 

patients at high risk of virological failure defined by: 1) received ART prior to ACTION 

enrollment; 2) suspected of poor adherence; or 3) had clinical or immunological failure. 

Information about previous ART was self-reported as 1) yes or no and 2) date started. ART 

exposure before and during ACTION were summed for total ART. Poor adherence was 

defined as >7 days late for a scheduled pharmacy refill for over 20% of visits. Data was 

abstracted by medical folder review.

Laboratory Evaluation

Plasma HIV-1 RNA viral load (VL) testing was conducted using Roche Amplicor 

MONITOR 1.5 (Roche, Nutley, New Jersey, USA) assay (limit of detection: 400 copies/ml) 

at IHVN Asokoro Laboratory Training Center in Abuja. Laboratory quality assurance 

programs included verification of selected samples with FASCalibur (Beckton-Dickinson, 

Franklin Lakes, New Jersey, USA) and blinded sample panels testing. Samples eligible for 

genotyping (VL >1,000 copies/ml) were transported at −70°C to the Institute of Human 

Virology, University of Maryland School of Medicine Baltimore, USA.

Genotypic analysis of the HIV pol region was performed through nested PCR of protease 

(codons 1–99) and the amino terminus (codons 1–242) using methods described previously 

[18]. Amplification products were sequenced with Applied Biosystems 3130 automated 

sequencer (Applied Biosystems, Foster City, CA), assembled using Sequencher 4.2.2 (Gene 

Codes Corporation, Ann Arbor, MI), and aligned with standard subtype references 

(MacGDE). Phylogenetic analysis was conducted using Neighbor-joining and maximum 

parsimony bootstrap computation [19,20]. Viral sequences outside subtype clusters were 

analyzed using Simplot, v3.4 for inter–subtype recombination [21].
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Drug Resistance Mutation Analysis

Frequencies of drug-resistant mutations were estimated using ViroScore v8.1 [22] and 

categorized as NRTI and NNRTI associated mutations according to the International AIDS 

Society-USA 2011 list [23]. Thymidine analog mutations (TAMs) included M41L, D67N, 

K70R, L210W, T215F/Y, K219E/Q) that were further designated as TAM 1 (M41-L210-

T215Y) or TAM 2 (D67-K70-T215F-K219) [24]. Etravirine resistance was calculated using 

weighted scores [23], where L100I, K101P, Y181C/I/V result in the greatest impaired 

clinical response. The number of patients with zero, single, or multiple mutations was 

categorized within each first-line regimen. Phenotypic resistance patterns, susceptible (S), 

intermediate (I) or resistant (R), were predicted from a sum of scored mutations according to 

the Stanford Database Algorithm v1.2 [25]. Protease sequences were analyzed for amino 

acid substitutions at positions previously reported to be associated with protease inhibitor 

(PI) resistance in subtype B virus [26].

Statistical Analysis

Descriptive analyses were conducted using χ2 and Fisher’s exact test and Student’s t-test 

and Mann-Whitney test where appropriate. Univariate and multivariate logistic regressions 

were performed to identify factors associated with mutation patterns. Factors associated at 

the p<0.2 level with the outcome and potential confounders were included in multivariate 

models. Akaike’s Information Criterion (AIC) was used for model selection and the 

Hosmer-Lemeshow test for goodness of fit. Statistical analyses were performed using SAS 

(9.1.3).

RESULTS

The study population consisted of a cross-sectional sample of 349 patients who received 

targeted viral load testing. Of the 205 samples designated for genotyping, 30 failed to 

amplify (n=175). At viral load testing, 52% of patients were female, mean age was 38 years, 

median time on ART was 27 months and median CD4 count was 128 cells/mm3 (IQR:60–

229).

Of those patients genotyped, 14% were on AZT, 21% on d4T, 13% on TDF, and 52% on 

more than one NRTI. For those with multiple NRTIs, 26% were prescribed AZT and d4T 

sequentially and in either order. The remaining 25% were prescribed AZT or d4T initially, 

before substituting either of them with TDF. There was variation in HIV-1 subtypes with 

most patients harboring subtype G virus and CRF02_AG. Fewer than 6% had subtype A, B 

and C virus. Those who were genotyped were significantly more likely to have prior ART, 

more than 24 months of ART exposure, and lower CD4 counts at viral load testing [Table 1]. 

There were no significant differences between patients whose samples did and did not 

amplify (data not shown).

NRTI Resistance

Among all patients genotyped, 94% had at least one NRTI mutation and 62% had at least 1 

TAM mutation. The average number of NRTI mutations was 3 with a range of 0 to 8. Most 

(90%) patients harbored the M184V/I mutation and 14% had the K65R mutation. M184V 
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was the only mutation that was associated with a lower average HIV-1 RNA viral load (4.7 

vs. 5.1 log10copies/ml, p=0.01).

Patients on TDF based regimens were significantly more likely to have thymidine-sparing 

mutations (K65R (57%), M184I (30%), Y115F (13%)) as compared to AZT and d4T based 

regimens (p≤0.02). Conversely, patients on TDF based regimens were less likely to have 

TAM mutations [Table 2]. The two patients on TDF based regimens with a TAM mutation 

(K219E) also had the K65R mutation. In multivariate analysis, TDF based regimens were 

less likely to have three or more NRTI associated mutations after adjusting for subtype, 

previous ART exposure, CD4 and HIV viral load (OR 0.04, p<0.001). CD4 counts greater 

than 100 cells/mm3 remained independently protective of multiple NRTI mutations (100–

199: OR 0.3, p=0.03; ≥200: OR 0.4, p=0.09). Age, baseline CD4 counts (cells/mm3), 

adherence, and length of time on ART did not significantly improve the analysis and were 

not retained in the final model.

Forty one percent utilized the TAM 2 pathway and 32% utilized the TAM 1 pathway. 

Average HIV viral load were lower for TAM 2 as compared to TAM 1 (4.5 vs. 4.9 

log10copies/ml, p=0.02). Those who developed TAMs were more likely to be negative for 

the K65R mutation (70% vs. 12%, p<0.001). D67N and K219E were the TAMs seen with 

K65R in the three patients who had both. Patients with TAMs had a longer median time on 

ART (32 months vs. 23 months, p=0.06).

NNRTI and PI Resistance

Among all patients genotyped, 97% patients had at least one NNRTI mutation and 47% had 

two or more etravirine associated mutations. The most frequent NNRTI mutations were 

Y181C/V (43%) and K103N (37%). The L100I (36%), K103N (79%), and P225H (21%) 

mutations were more common in efavirenz based regimens as compared to nevirapine based 

regimens [Table 3].

Three patients had selected IAS PI major mutations (I50V, N83D, I84V and L90M). 

Secondary mutations related to polymorphisms (I13V (95%), M36I (83%), H69K (82%), 

V82I (43%) and L63P (28%)) also occurred among those genotyped.

Effect of Mutation Patterns on Second-line Regimen Options

Overall, 41% of patients genotyped did not have an active NRTI option for a second-line 

regimen. However, the sensitivity for second-line NRTI options varied depending upon the 

first-line regimen [Figure 1]. Using the WHO 2010 guidelines, tenofovir was fully active for 

52–58% of patients who received AZT or d4T; and 39% who received >1 NRTI. The 

sensitivity did not differ if the multiple first-line regimens included AZT and d4T (38%) or 

the regimens included AZT or d4T before TDF (39%). However, patients who had tenofovir 

as a first-line regimen were 100% sensitive to AZT and 70% sensitive to d4T. Furthermore, 

70% of patients on tenofovir based regimens had at least two options of NRTIs to include in 

a second-line regimen compared with 40% on zidovudine based regimens (OR=3.4, p=0.04).

Overall, 85% of patients genotyped had intermediate to high level resistance to the second-

line option, etravirine [Table 3]. For PIs, there was predicted phenotypic resistance to 
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nelfinavir and decreased virological response to tipranavir/ritonavir in 1 patient, as well as 

predicted intermediate resistance to lopinavir, atazanavir or saquinavir with ritonavir in 2 

patients, and to darunavir/ritonavir in 1 patient. There was no documented exposure to PIs in 

these patients.

DISCUSSION

Tenofovir (TDF) based first-line regimens resulted in significantly fewer NRTI mutations 

and more fully active NRTI drugs to include in a second-line regimen for this small study of 

patients at high risk of virologic failure. TDF based first-line regimen retained sensitivity to 

zidovudine (AZT) and a high proportion retained sensitivity to stavudine (d4T). In 

comparison, only about half of patients on AZT or d4T retained full sensitivity to their 

recommended second-line NRTI, TDF because of widespread accumulation of thymidine 

analogue mutations (TAMs), known to mediate cross resistance to all NRTIs [27].

We report 57% of patients (13/23) on TDF based regimens had K65R, a relatively 

uncommon mutation (1.7–4%) in viruses of subtype B [28]. K65R is selected by tenofovir, 

didanosine, stavudine and abacavir [29], but it may be emerging at higher frequencies 

among non-B subtypes exposed to TDF. Similar prevalences of K65R in TDF based 

regimens were reported by other studies of non-B subtypes [30,31]. In vitro studies suggest 

that K65R develops more readily in subtype C because of a site specific pause on the viral 

template during transcription [32] and this same mechanism may occur for subtypes found 

in Nigeria. Zidovudine and stavudine remain fully active with K65R, but abacavir and 

didanosine have reduced activity [33,34]. Tenofovir is partially active and it is enhanced 

when K65R co-occurs with M184V [35,36]. M184V was the most frequent mutation among 

TDF based regimens and the only one associated with a lower mean HIV-1 RNA viral load. 

Viruses with M184V have a decreased replicative capacity and its presence may suggest 

adherence [37,38]. M184I (7/23) and Y115F (3/23), are relatively uncommon mutations but 

occurred more often for those on tenofovir. The M184I may eventually switch to M184V 

and Y115F may be increasing for those on tenofovir, but the small numbers limit our 

inferences [39,40]. Further studies are needed to evaluate the potential impact of different 

mutation patterns that are arising in non-B subtypes experiencing selective pressure from 

tenofovir.

Only 12% of patients with the K65R mutation developed TAMs compared with 70% of 

those without the K65R mutation. Other studies have shown there is an antagonistic 

relationship between TAMs and K65R (41, 42). For those with frequent numbers of TAMs, 

slightly more study patients used the TAM 2 pathway and they had lower average HIV-1 

RNA viral loads. Prior studies have shown that the TAM 2 pathway has lower levels of TDF 

resistance [43], increased sensitivity to AZT with M184V [44], and slower rates of TAM 

acquisition [45]. Although this augurs well for second-line options, further studies are 

needed to confirm use of the TAM 2 pathway among non-B subtypes.

High levels of drug resistance in this study mirrors findings in populations who have defined 

virologic failure with clinical and immunologic parameters rather than viral load testing 

[45,46,47]. Relying on such measures to define virologic failure increases the number of 
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patients on sub-optimal second-line regimens ultimately leading to poorer treatment 

outcomes [48,49,50]. It is imperative that viral load testing is conducted in order to maintain 

effective second-line options in low resource settings.

Limitations of this study include its retrospective nature and its small numbers of patients 

receiving tenofovir or zidovudine. Larger prospective studies are needed to estimate rates of 

drug resistance in these first-line regimens. At the time, d4T was a recommended first-line 

regimen, but PEPFAR and national guidelines promoted substituting tenofovir because of 

d4T’s associated toxicity issues [17,51,52,53]. This study provided a unique opportunity to 

evaluate tenofovir as a first-line regimen. Another limitation was relying on predicted 

resistance patterns from algorithms without confirmation from phenotypic assays [54]. 

These assays require great resources and may not always be an option in low-resource 

settings. In addition, there was limited data on baseline mutation patterns, prior ART 

regimens, adherence, and archived and minority species; all of which could have better 

described the risk status of this population and whether it biased the mutation patterns 

observed for tenofovir and the other first-line regimens.

Our data suggest that tenofovir may be an optimal first-line regimen because it maintains 

susceptibility to thymidine analogue drugs in second-line regimens. Tenofovir has an 

increased tolerability which may foster adherence, limit multi-drug resistance patterns, and 

promote long term success for HIV/AIDS treatment programs. However, tenofovir is also 

associated with an increased frequency of the mutation K65R. The long term effects of this 

mutation are unclear and ongoing monitoring of virologic failure is critical in guiding 

selection of NRTIs in resource-limited settings.
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Figure 1. 
Susceptibility Frequencies of Second-line NRTI Treatment Options.
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Table 1.

Characteristics of NNRTI-based first-line regimen users with or without viral suppression

No. (%) of NNRTI

Characteristic Overall (N=349) Genotyped ≥1000 copies/ml (N=175)
Not Genotyped <1000 copies/ml 

(N=144) p-value
a

NNRTI Regimen 0.1

 AZT-3TC-NVP/EFV 59 (17) 25 (14) 32 (22)

 d4T-3TC-NVP/EFV 85 (25) 36 (21) 40 (28)

 TDF-FTC-NVP/EFV 46 (13) 23 (13) 20 (14)

 >1 first-line regimen 157 (45) 90 (51) 51 (36)

Gender 0.3

 Male 166 (48) 89 (51) 64 (44)

 Female 183 (52) 86 (49) 80 (56)

Age in years (Mean, SD) 37.9 (8.2) 38.1 (8.5) 37.6 (8.3) 0.6

Site 0.7

 UATH 153 (44) 75 (43) 66 (46) 0.7

 NHA 196 (56) 100 (57) 78 (54)

Previous ART <0.001

 Yes 208 (60) 126 (72) 61 (42)

 No 141 (40) 49 (28) 83 (58)

Length of Total ART

 Median, IQR 27 (19–43) 32 (20–44) 22 (16–33) <0.001

 ≤24 months 155 (44) 62 (35) 86 (60)

  >24 months 182 (52) 109 (62) 53 (37)

Adherent to ART 0.4

 Yes 227 (65) 109 (62) 96 (67)

 No 122 (35) 66 (38) 48 (33)

Baseline CD4 Count (cells/ml3) 0.5

 <100 118 (39) 63 (41) 47 (37)

 100–199 100 (33) 53 (35) 40 (32)

 ≥200 87 (29) 6 (24) 40 (32)

CD4 Count at VL (± 3 months) <0.001

 <100 104 (38) 71 (50) 26 (25)

 100–199 83 (30) 43 (30) 32 (30)

 ≥200 87 (32) 29 (20) 48 (45)

Viral load (copies/ml)

 Median (log10), IQR 3.8 (2.6–4.9) 4.7 (4.1–5.4)

 <1000 144 (41)
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No. (%) of NNRTI

Characteristic Overall (N=349) Genotyped ≥1000 copies/ml (N=175)
Not Genotyped <1000 copies/ml 

(N=144) p-value
a

 1,000–4,999 24 (7) 19 (11)

 5,000–99,999 103 (30) 85 (49)

 ≥100,000 78 (22) 71 (41)

Subtype

 G 75 (42.9)

 CRF02_AG 59 (33.7)

 CRF06_cpx 9 (5.1)

 A 6 (3.4)

 C 2 (1.1)

 B 1 (0.6)

 URFs 23 (13.1)

Note. Certain data were missing for selected patients. AZT, zidovudine; d4T, stavudine; TDF, tenofovir; 3TC, lamivudine; FTC, emtricitabine; 
NVP,nevirapine; EFV, efavirenz; UATH, University of Abuja Teaching Hospital; NHA, National Hospital Abuja; URFs, unique recombinant forms; 
VL, viral load; IQR, interquartile range.

a
Determined with 2-sided Pearson’s chi-square test.
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Table 2.

Frequency Distribution of Major NRTI Mutations

No. (%) of NRTI regimen

All (N=175) TDF (N=23) AZT (N=25) d4T (N=36) AZT/d4T
b
 (N=45) AZT/d4T,TDF

b
 (N=44) p-value

a

NRTI mutations

 M184V 144 (83)  14 (61)  22 (88)  29 (81)  42 (93)  36 (82) 0.1

 K65R  25 (14)  13 (57)    0   2 (6)    0  10 (23) <0.001

 V75I  17 (10)   1 (4)    0   7 (19)   6 (13)   3 (7) 0.03

 M184I  12 (7)   7 (30)    0   1 (3)    0   4 (9) 0.001

 L74V   5 (3)    0    0   2 (6)   1 (2)   2 (5) 0.5

 Y115F   6 (3)   3 (13)    0    0   1 (2)   2 (5) 0.02

 Q151M   6 (3)    0    0   3 (8)   1 (2)   2 (5) 0.2

 A62V   5 (3)    0    0   2 (6)   2 (4)   1 (2) 0.5

 F116Y   4 (2)    0    0   2 (6)   1 (2)   1 (2) 0.5

 F77L   4 (2)    0    0   1 (3)   1 (2)   2 (5) 1.0

 K70E   3 (2)   2 (9)    0    0    0   1 (2) 0.1

 69i   1 (1)    0    0   1 (3)    0    0 1.0

TAMs

 M41L  53 (30)    0   8 (32)  11 (31)  23 (51)  11 (25) 0.003

 T215Y  48 (28)    0   8 (32)   8 (22)  22 (49)  10 (23) 0.01

 D67N  40 (23)    0   9 (36)   9 (25)  15 (33)   7 (16) 0.002

 K70R  40 (23)    0  10 (40)  10 (28)  12 (27)   8 (18) 0.001

 T215F  39 (22)    0   7 (28)   6 (17)  14 (31)  12 (27) 0.01

 K219E  19 (11)   2 (9)   3 (12)   4 (11)   8 (18)   2 (5) 1.0

 L210W  15 (9)    0   1 (4)   2 (6)   7 (16)   5 (11) 0.8

 K219Q  12 (7)    0   3 (12)   4 (11)   2 (4)   3 (7) 0.2

Multiple NRTI mutations

 0  10 (6)    0 2 (8) 4 (11)   2 (4)   2 (5) 0.001

 1  29 (17)   9 (39) 5 (20) 5 (14)   4 (9)   5 (11)

 2  42 (24)   9 (39) 3 (12) 5 (14)   9 (20)  15 (34)

 3  36 (21)   5 (22) 7 (28) 7 (19)   7 (16)  10 (23)

 4+  58 (33)    0 8 (32) 15 (42)  23 (51)  12 (27)

Multiple TAMs

 0  66 (38)  21 (91) 7 (28) 13 (36)   6 (13)  18 (41) <0.001

 1  26 (15)   2 (9) 2 (8) 3 (8)  12 (27)   7 (16)

 2  38 (22)    0 8 (32) 12 (33)   8 (18)  10 (23)

 3+  44 (25)    0 8 (32) 8 (22)  19 (42)   9 (20)

Note. NRTI, nucleoside reverse transcriptase inhibitor; TDF, tenofovir; AZT, zidovudine; d4T, stavudine; TAMs, thymidine analog mutations.

a
Comparison of AZT, d4T and TDF only groups using Pearson’s chi-square and Fisher’s exact test.

b
Multiple first-line regimens: AZT/d4T refers to switching from AZT to d4T or d4T to AZT; AZT/d4T TDF, refers to switching from AZT or d4T 

to TDF. One participant switched from TDF to AZT and was not included as a third category for multiple first-line regimens because of the small 
sample size (n=1).
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Table 3.

Frequency Distribution of Major and Minor NNRTI Mutations

No. (%) of NNRTI regimen

All (N=175) NVP only (N=131) EFV only (N=14) NVP & EFV (N=29) p-value
b

NNRTI mutations

 K103N/S  67 (38)  48 (37)  12 (86)   6 (21) 0.001

 V108I  18 (10)  11 (8)   2 (14)   5 (17) 0.4

 Y188L   6 (3)   4 (3)    0   2 (7) 1.00

 V106-A/M   5 (7)   3 (2)   1 (7)   1 (3) 0.3

 P225H   4 (2)    0   3 (21)   1 (3) 0.001

ETV mutations

 Y181-C/V
c  75 (43)  58 (44)   4 (29)  12 (41) 0.4

 G190-A/S  57 (33)  39 (30)   5 (36)  13 (45) 0.8

 A98G  40 (23)  34 (26)   1 (7)   5 (17) 0.2

 K101-E/H/P  36 (21)  22 (17)   3 (21)  11 (38) 0.7

 V90I  21 (12)  13 (10)   2 (14)   6 (21) 0.6

 E138A/G/K/Q  16 (9)  10 (8)   2 (14)   4 (14) 0.3

 V106I   8 (5)   4 (3)    0   4 (14) 1.0

 L100I   7 (4)    0   5 (36)   2 (7) <0.001

 M230L   4 (2)   1 (1)   1 (7)   2 (7) 0.2

 V179-D/F/T    0    0    0    0

Multiple NNRTI mutations

 0   6 (3)   4 (3)    0   2 (7) 0.1

 1  43 (25)  38 (29)   1 (7)   4 (14)

 2  79 (45)  62 (47)   6 (43)  10 (34)

 3+  47 (27)  27 (21)   7 (50)  13 (45)

Multiple ETV mutations

 0  35 (20)  27 (21)  2 (14)  6 (21) 0.6

 1  56 (32)  46 (35)  6 (43)  3 (10)

 2  55 (31)  42 (32)  3 (21)  10 (34)

 3+  29 (17)  16 (12)  3 (21)  10 (34)

Phenotypic resistance to second-line NNRTI (ETV)
d

 Susceptible  27 (15)  21 (16)   2 (14)   4 (14) 0.03

 Intermediate 131 (75)  102 (78)   8 (57)  20 (69)

 Resistant  17 (10)   8 (6)   4 (29)   5 (17)

Note. NNRTI, non-nucleoside reverse transcriptase inhibitor; NVP, nevirapine; EFV, efavirenz; ETV, etravirine.

a
Bolded mutations signify major mutations for ETV, NVP & EFV.

b
For comparison between NVP and EFV only groups using Fisher’s exact test.

c
Y181-I mutation did not occur.
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d
Resistance patterns predicted according to Stanford Database Algorithm v1.2
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