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Abstract

Long non-coding RNAs (lncRNAs) are a major class of non-coding RNAs, and the functional 

deregulations of lncRNAs have been shown to be associated with the development and progression 

of BC. In this work, we conduct an integrative analysis on five re-annotated lncRNA expression 

datasets from the Gene Expression Omnibus (GEO) which included a total of 891 BC samples. We 

identified a five-lncRNA signature that was significantly associated with DFS in the training 

cohort of 327 patients. We found the five-lncRNA signature could effectively stratify patients in 

the training dataset into high- and low-risk groups with significantly different DFS (p = 3.29×10−5, 

log-rank test). The five-lncRNA signature was effectively validated in four independent cohorts, 

and prognostic analysis results showed that the five-lncRNA signature was independent of clinical 

prognostic factors, such as BC subtypes and adjuvant treatments. Furthermore, GSEA suggested 

that the five-lncRNA signature was involved in BC metastasis-related pathways. Our findings 

indicate that these five lncRNAs may be implicated in BC pathogenesis, and further, these 

lncRNAs may potentially serve as novel candidate biomarkers for the identification of BC patients 

at high risk for tumor recurrence.
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Introduction

Long non-coding RNA (lncRNA), defined as RNA transcripts of more than 200 base pairs in 

length, is a major class of ncRNA.1 Recently, several studies have demonstrated that 

abnormal expression of lncRNAs is closely associated with human complex diseases, 

especially in cancers.2 A growing number of lncRNAs have been identified and recognized 

as “oncogenes” or “tumor suppressors”, and functional dysregulations of lncRNAs have 

been shown to contribute to cancer development, progression, and metastasis.3 For instance, 

metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) has been shown to play 

a key role in oral squamous cell carcinoma, and high expression of MALAT1 was related to 

tumor metastasis.4 Another lncRNA, HOX Transcript Antisense RNA (HOTAIR), has been 

identified as an “oncogene” in BC-its high expression was associated with metastasis and 

death in primary breast tumors.5 Growth arrest-specific 5 (GAS5) was found to be 

downregulated in BC tissues, and its overexpression in the MCF-7 BC cell line furthered 

growth arrest and apoptosis.6 Expression profiling has revealed highly aberrant lncRNA 

expression in cancers, which may indicate their potential as possible biomarkers predictive 

of clinical outcome.7

BC is the most frequent malignancy in women, affecting more than 10% of women in 

western countries.8 Early diagnosis improvements have been made in BC prognosis by 

mammographic screening. However, tumor recurrence with local recurrence or distant 

recurrence following conventional therapies is still a major cause of morbidity and mortality 

for BC patients.9 To improve BC prognosis analysis, several systems biology approaches 

have been developed to identify BC prognosis-related lncRNA biomarkers and to construct 

lncRNA signatures.10, 11 Meng et al. identified a four-lncRNA set through analysis of 

lncRNA expression profiling in 887 BC patients from GEO datasets using the random 

survival forest algorithm.10 Zhou et al. discovered a 12-lncRNA biomarker to predict the risk 

of tumor recurrence in BC patients.11 Both sets of authors tested their lncRNA signatures in 

three independent datasets. The log-rank p-value of the 12-lncRNA-based signature from 

Zhou et al. was not significant in one testing dataset (GSE20711, p = 0.289), implying that 

identification of robust lncRNA signatures remains a challenge. More patient cohorts are 

needed to validate signatures.

Because lncRNAs related to survival are generally associated with the development and 

metastasis of cancers, it is critical to identify BC prognosis-related lncRNA signatures 

through analysis of their biological functions. Therefore, to efficiently identify a robust BC 

prognosis-related lncRNA signature, we present a systematic pipeline to identify BC-related 

lncRNA biomarkers through analyzing five lncRNA expression datasets with a total of 891 

BC patient samples. A five-lncRNA signature associated with BC both in function and 

prognosis was identified and successfully validated in four independent validation cohorts. 

We found that the five-lncRNA signature was involved in important biological processes and 
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pathways of BC. The GSEA analysis also showed similar results, which suggested that the 

five-lncRNA signature could effectively predict recurrence risk in BC patients and provides 

a better understanding of the molecular mechanisms underlying BC prognosis.

Methods

Breast cancer patients

For consistency in microarray platforms, BC-related gene expression datasets were 

measured by the Affymetrix HU133 Plus 2.0 microarray. Corresponding clinical data were 

obtained from the GEO database (https://www.ncbi.nlm.nih.gov/geo/).12 To analyze the 

correlations of lncRNA signatures with survival endpoints for BC patients, we selected those 

datasets that included more than 80 patients with DFS or overall survival (OS) in this study. 

In total, 891 samples (327 from GSE20685,13 88 from GSE20711,14 252 from GSE21653,15 

117 from GSE88770,16 and 107 from GSE5881217) were obtained (Table 1). All selected 

expression datasets were log2-transformed, then standardized.

Construction of lncRNA expression through re-annotation

Based on the gene expression datasets obtained above, we applied a custom pipeline to re-

annotate Affymetrix HU133 Plus 2.0 microarrays by taking advantage of its large amount of 

probes annotated to thousands of lncRNAs as follows:

All the microarray raw data (CEL files) of five breast cancer cohorts were obtained from the 

GEO database. The Affymetrix probe sequences were downloaded from the manufacturer’s 

website (http://www.affymetrix.com) and uniquely mapped to the human genome (hg19) by 

Bowtie without mismatch. Specific probes of lncRNAs were obtained by matching the 

chromosomal position of probes to the chromosomal position of lncRNA genes based on 

annotations from GENCODE (Release 23).18 Through using BEDTools (http://

code.google.com/p/bedtools),19 probes completely falling into exons of lncRNAs but 

without overlapping with protein-coding genes were selected. Expression values of one 

lncRNA gene detected by at least four probes were retained. The median expression value of 

multiple probes mapping to the same lncRNA was used to represent the expression level of 

the lncRNA. For each cohort, the expression data was log2 transformed and normalized by 

the quantile-normalization approach. Finally, five corresponding lncRNA expression 

datasets, containing 2673 lncRNAs, were constructed.

Identification of a survival-related lncRNA signature set associated with breast cancer

The largest lncRNA expression dataset, GSE20685, was used to construct the training cohort 

and analyze the correlation of lncRNAs’ expression with the DFS time based on univariate 

Cox proportional hazards regression (PHR) analysis. The lncRNAs with the most significant 

p values (p < 0.05) were selected as candidates. To further help create the predictive 

signature, we analyzed the co-expression relations between lncRNAs and protein coding 

genes and inferred the functions of lncRNAs based on the “guilt by association” hypothesis: 

genes or lncRNAs with similar expression patterns under multiple experimental conditions 

have high probabilities of sharing similar functions or being involved in common biological 

pathways. Such co-expression-based approaches have been widely used in previous studies.
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20, 21, 22 Thus, using the highly co-expressed genes associated with lncRNAs (Pearson 

correlation coefficients ≥ 0.8 and multiple testing correction p < 0.05), we investigated 

lncRNAs’ functions through GO and KEGG annotation or enrichment analysis through the 

Database for Annotation, Visualization and Integrated Discovery (DAVID, https://

david.ncifcrf.gov/).23 Through manually searching literature by Google or PubMed, we 

obtained GO terms or KEGG pathways associated with BC with high confidence. We 

extracted the functions that play important roles in BC, which we termed “BC-related 

functions” (Supplementary Table 1). Subsequently, the intersection of the survival-related 

lncRNA and function-related lncRNA sets was generated. Notably, given more lncRNAs 

meant more redundancy and a smaller number of lncRNAs would make the model more 

practical and parsimonious, so we used the forward stepwise approach to find a minimal set 

of lncRNAs. Forward stepwise, which involves starting with no variables in the model, 

adding the variable whose inclusion gives the most statistically significant improvement of 

the fit (if any), and repeating this process until including no variable improves the model to a 

statistically significant extent. Finally the five-lncRNA signature recognized by forward 

stepwise was tested in the validation cohort, including the GSE20711, GSE21653, 

GSE88770 and GSE58812 data sets. The detailed workflow is shown in Figure 1.

Subtypes and adjuvant treatments of breast cancer patients

To stratify all BC patients into different BC subtypes, the PAM50 classifier was used by the 

R package geneFu to divide all five BC patients datasets into Basal-like, Luminal A, 

Luminal B, Her2 and Normal-like intrinsic subtypes.24 Moreover, the clinical information 

about treatment of BC patients in the five expression datasets was obtained from the GEO 

database. In the GSE20685 dataset, 268 patients were treated with three different drug 

therapies, including CAF (cyclophosphamide, doxorubicin and fluorouracil), CMF 

(cyclophosphamide, methotrexate and fluorouracil), and paclitaxel alone.

Statistical analysis

We fit a multivariate Cox PHR model to a training cohort in order to construct a lncRNA 

signature. This signature was then used to identify the best cutoff value for BC patient 

stratification. The time-dependent receiver operating characteristic (ROC) curve was then 

calculated to compare the sensitivity and specificity of risk prediction of the lncRNA 

signature set for recurrence-free survival.25 BC patients in the training cohort were classified 

into high- and low-risk groups according to the stratification cutoff obtained above. 

Subsequently, Kaplan-Meier survival curve analysis and a log-rank test were used to 

compare the difference of recurrence-free survival between high- and low-risk groups in 

each set of the validation cohort. Multivariate analyses with Cox PHR were conducted to test 

whether the lncRNA signature set is independent of other clinicopathological factors, 

including age, survival status, grade, clinical stage, estrogen receptor (ER) status, subtype, 

and adjuvant treatment. The hazard ratio (HR) and its 95% confidence intervals (CI) were 

calculated with the Cox PHR model.26

Functional enrichment analysis

Based on lncRNA and gene relationships calculated by the Pearson correlation coefficients, 

functional enrichment analysis for lncRNAs in the lncRNA signature set was performed 
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using DAVID. GSEA was performed by the JAVA program (http://

software.broadinstitute.org/gsea/downloads.jsp) using the MSigDB C2 Canonical pathways 

gene set collection, which contains 1320 gene sets. Gene sets with a false discovery rate 

(FDR) value less than 0.05 after performing 1000 permutations were considered to be 

significantly enriched.27 Statistical analysis was implemented using the R software 

(www.rproject.org).26

Results

Acquisition of lncRNA expression datasets through array re-annotation

Because a number of large-scale gene expression datasets are available in the GEO database, 

an integrative analysis of re-annotated lncRNA expression datasets would provide good 

statistical power to capture the expression changes of lncRNAs in disease condition. To this 

end, we collected BC expression datasets measured on the Affymetrix HU133 Plus 2.0 

microarray platform to identify potential lncRNA prognostic biomarkers. After a thorough 

search of the GEO database, we identified four gene expression datasets with DFS time 

(GSE20685, GSE21653, GSE20711, and GSE88770) and one with OS time (GSE58812). 

Together, these data sets include a total of 891 BC patient samples (Table 1). Next, the 

corresponding lncRNA expression datasets were constructed using array re-annotation 

analysis as described in the Methods section. Relevant clinical information including age, 

grade, Estrogen receptor (ER) status, progesterone receptor (PR) status, HER2 status, tumor 

stage, lymph node stage, metastasis status, subtype, chemotherapy information and survival 

status (if patients died because of the occurrence of metastasis) for the five lncRNA 

expression datasets are summarized in Table 1.

Identification of a five-lncRNA signature for breast cancer survival

In the five BC-related lncRNA expression datasets, the GSE20685 data set (with 327 

patients-the largest sample size of the selected data sets) was used to construct the training 

cohort. First, survival-related lncRNAs were identified based on univariate Cox PHR 

analysis, and the 384 lncRNAs with the most significant p values were selected (p < 0.05, 

shown in Supplementary Table 2). Next, we analyzed co-expression associations of 

lncRNAs and protein coding genes and inferred the functions of lncRNAs based on the guilt 

by association hypothesis (Supplementary Table 3). Then, 46 lncRNAs and 193 genes with 

high co-expression relations (Pearson correlation coefficients ≥ 0.8 and multiple testing 

correction p < 0.05) were obtained. Using the highly co-expressed genes associated with 

lncRNAs, we investigate the lncRNAs’ functions through GO and KEGG annotation or 

enrichment analysis by DAVID. To obtain GO terms or KEGG pathways associated with BC 

with high confidence, we manually searched literature by Google and PubMed. Through 

functional annotation, we found that all of the 46 lncRNAs were involved with BC-related 

biological functions or pathways, and thus we retained these lncRNAs for subsequent 

analysis (Supplementary Table 1). By the intersecting of these two lncRNA sets (those 

associated with survival and those have significant function), a 15 lncRNA signature set 

(Supplementary Table 4) was then generated for subsequent analysis. The detailed workflow 

is described in the Methods section and shown Figure 1.
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The univariate z-score for each lncRNA was calculated to characterize its predictive power. 

More negative (positive) z-scores indicate longer (shorter) OS time.28 Considering the issue 

that some of the lncRNA predictors may not be independent, we applied forward stepwise 

approach based on the 15-lncRNAs in Supplementary Table 4 to select a more effective 

signature. Starting with the lncRNA “RP11-13L2.4” (with the largest univariate z-score), we 

added one lncRNA that showed the most association with longer or shorter OS at each step 

and evaluated if the prognostic performance could be improved. We repeated this process 

until no improvement could be achieved. Finally, five lncRNAs-including 

ENSG00000261295 (RP11-524D16_A.3), ENSG00000228630 (HOTAIR), 

ENSG00000223764 (AL645608.1), ENSG00000265148 (TSPOAP1-AS1) and 

ENSG00000261179 (RP11-13L2.4) were selected. Moreover, to systematically evaluate the 

prognostic performance of the five-lncRNA signature, we compared the survival result with 

those from another lncRNA set with different sizes based on the absolute z-scores from the 

15-lncRNAs. We found good performance of the five-lncRNA signature in the five 

independent datasets (Supplementary Figure 1). Among these lncRNAs, HOTAIR has been 

validated to be associated with BC. Several studies have demonstrated that this lncRNA 

contributes to BC development.5, 29, 30 Overexpression of HOTAIR predicts a poor 

prognosis in BC patients.

Determination and analysis of the five-lncRNA signature in the training cohort

We hypothesized that the identified five-lncRNA signature strongly contributes to the 

survival of BC. Therefore, we took this lncRNA set as an independent predictive signature to 

predict the risk of tumor recurrence for BC patients. A multivariate Cox PHR analysis was 

performed and the estimated regression coefficients (see the Methods section) are as follows:

Risk5 = 0.179x1 + 0.168x2 + 0.121x3 − 0.574x4 − 0.554x5,

where x1 represents the expression of RP11-524D16_A.3, x2 represents HOTAIR, x3 

AL645608.1, x4 TSPOAP1-AS1, and x5 RP11-13L2.4. In the training cohort, the time-

dependent ROC curves analysis for the five-lncRNA signature achieved an area under the 

ROC curve (AUC) of 0.69 at five years of recurrence-free survival. We calculated a five-

lncRNA expression-based risk score for each patient and classified all BC patients in the 

training cohort into high-risk group (n = 163) and low-risk group (n = 164) by using the 

median risk score (0.1121) as the cutoff point. We found that BC patients with low-risk 

scores have the better recurrence-free survival outcome. Further, the survival time of the 

high-risk group was significantly shorter than the low risk group (p = 3.29×10−05, log-rank 

test, Figure 2A).

Distribution of the five-lncRNA expression-based risk scores, the survival status, and the 

expression pattern of five lncRNA biomarkers in the 327 breast patients belonging to the 

training cohort is shown in Figure 2B. Of these five lncRNAs, two were protective lncRNAs 

(TSPOAP1-AS1 and RP11-13L2.4) whose high expressions were associated with better 

prognosis. In contrast, high expressions of the remaining three (RP11-524D16_A.3, 

HOTAIR, and AL645608.1) were associated with poor prognosis.
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Validation of the five-lncRNA signature in four independent cohorts

To evaluate the robustness of the five-lncRNA signature in predicting the risk of tumor 

recurrence for BC patients, the five-lncRNA signature was then tested for its predictive 

power in the validation cohort, which consisted of the remaining GSE20711, GSE21653, 

GSE88770 and GSE58812 data sets. By using the same model and the cutoff point derived 

from the training cohort, 88 BC patients in GSE20711 with DFS information were stratified 

into the high- and low-risk groups (n = 32 and 56, respectively). As shown in Figure 3A, we 

found a significant difference between the high-risk group and low-risk group (p = 0.017, 

log-rank test) by using five lncRNA risk scores. The HR was 2.11 (95% CI: 1.13–3.96; p = 

0.02) based on univariate analysis. The AUC was 0.59 at the survival time of five years in 

GSE20711.

Further validation of the five-lncRNA signature was conducted in GSE21653, which 

included 252 samples. Similar to the results generated by the training cohort and GSE20711, 

the five-lncRNA signature was used to efficiently predict the risk of tumor recurrence. 

Utilizing the risk score formula estimated from the training cohort, the five-lncRNA 

signature was able to classify 252 BC patients into the high-risk group (n = 120) and low-

risk group (n = 132) with significantly different recurrence-free survival (p = 0.036, log-rank 

test). The recurrence-free survival time was significantly shorter in the high-risk group when 

compared with the low-risk group (Figure 3B). At five years, the respective absolute 

difference in DFS between the low-risk group and high-risk group was 15% (75.5% versus 

60.5%). The HR of high-risk group versus low-risk group for DFS was 1.59 (95% CI: 1.03–

2.46; p = 0.037). The AUC of time-dependent ROC curves for the five-lncRNA signature in 

GSE21653 was 0.64 at five years.

Another validation of the five-lncRNA signature in GSE88770 with 117 BC patients again 

showed its good performance when predicting the risk of tumor recurrence (Figure 3C). The 

five-lncRNA signature stratified all patients into the high- and low-risk groups (n = 56 and 

61, respectively) by using the same risk score formula and cutoff as above. A significant 

difference between the high-risk group and the low-risk group (p = 0.027, log-rank test) was 

found. The HR for recurrence-free survival of high-group versus low-group was 2.39 (95% 

CI: 1.08–5.27; p = 0.032). The corresponding AUC was 0.63 at five-year DFS time in 

GSE88770.

Final validation was performed in GSE58812, which contains data on 107 BC patients. 

Similar to the results above, the five-lncRNA signature enabled us to successfully stratify all 

patients into high- and low-risk groups (n = 51 and 56, respectively). As we can see in 

Figure 3D, BC patients in the high-risk group had significantly shorter recurrence-free 

survival time than those in the low-risk group (p = 0.0022, log-rank test). The five-year 

recurrence-free survival rate of the high-risk group was 58.1% but 83.6% for the low-risk 

group. The HR of the high-risk versus low-risk group for OS was 3.19 (95% CI: 1.45–7.02; 

p = 0.0039). The AUC for the GSE58812 data set was 0.72 at five years of recurrence-free 

survival.

The distribution of risk score, survival status and expression pattern of five lncRNA 

biomarkers in the validation cohort are shown in Figure 3. In addition to this, sensitivity and 
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specificity of classification performance generated by the five-lncRNA signature are also 

presented in Supplementary Table 5. These results suggest that the five-lncRNA signature 

may potentially play an essential role in BC prognostic prediction.

Independent predictive power of the five-lncRNA signature from clinicopathological 
factors

To further investigate whether predictive power of the five-lncRNA signature was 

independent of clinicopathological factors in the training cohort, such as age, tumor grade 

(or stage), Estrogen receptor (ER) status, progesterone receptor (PR) status, HER2 status, 

lymph node stage and metastasis status, a multivariate Cox PHR analysis was performed. 

The analysis results from the training cohort suggested that the five-lncRNA signature (HR 

= 2.38; 95% CI: 1.24–4.54; p = 0.009), metastasis status, Her2-enriched, Luminal A and 

Luminal B were five independent prognostic factors for BC patients (Supplementary Table 

6). In GSE20711, the five-lncRNA signature (HR = 2.65; 95% CI: 1.17–6.02; p = 0.02), 

Her2-enriched and normal-like were three independent prognostic factors for BC patients. In 

GSE21653 only the five-lncRNA signature (HR = 1.8; 95% CI: 1.10–2.96; p = 0.02) and 

Luminal A were significantly correlated with recurrence-free survival of BC patients based 

on the multivariate analysis. In GSE88770, only the five-lncRNA signature was correlated 

with recurrence-free survival of BC patients (HR = 2.03; 95% CI: 0.90–4.56; p = 0.086). In 

another validation dataset, GSE58812, the result showed both the five-lncRNA signature 

(HR = 2.31; 95% CI: 1.00–5.28; p = 0.047) and metastasis status were correlated with the 

OS of BC patients.

The impact of subtypes and adjuvant treatments on the survival of breast cancer patients

From a clinical point of view, patients with different subtypes are managed and treated as 

different diseases.31 Therefore, we investigated the impact of patient subtypes on patient 

survival. We used the PAM50 classifier to stratify BC patients from three mRNA expression 

datasets (GSE20685, GSE21653 and GSE20711) into Basal-like, Luminal A, Luminal B, 

Her2 and Normal-like subtypes (Table 1). We observed poor subtype classification in the 

other two expression datasets (GSE58812 and GSE88770) that were recorded as triple-

negative and invasive lobular carcinoma respectively, both of which substantially belonged 

to the intrinsic subtypes of BC.16, 17 The multivariate Cox PHR analysis results showed that 

the five-lncRNA signature was still an independent prognosis factor (p values were 0.009, 

0.019 and 0.020 in the GSE20685, GSE21653 and GSE20711 data sets, respectively; see 

Supplementary Table 6). Moreover, we found that the five-lncRNA signature generated good 

performance for predicting the survival benefit in specific BC subtypes (Figure 4A).

We further investigated the impact of the three specified treatment regimens on patient 

survival. Within the five expression datasets, GSE20685 contained the adjuvant treatment 

information, in which 268 patients were treated with three different drug therapies: CAF 

(cyclophosphamide, doxorubicin and fluorouracil), CMF (cyclophosphamide, methotrexate 

and fluorouracil), and paclitaxel alone. After adding the treatment effects, the multivariate 

Cox PHR analysis showed that the five-lncRNA signature was still an independent 

prognostic factor (p = 0.009, Supplementary Table 6). Furthermore, the patients treated with 

CMF and paclitaxel could be successfully divided into high- or low-risk groups (log-rank p 
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= 0.014 and 0.00026, respectively, Figure 4B) using the five-lncRNA signature. However, 

patients treated with CAF could not be successfully grouped (log-rank p = 0.4, Figure 4B).

Identification of the five-lncRNA-signature associated biological pathways

The strong stratification power of the five-lncRNA signature in predicting recurrence risk of 

BC patients could be attributed to their crucial roles in tumor development or metastasis. 

Therefore, GSEA analysis was performed to identify lncRNA associated pathways in all five 

gene expression datasets. For each gene expression dataset, genes were ranked on the basis 

of differential significance between the high- and low-risk groups, which were classified by 

the five-lncRNA signature in the lncRNA expression dataset. Then, gene sets were 

considered significantly enriched if the nominal p-value was less than 0.005 and the FDR 

less than 0.05 based on a canonical pathways gene set from the MSigDB database. In the 

GSEA enrichment results, we observed that the “Extracellular matrix organization” pathway 

was enriched in the high risk groups of all five cohorts. Several studies have demonstrated 

that this pathway is associated with the development of BC. Furthermore, several cancer 

related pathways, such as the “Integrin1 pathway”, “Integrin3 pathway”, “Cell cycle”, 

“Focal adhesion”, “P53 signaling pathway”, “TGF-beta signaling pathway”, “Core 

matrisome”, “Cell-cell junction organization” and “DNA replication” pathways, were 

enriched in the high-risk groups in most of the five test cohorts.32, 33 In summary, the GSEA 

analysis results implied that the five-lncRNA signature was associated with the BC 

development and progress (Supplementary Table 7 and Figure 5).

Comparison of the five-lncRNA signature with other breast cancer prognostic signatures

We compared the prognostic value of the five-lncRNA signature to that of different gene sets 

and lncRNA sets used for risk stratification of BC: the genes used in the 70-gene 

MammaPrint profile,28 the genes of Oncotype DX,29 the 12-lncRNAs published by Zhou et 

al.,11 the 4-lncRNAs published by Meng et al.,10 “rank-based” five-lncRNA signature, and 

five-lncRNAs related with function. For the “rank-based” five-lncRNA signature, the 

univariate Cox PHR analysis generated 384 lncRNAs that are significantly associated with 

survival (p < 0.05). We directly extracted the five lncRNAs with the most significant Cox 

PHR p values as the “rank-based” five lncRNA signature. For the functionally-related five-

lncRNA signature, we selected the five lncRNAs showing the highest expression 

correlations with the 193 genes that were associated with BC-related biological functions.

We calculated the area under the ROC curves and p-values for each possible signature in the 

five cohorts (Supplementary Table 8). In the GSE20685 cohort, all signatures tested were 

successful with similar performances. The 70-gene classifier had poor prediction 

performances on the GSE58812, GSE88770, and GSE20711 data sets. Moreover, prognostic 

results generated by the established classifier Oncotype DX showed poor prognostic value 

when applied to the GSE58812 and GSE88770 data sets (Supplementary Table 8). 

Subsequently, we used the 12-lncRNA prognostic model published by Zhou et al. and the 

four-lncRNA prognostic model published by Meng et al. in five independent cohorts. We 

found that the Zhou et al. classifier had poor prediction performances in two datasets 

(GSE58812 and GSE20711) while the Meng et al. classifier exhibited poor performance on 

three datasets (GSE21653, GSE58812, and GSE20711) respectively.10, 11 The rank-based 
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five-lncRNA signature and five-lncRNAs related to function only had good performance on 

the GSE20685 data set. This result showed that our approach using both survival and 

functional information has better performance in predicting recurrent risk in BC patients.

Discussion

With the recent development of clinical management and treatment of BC, some prognostic 

factors, including stage, lymph node status, tumor size, tumor grade, lymphatic and vascular 

invasion were considered to be associated with the mortality rate in BC. Simultaneously, 

genes or miRNAs detected by high-throughput biological technologies have been widely 

used to predict tumor metastasis and cancer recurrence and ultimately survival of BC 

patients.34, 35 A major class of non-coding RNAs, lncRNAs, provide a promising 

opportunity to predict the BC recurrence risk as a supplement to genes or miRNAs.36 

However, few lncRNA signatures constructed by multiple lncRNAs have been verified and 

linked to BC prognosis, and patterns of recurrence at lncRNA levels in BC have remained 

poor. Therefore, it is necessary to develop a systematic pipeline to identify lncRNA 

signature sets capable of predicting the survival of BC patients.

In this study, we developed a lncRNA function-based prognosis model to systematically 

identify a five-lncRNA signature through integration analysis of five gene expression 

profiles with 891 BC samples from the GEO, including GSE20685, GSE21653, GSE20711, 

GSE88770, and GSE58812. Through re-annotation, five lncRNA expression datasets with 

matched disease samples were generated. We chose the largest dataset (GSE20685) as the 

training cohort, while the other four we kept aside for validation. Fifteen lncRNAs 

associated with BC prognosis and biological functions were generated through integration 

analysis. Using this 15-lncRNA subset, we further applied a forward stepwise approach to 

find the minimal set of five lncRNAs and used these to construct a five-lncRNA signature to 

predict recurrence risk in BC patients.28 Based on the risk score calculated by the lncRNA 

expression data of five lncRNAs, we efficiently separated the training cohort into high-risk 

and low-risk groups. Additionally, five lncRNAs’ expression levels were significantly 

different between the two groups. Validation results showed that the five-lncRNA signature 

was reliable and robust in the prediction of BC recurrence risk.

Furthermore, a multivariate Cox PHR analysis was performed to investigate predictive 

power of the five-lncRNA signature. This analysis demonstrated that the five-lncRNA 

signature was an independent predictor (in addition to clinicopathological factors) in both 

the training and validation cohorts. We also found the five-lncRNA signature could generate 

good performances for predicting the survival benefit in most specific BC subtypes and 

chemotherapy treatments. However, the five-lncRNA signature failed to distinguish high-risk 

from low-risk groups within “normal-like” BC subtype for the GSE20685 and GSE21653 

data sets; we believe the comparatively poor performance on these two data sets is due to the 

high consistency between the “normal-like” BC subtype and normal breast tissue.37

Moreover, GSEA analysis for gene expression data in all five datasets analyzed the 

difference between high- and low-risk groups as stratified by the five-lncRNA signature. 

Several BC-related pathways, such as “Extracellular matrix organization”, “Integrin1 
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pathway”, “Integrin3 pathway”, “Cell cycle”, “Focal adhesion”, “P53 signaling pathway”, 

“TGF-beta signaling pathway”, “Core matrisome”, “Cell-cell junction organization” and 

“DNA replication”, were significantly enriched in the high risk group. The GSEA 

enrichment result also suggested that the five-lncRNA signature may be involved in BC-

related biological pathways and their functional dysregulations may contribute to BC 

recurrence.

We now discuss several limitations to this study. First, highly heterogeneous patient cohorts 

were used in the evaluation of prognostic performance: several clinical factors, such as 

subtype, grade, ER status, and HER2 status showed large between-cohort variability. 

Second, only limited clinical information was available. Adjuvant treatment information 

only in GSE20685 could be used, the metastasis stage information was recorded only in 

GSE20685 and GSE58812. These limitations potentially hamper capturing an accurate 

prognostic characterization of the five-lncRNA signature and weaken potential comparisons 

with other published signatures in BC. Indeed, only moderate sensitivity and specificity 

generated by the five-lncRNA signature were observed in our work.

Also, we note that some published signatures were developed for patients associated with 

specific clinical conditions. For example, the MammaPrint profile was developed in solely 

untreated patients to classify patients which may or may not benefit from endocrine 

treatments.38 It comes as no surprise then that these specific signatures cannot achieve 

optimal prognostic performance using the five heterogeneous datasets in our study. 

Therefore, more comprehensive and homogeneous datasets are needed assess the five-

lncRNA signature before clinical applications. Finally, nearly most of cellular mechanisms 

and numerous pathways were associated with BC development and progress. Rigorous 

definition of “BC-related functions” should be applied in patients of distinct BC subtypes or 

specific clinical conditions. Then, the BC-related functions generated by this strict definition 

should provide more accurate and representative information for identification of functional 

roles of these five lncRNAs.

In summary, we have presented a systematic approach for BC prognostic analysis and 

identified a robust five-lncRNA signature. We expect this robust signature to provide clues 

on biological behaviors as well as prognostic characteristics of breast tumors in clinical tests. 

Further, the research framework used in our study for identifying prognostic markers may 

help provide guidance in prognostic analysis for future cancer-related lncRNA expression 

profile studies. The five-lncRNA signature may indicate the potential roles of lncRNAs in 

BC pathogenesis and have clinical implications as molecular diagnostic markers and 

therapeutic targets in BC patients.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

LncRNAs Long non-coding RNAs

BC Breast cancer

GEO Gene expression omnibus

DFS Disease-free survival

OS overall survival

GSEA Gene set enrichment analysis

MALAT1 Metastasis-associated lung adenocarcinoma transcript 1

HOTAIR HOX Transcript Antisense RNA

GAS5 Growth arrest-specific 5

ROC Receiver operating characteristic

AUC an area under the ROC curve

ER Estrogen receptor

PR progesterone receptor

FDR false discovery rate

Cox PHR Cox proportional hazards regression

HR hazard ratio
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Novelty and Impact

Identification of a survival-related lncRNA signature has been a big challenge in breast 

cancer (BC) research. We have developed a systematic approach to identify a five-

lncRNA signature, and we have shown this signature to be significantly associated with 

disease-free survival (DFS). We found the five-lncRNA signature could classify patients 

into high- and low-risk groups with significantly different DFS in a training dataset. 

Subsequently, the five-lncRNA signature was effectively validated in four cohorts. 

Prognostic results demonstrated that the signature was independent of subtype 

classification and adjuvant treatment. In addition, Gene Set Enrichment Analysis (GSEA) 

results suggested that the five-lncRNA signature was involved in BC metastasis-related 

pathways and indicated that these five lncRNAs may potentially serve as novel 

prognostic biomarkers for BC patients.
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Figure 1. 
The workflow of identification of BC survival-related five-lncRNA signature.
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Figure 2. Determination and analysis of the five-lncRNA signature in the training cohort
(A) Kaplan–Meier survival curves of DFS survival between high-risk and low-risk patients 

in the training cohort. (B) The distribution of patients’ risk score and recurrence status, and 

the expression pattern of the five-lncRNA signature.
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Figure 3. Validation of the five-lncRNA signature in four independent cohorts
Kaplan–Meier survival curves of DFS or OS between high-risk and low-risk patients, the 

distributions of the risk score, survival status and lncRNA expression values associated with 

breast cancer patients in (A) GSE20711, (B) GSE21653, (C) GSE88770 and (D) GSE58812.
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Figure 4. The impact of subtypes and chemotherapy treatments on the survival of BC patients
Kaplan–Meier survival curves of DFS between high-risk and low-risk patients in different 

intrinsic subtypes of GSE20685, GSE21653 and GSE20711 (A), and adjuvant treatments 

(B).
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Figure 5. The GSEA analysis results in five datasets
GSEA validated enhanced activity of (A) “Extracellular matrix organization”, (B) “Integrin3 

pathway”, (C) “Focal adhesion”, (D) “TGF-beta signaling pathway”, (E) “Cell-cell junction 

organization”, (F) “Integrin1 pathway”, (G) “Cell cycle”, (H) “P53 signaling pathway”, (I) 

“Core matrisome” and (J) “DNA replication” in high risk score group.
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