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ABSTRACT

Death of photoreceptors is a common cause of age-related and inherited retinal dystrophies, and
thus their replenishment from renewable stem cell sources is a highly desirable therapeutic goal.
Human pluripotent stem cells provide a useful cell source in view of their limitless self-renewal
capacity and potential to not only differentiate into cells of the retina but also self-organize
into tissue with structure akin to the human retina as part of three-dimensional retinal organoids.
Photoreceptor precursors have been isolated from differentiating human pluripotent stem cells
through application of cell surface markers or fluorescent reporter approaches and shown to have
a similar transcriptome to fetal photoreceptors. In this study, we investigated the transcriptional
profile of CRX-expressing photoreceptor precursors derived from human pluripotent stem cells and
their engraftment capacity in an animal model of retinitis pigmentosa (Pde6brd1), which is charac-
terized by rapid photoreceptor degeneration. Single cell RNA-Seq analysis revealed the presence of
a dominant cell cluster comprising 72% of the cells, which displayed the hallmarks of early cone
photoreceptor expression. When transplanted subretinally into the Pde6brd1 mice, the CRX+ cells
settled next to the inner nuclear layer and made connections with the inner neurons of the host
retina, and approximately one-third of them expressed the pan cone marker, Arrestin 3, indicat-
ing further maturation upon integration into the host retina. Together, our data provide valuable
molecular insights into the transcriptional profile of human pluripotent stem cells-derived CRX+

photoreceptor precursors and indicate their usefulness as a source of transplantable cone pho-
toreceptors. STEM CELLS 2019;37:609–622

SIGNIFICANCE STATEMENT

Diseases affecting the retina, the light-sensitive extension of the central nervous system, account
for approximately 26% of global blindness. Human pluripotent stem cells have been shown to
differentiate into various retinal cell types, including photoreceptors, which can be enriched by
cell surface or fluorescent molecule tagging approaches. Molecular heterogeneity of photorecep-
tor precursors derived from human pluripotent stem cells and their capacity to engraft into a fast
degenerative model of retinitis pigmentosa have been investigated. Data show that photorecep-
tor precursors characterized by CRX expression are largely homogenous and committed to an
early cone phenotype. Upon transplantation into degenerated retinae, these precursors settle
into the appropriate layer, make connections with the host interneurons, and mature into cones.
Future work is needed to assess at the functional level whether the transplanted cells are able
to restore vision in degenerative models of retinal disease.

INTRODUCTION

Blindness represents an increasing global prob-

lem which is closely correlated with old age.

One in three people over 65 are at risk for devel-

oping sight loss and 90% of visually impaired

people are over the age of 65 [1]. Overall,

there are an estimated over 30 million blind

and partially sighted people in Europe with an
average of 1 in 30 individuals experiencing sight
loss. The major causes of blindness are cataracts,
glaucoma, and age-related macular degeneration
[2]. The latter accounts for 50% of blind and
partially sighted registration with an estimated
prevalence of �600,000 significantly visually
impaired people in the U.K. and over 8 million
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worldwide. Antioxidants, neuronal survival agents and vascular
endothelial growth factor inhibitors have been shown to slow
disease progression; however, to date there are no treatments
to restore lost retinal cells and improve visual function; thus,
there is a pressing need for research into the replacement
and/or reactivation of dysfunctional photoreceptors and the
adjoining retinal pigment epithelium (RPE) cells, both of which
are essential for normal retinal function.

Human embryonic stem cells (hESC) and induced pluripo-
tent stem cells (hiPSC) have an intrinsic capacity to differentiate
into self-organized laminated retinal organoids which contain all
the key retinal cell types that form synaptic connections, respond
to light and electrophysiological stimuli and engraft in animal
models of retinal degeneration [3–10]. These retinal organoids
have been shown to recapitulate human retinal development
[8] and moreover to yield a population of cone photoreceptors
which are able to both integrate and undergo material transfer
in an environment-dependent manner [11]. A growing number
of recent publications have also indicated the usefulness of
patient specific retinal organoids for disease modeling and tox-
icology studies [12–14].

Despite this progress, there is a need to improve the effi-
ciency and scalability of retinal organoid production, optimize
the differentiation protocols, and characterize the retinal cell
types generated within the organoids. For cell based therapies, it
is important to generate and enrich defined populations of reti-
nal cells of interest (e.g., photoreceptors, RPE cells) and assess
their transplantation into the context of host retinal environ-
ment. Various approaches have been used to selectively enrich
retinal cell types from these complex organoids including immu-
nostaining with cell surface markers [15, 16] or flow activated cell
sorting using reporter labeled cell lines [17, 18], which harbor
fluorescent markers of key photoreceptor transcription factors
such as cone rod homeobox (CRX) or neural retina leucine zipper
(NRL) genes. Enrichment of photoreceptors is, however, not suffi-
cient for ensuring successful engraftment into an adult retina.
Work performed in animal models has shown that the maturity
of stem cell-derived photoreceptor precursors is critical for
ensuring the directed engraftment of cells into the correct retinal
layer [19, 20]. Hence it is of key importance to enrich hESC- and
hiPSC-derived photoreceptor precursors from the self-organized
retinal organoids, study in detail their molecular profile and
resemblance to endogenous photoreceptors emerging during
human embryonic and fetal development, and identify the
optimal stage of differentiation from which the engraftable
photoreceptors can be obtained in sufficient numbers.

Advances made in single cell transcriptomics have enabled
studies of human fetal and hiPSC-derived cone photoreceptors
and have highlighted the expression of a large number of
genes, which have not been previously associated with this cell
type and are likely to reflect the developmental maturity of
developing retinal cell types [21]. Single cell transcriptomic
approaches have also been used to investigate the multiple ret-
inal cell lineages emerging with the hESC-derived retinal orga-
noids [22]. However, identification of cell types is reliant on a
limited set of marker genes often derived from gene expres-
sion analysis done from bulk cultures or single cell studies of
adult mouse retina [23] and which may not necessarily reflect
the transcriptomic profile of developing photoreceptors within
the hESC- and hiPSC-derived retinal organoids. In 2016, our
group reported the successful generation of a reporter-labeled

hESC line, in which expression of the green fluorescent protein
(GFP) was controlled by CRX, a key transcription factor in reti-
nal development with predominant expression in postmitotic
precursors [17]. We have differentiated this cell line to retinal
organoids and have enriched the postmitotic CRX expressing
photoreceptor precursors by fluorescence activated cell sorting.
We have performed single cell RNA-seq of the CRX+ precursors
to assess intercellular heterogeneity and in parallel we have
tested their engraftment into an animal model of early onset
severe retinal degeneration (Pde6brd1). Our data suggest that
the 72% of CRX+ precursors are characterized by the expression
of early cone markers, with a small minority (28%) expressing
genes involved in cholesterol and mitochondrial biogenesis. Fur-
thermore, we show that the CRX+ photoreceptor precursors
integrate into the correct retinal layer and make synaptic con-
nections with the host bipolar cells of Pde6brd1 mice.

MATERIALS AND METHODS

Human Pluripotent Stem Cell Culture
and Differentiation

The hESC line harboring the GFP reporter at the 30UTR of CRX
locus was expanded in mTeSR1 (Stem Cell Technologies, Vancouver,
BC, Canada) at 37�C and 5% CO2 on 6-well plates precoated with
Low Growth Factor Matrigel (Corning Life Sciences, Acton, MA).
Differentiation to retinal organoids was performed as described
in Mellough et al. [5] with minor modifications which included
addition of 10 μM Y27632 dihydrochloride for the first 48 hours of
differentiation and 10% fetal calf serum, T3 (40 ng/ml), taurine
(0.1 mM), and retinoic acid (0.5 μM) from day 18 of differentia-
tion. Retinal organoids were collected on day 90 for single cell
RNA-Seq studies and day 90 and 120 for subretinal transplants.

Single Cell RNA-Seq

Generation of Single Cell cDNA Library for mRNA Se-
quencing. Retinal organoids at day 90 of differentiation were
dissociated to single cells using the Embryoid Body Dissociation
Kit (Miltenyi Biotec, Bergisch Gladbach, Germany) following the
manufacturer’s instructions. CRX-GFP+ cells were sorted using a
BD FACS Aria IIu fluorescence-activated cell sorter (BD Biosci-
ences, San Diego, CA). Single cells were loaded onto the C1
single-cell mRNA-Seq IFC (10–17 μm; Fluidigm, San Francisco,
CA). Cell capture efficiency was assessed using the Zeiss Axiovert
imaging system and empty sites, or sites with more than one cell
were excluded from further analysis. Array Control RNA Spikes
(Thermo Fisher Scientific, Waltham, MA) were prepared and
added to lysis mix as described in the Fluidigm protocol. Cell
lysis, reverse transcription and cDNA amplification were per-
formed using the SMART-Seq v4 Ultra Low Input RNA Kit for the
Fluidigm C1 System (Clontech, Palo Alto, CA). Full length cDNA
libraries were prepared using the Illumina Nextera XT DNA library
preparation kit (Illumina, San Diego, CA). Libraries were pooled and
sequenced (2 × 75 bp) on the Ilumina NextSeq 500 using a Mid
Output v2 kit. The remainder of the cells were processed for bulk
RNA-Seq or subretinal transplants.

Read Alignment and Quantification. FASTQ files were trimmed
with Trimmomatic version 0.33 with the parameters: trailing = 20,
minlength = 60, and end = “PE.” The human reference genome
GRCh38.p7 version 25 from GenCode was concatenated with the
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Ambion spike sequences provided by Fluidigm to create a refer-
ence genome. “Comprehensive gene annotation” was used for
annotation and STAR 2.4.0 was used for alignment. A STAR index
was created using the reference genome and annotations used
with read length set to 75. STAR default parameters were used
for alignment. The SAM files produced by STAR were converted
into BAM files using SAMtools1.3. Reads were quantified using
HTSEQ 0.6.1 with these parameters -f bam, -r name, -a 4, -i gene_id,
and -m union.

Quality Control: Filtering Cells and Genes. The Scater R pack-
age was used for quality control and initial visualization of the
raw data. Cells that had fewer than 150,000 reads or 2,000
genes were removed from downstream analysis (Supporting
Information Fig. S1A, S1B). Next, a list of housekeeping genes
was obtained from the Scone R package. The majority of cells
had count numbers of between 20,000 and 80,000 for these
genes. Cells with count numbers below 20,000 were filtered
from analysis (Supporting Information Fig. S1C). High levels of
mitochondrial genes have been shown to be an indication of dead
or poor quality cells, thus cells with higher than 10% of mitochon-
drial genes were filtered (Supporting Information Fig. S1D). Cells
containing higher than 25% of Ambion spikes were also removed
from the analysis (Supporting Information Fig. S1E). Genes were
filtered from analysis if they were detected in fewer than two cells
(after cell filtering). The data was normalized using SCRAN
(Supporting Information Fig. S1F). After filtering stage, 69 cells and
14,887 genes passed quality control. Data was deposited in Gene
Expression Omnibus under the accession number GSE112507.

Clustering Analysis. The cells were clustered using the SC3 R
package. SC3 uses k-means clustering to test multiple clustering
solutions. Clustering solutions between 2 and 10 were evaluated.
Silhouette analysis was used to assess the distance between the
cells assigned to the resulting clusters. The majority of cells had
a silhouette score of above 0.85 when k was equal to 2. Cells
with silhouette scores below 0.85 were removed and the clus-
tering analysis was repeated. A total of 59 cells passed this fil-
tration step and were included for further analysis.

Validation of Single Cell RNA-Seq Method. To validate the
single cell technology, we compared gene expression measured
in single cells with gene expression measured in cell populations
from the same fluorescence-activated cell sorting experiment.
The bulk RNA-seq data was normalized using the “DESeq2”
package, which was also used for conducting the differential
gene expression analysis between the CRX-GFP+ and CRX-GFP−

subpopulations. Benjamini–Hochberg procedure was applied to
results to correct for multiple testing. Significantly differentially
expressed genes were selected using a cut-off of absolute log-
fold differences of 1.5 and adjusted p-value of .05. The single
cell count matrix was then summed by gene to obtain pooled
expression measurements. The counts for the significantly differ-
ently expressed genes from the bulk RNA-Seq counts and the
pooled single counts were combined and the data were normal-
ized using the estimate size factors function within DESEQ2.
The correlation in gene expression between pooled single
cells and the bulk RNA CRX+ and CRX− samples was assessed
using a Pearson correlation test.

Subretinal Transplants
Ethics Statement. All experimental work performed in this
study was in accordance with the United Kingdom Animals
(Scientific Procedures) Act 1986 and carried out in accordance with
protocols approved by the Animal Welfare and Ethics Committee
of the Newcastle University. All efforts were made to minimize the
number and the suffering of animals used in these experiments.

Animals. C3H/HeNHsd-Pde6brd1 mice (Charles River Labora-
tories, Wilmington, MA) were housed in the animal facility at
the Institute of Genetic Medicine at University of Newcastle on
a standard 12-hour light/dark cycle at the same light levels
throughout the experimental period. Animals were kept in ven-
tilated cages with food and water ad libitum.

Immune Suppression. To prevent immune-rejection of the trans-
planted human cells, daily subcutaneous injection of cyclosporine
A (50 mg/kg per day) was administered to the recipient animals
starting at 1 day before the transplantation and maintained
throughout the experiment.

Surgery and Transplantation. Male and female mice were
anesthetized with a single intraperitoneal injection of a mixture
of ketamine (0.075 ml/100 g) and medetomidine (0.100 ml/100 g)
in sterile water. Pupils were dilated using 1% tropicamide (Bausch &
Lomb U.K. Limited, Surrey, U.K.); a topical anesthetic, oxybupro-
caine hydrochloride 0.4% (Bausch & Lomb U.K. Limited, Surrey,
U.K.) was also applied. Eyes were protected with 0.2% Carbomer
980 eye gel (Gel tears, Bausch & Lomb U.K. Limited, Surrey, U.K.)
and a glass coverslip was placed over the cornea. Surgery was
performed under a direct visual control using an operating
microscope (Leica M-651). After creation of a 33 g limbal inci-
sion, a sterile blunt 34 gauge needle, attached to a 5 μl Hamilton
syringe, was passed transvitreally and positioned into the subret-
inal space. An 1 μl cell suspension was then slowly injected into
the subretinal space, between the neural retina and the RPE in the
superior retina recipients. The needle was left in place for 20 sec-
onds to allow for re-equilibration of intraocular pressure before
slowly withdrawing. Both eyes were injected and Chloramphenicol
ointment was applied postoperatively. Anesthesia was reversed
using intraperitoneal injections of 0.1 mg/ml of Antisedan.
Mice were placed on heat mats and received softened food
until fully recovered.

Histology and Immunohistochemistry. Retinal organoids were
fixed in 4% paraformaldehyde for 20 minutes, followed by three
washes in phosphate-buffered saline (PBS), incubated overnight
in 30% sucrose in PBS, embedded in Optical Cutting medium
(OCT; Cellpath, Powys, U.K.) and frozen at −20�C. Ten microme-
ters cryostat sections were collected onto Superfrost Plus slides
and stored at −20�C in slide boxes prior to immunostaining.
Transplanted mice were sacrificed 3 weeks after transplantation,
eyes were enucleated and fixed in 4% paraformaldehyde for
1 hour at 4�C, incubated overnight in 30% sucrose solution, and
embedded in OCT. Cryosections were cut at 20 μm thick and all
sections were collected onto Superfrost Plus slides, air-dried for
20 minutes at room temperature (RT), hydrated with PBS for
30 minutes and incubated with blocking solution containing 10%
goat serum and 0.3% Triton X-100 for 1 hour at RT. Slides were
incubated with the appropriate primary antibody overnight 4�C
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(Supporting Information Table S1). After rinsing with PBS, sections
were incubated with the secondary antibody for 2 hours at RT,
rinsed and counter-stained with Hoechst 33342 (Life Technologies,
Rockville, MD). Alexa Fluor 488, 546, and 647 secondary antibodies
(Thermo Fisher Scientific, Waltham, MA) were used at a 1:1,000
dilution. Negative controls were carried out by omitting the pri-
mary antibody. For the nuclear staining on the whole mount ret-
inas, the samples were washed in PBS then, the counter-stained
Hoechst were incubated for 2 hours at 4� with shaking.

Image Acquisition and Processing. Retinal sections were viewed
on a Zeiss Axio ImagerZ2 equipped with Apotome 2 and Zen 2012
blue software (Carl Zeiss, Jena, Germany). Objectives lens used
were EC Plan Neofluar ×20/0.5 Ph2, EC Plan Neofluar ×40/1.3
Ph2, EC Plan Apochromat ×63/1.4 Ph3. Series of XZ optical sec-
tions (<1 μm thick) were taken at 1.0 μm steps throughout the
depth of the section. Final images are presented as a maximum
projection and adjusted for brightness and contrast in Adobe
Photoshop CS6 (Adobe, San Jose, CA).

RESULTS

Single Cell RNA-Seq Reveals that CRX Expressing Cells
Comprise a Dominant Population of Early Cone
Photoreceptors During hESC Differentiation

In 2016, our group reported the derivation of a CRX-GFP
reporter hESC line and localization of CRX-GFP expression in
photoreceptor precursors, but not in the RPE, retinal ganglion
cells (RGCs), or neurons of the developing inner nuclear layer
(INL) following differentiation for 90 days [17]. To investigate
the transcriptional profile of these hESC-derived-photoreceptor
precursors, we purified CRX+ cells at day 90 of retinal organoid
differentiation using fluorescence-activated cell sorting as reported
in our previous publication [17] and performed bulk and single
cell RNA-Seq. After multiple steps of filtering and normaliza-
tion (see Materials and Methods), 59 cells (from a total of 96)

and 14,887 genes passed the quality control and were used
for the remainder of the analysis. To validate the single cell
analysis, we compared the gene expression measured by bulk
RNA-Seq data of CRX+ and CRX− cells to a synthetic ensemble
of single cell RNA-Seq data of CRX+ obtained from the same
fluorescence-activated cell sorting experiment. This analysis
revealed a high correlation in gene expression between single
and bulk RNA-Seq of CRX+ (r = .81) but not to bulk RNA-Seq
data of CRX− cells (r = .53, Fig. 1A, 1B), thus indicating that
the ensemble single cell RNA-Seq data of CRX+ cells represents
the transcriptional profile present in the bulk RNA-Seq dataset
of CRX+ cells.

To investigate the transcriptional heterogeneity of the single
CRX+ cells, we used an unsupervised clustering approach, SC3
[24], which combines different clustering outcomes into a consen-
sus matrix and displays each cell and differentially expressed genes
within clusters. K-means of 2 to 10 clusters were tested and 2 clus-
ters were identified as optimal (Fig. 2A). Three hundred and

twelve genes were significantly and differentially expressed

between the two clusters (Supporting Information Table S2), and

25 of the most upregulated changed genes for each cluster are

shown in Figure 2B. Cluster 1, the largest of two clusters (con-

taining 72% of cells), was characterized by significantly higher

expression of photoreceptor (SEPT4, EYS, CHRNA5, SIX6, GNB3,

CD24, PRDM1, OTX2, PDC, IMPG2, CHRNA3, HES6, NEUROD4,

RAX, PRCD, ENO2, VTN, DCT, and DST) and cone markers

(RXRY, THRB, CHRNB4, ISOC1, and PCBP4; Fig. 3A). The differen-

tially expressed genes from this cluster were compared with the

cone/photoreceptor and rod/photoreceptor markers recently

identified by Phillips et al. in pluripotent stem cell-derived retinal

organoids at day 218 of differentiation on the basis of coexpres-

sion with CRX/PRDM1/THRB/RXRY and NR2E3/NRL, respectively

[22]. While there was very little overlap between genes upregu-

lated in cluster 1 with photoreceptor/rod markers (Fig. 3B), there

was a significant overlap with photoreceptor/cone markers, albeit

Figure 1. Correlation between bulk and single cell RNA-seq analyses. (A): Correlation between bulk RNA-Seq of CRX− (left panel) and
CRX+ (right panel) and single cell RNA-Seq of CRX+ using the Pearson correlation test. (B): Comparative heatmap showing differentially
expressed genes between bulk RNA-Seq of CRX+ and CRX− cells and single cell RNA-seq of CRX+ cells.
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the difference in time point between the two different analyses

(cluster 1 generated at day 90 of differentiation and photorecep-

tor/cone markers at day 218 of differentiation). In addition, there

was hardly any overlap with the markers of RPE, RGCs, or retinal

progenitor cells (RPCs) defined by Phillips et al. (data not shown).

Next, we assessed the expression of cone and rod markers identi-

fied by Phillips et al. which indicated a significant increase in

expression of cone markers in cluster 1 compared with cluster

2 (Fig. 3C); however, no significant changes were observed in the

expression of rod markers between these 2 clusters (Fig. 3C).

These data were corroborated by gene expression analysis, which

showed no significant change in NRL expression between clusters

1 and 2 (Supporting Information Fig. S2A). Our immunohistochem-

ical analysis indicated a low percentage of cells that coexpressed

CRX and NRL (8.4%) in the retinal organoids at day 90 of differenti-

ation (Supporting Information Fig. S2B, S2B0). Although this cannot
be associated with cells residing in cluster 1 or 2, it probably

reflects transitioning of rods through a cone-like state as demon-

strated in the developing murine retina [25].
We expanded our analysis of clusters 1 and 2 by further

assessing the expression of early and late cone photoreceptor
markers defined by Welby et al. [21]. This analysis indicated a
significantly higher expression of early cone markers in cluster
1 when compared with cluster 2 (Fig. 3D). Otx2 and Onecut1

factors have been shown to be coexpressed in Olig2+ retinal
progenitor cells during early murine embryonic retinal devel-
opment when cones and horizontal cells emerge; this coex-
pression is resolved as soon as the cones and horizontal cells
are generated such that cones express Otx2, but not Onecut1
factors, and horizontal cells express Onecut1 factors but not
Otx2 [26]. In accordance with this, we found that cluster 1
expressed significantly higher levels of OTX2, but not ONECUT1
or OLIG2 (Supporting Information Fig. S3A). This was further
corroborated by our immunostaining which revealed a signifi-
cant overlap between the CRX-GFP expression and OTX2 in
day 90 retinal organoids (Supporting Information Fig. S3B);
however, very few cells coexpressed CRX and OLIG2 or CRX
and ONECUT1. Together, these data suggest that cluster 1 con-
tains photoreceptors which have already committed to an
early cone-like phenotype.

Expression of other retinal markers expressed in interneu-
rons and Müller glia cells during human retinal development was
assessed across clusters 1 and 2; however, no enrichment or par-
ticular association of these lineage markers with cluster 2 were
found (data not shown). It is of interest to note that the expres-
sion of CRX in cluster 2 was lower than cluster 1 (mean expres-
sion of 5.411 vs. 3.22), although these differences did not reach
significance. Thus to gain more insights into cells represented in
cluster 2, we first performed enrichment pathway analysis for

Figure 2. SC3 clustering analysis reveals two clusters within the CRX+ cells. (A): A predominant cluster containing 72% of cells (purple)
and a smaller cluster containing 28% of cells (green) revealed by single cell RNA-Seq of CRX+ cells. (B): Heatmap showing the 25 most dif-
ferentially expressed genes between the two clusters within the CRX+ population.
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genes that were significantly upregulated within this cluster
(Supporting Information Table S2). This indicated that the choles-
terol, sterol, and steroid biosynthetic processes were the most
upregulated pathways within cluster 2 (Fig. 4A). The most highly
upregulated genes in this cluster (Fig. 4B) comprised 3-Hydroxy-
3-Methylglutaryl-CoA Synthase 1 (HMGCS1), 3-Hydroxy-3-Methyl-
glutaryl-CoA Reductase (HMGCR), Isopentenyl-Diphosphate Delta
Isomerase 1 (ID1), Squalene Epoxidase (SQLE), StAR Related Lipid
Transfer Domain Containing 4 (STARD4), Methylsterol Monooxy-
genase (MSMO1), and Farnesyl-Diphosphate Farnesyltransferase
1 (FDFT1), Diphosphomevalonate decarboxylase (MVD), all of
which are involved in various steps of cholesterol biosynthesis.
Other genes involved in lipid synthesis such as Oxysterol-binding
protein 1 (OSBP), Dolichol-phosphate mannosyltransferase (DPM1),
Acyl-CoA desaturase (SCD), Acetyl-CoA acetyltransferase (ACAT2),
Farnesyl pyrophosphate synthase (FDPS), ADP-ribosylation factor
(ARF1), golgi resident protein GCP60 (ACBD3), and low-density

lipoprotein receptor (LDLR) were also highly upregulated in
cluster 2 when compared with cluster 1 (Supporting Information
Table S2), thus suggesting that cholesterol/lipid biosynthesis is a
key feature of cluster 2. In addition, a significant upregulation of
genes involved in mitochondrial biogenesis and/or cristae for-
mation (ESRRA, HSPA9, and CYCS; Fig. 4C) as well as genes
involved in cell cycle/mitosis regulation (HSP90AB1, POLE3, RPN1,
BUB3, CCNL1, RPS27A, MZT1, BLZF1, and MAD2L1; Fig. 4D) was
observed in cluster 2.

Published studies indicate that the retina contains all the
genes necessary for independent local cholesterol biosynthesis;
however, the rate of cholesterol synthesis is low and extra reti-
nal cholesterol is secured from systemic sources and recycling
within the retina [27–29] and RPE. Inborn errors in cholesterol
metabolism (such as abetalipoproteinemia and familial hypobeta-
lipoproteinemia) or exposure to inhibitors of enzymes in the cho-
lesterol can lead to progressive photoreceptor degeneration and

Figure 3. CRX+ cells within cluster 1 show an early cone transcriptional profile. (A): Significantly higher expression of photoreceptor and
cone markers in cluster 1 shown through violin plot profiles of individual genes. (B): Venn diagram showing the overlap between cluster
1 genes and cone/photoreceptor gene set defined by Phillips et al. [22], but not rod/photoreceptor gene set. (C): The expression of cone
and rod gene sets defined by Phillips et al. [22] was assessed in CRX+ clusters 1 and 2 through violin plots, showing a cone like expression
profile for cluster 1 cells. (D): The expression of early and late cone gene sets defined by Welby et al. [21] was assessed in CRX+ clusters
1 and 2 through violin plots, showing an early cone like expression profile for cluster 1 cells. Abbreviation: PR, photoreceptor.
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apoptosis. Photoreceptors are highly enriched for lipids and dif-
ferent compartments such as the outer and inner segments and
their synaptic terminals differ greatly in their lipid content.
Within the outer segments (OS), lipids are important for efficient

phototransduction as well as generating the second messengers
which are involved in signal transduction [29]. Notwithstanding,
biochemical and molecular studies in human adult retina have
demonstrated that cholesterol biosynthesis, catabolism and

Figure 4. Cluster 2 shows enrichment of genes involved in cholesterol/lipid metabolism, mitochondrial biogenesis and mitotic genes.
(A): Pathway analysis of genes enriched in cluster 2 showing the cholesterol and lipid metabolism to be the predominant pathways.
(B): Violin plot analysis showing higher expression of genes involved in cholesterol/lipid metabolism genes in cluster 2 compared with
cluster 1 CRX+ cells. (C): Violin plot analysis showing higher expression of genes involved in mitochondrial biogenesis in cluster 2 compared
with cluster 1 CRX+ cells. (D): Violin plot analysis showing higher expression of genes involved in mitosis genes in cluster 2 compared with
cluster 1 CRX+ cells.

www.StemCells.com ©2019 The Authors. STEM CELLS published by

Wiley Periodicals, Inc. on behalf of AlphaMed Press 2019

Collin, Zerti, Queen et al. 615



regulation in the photoreceptor OS are weak and cholesterol
content is the lowest of all retinal layers [30], suggesting that
cholesterol is likely to be transported into the OS from the inner
segments or other retinal cells. Immunohistochemical studies of

key components involved in cholesterol homeostasis including
HMGCR and LDLR (whose expression is upregulated in cluster 2)
have shown widespread expression patterns including the RPE,
outer and INL, ganglion cell and nerve fiber layer as well as inner

Figure 5. Expression HMGCR and HMGCS1 in retinal organoids, fetal, and adult human retina. (A, B): Box-plots were obtained by grouping
the samples into three developmental windows: 4.6–7.2 PCW, 7.7–10 PCW, 12–18 PCW, and samples from adult retina. Individual boxes
quantify the distribution of the expression of selected genes in these associated windows. To this end, the logarithm of the counts (normal-
ized using the DESeq2 package in the bioconductor infrastructure) was computed. For statistical assessment of differences between the
epochs, the Mann–Whitney U test was used; *, p < .05; **, p < .01. All figures were created using Rstudio 1.1.419 and Ubuntu16.04 as oper-
ating system. (C): Immunohistochemical expression analysis with HMGCR in retinal organoids at day 90. (C0): Inset: high magnification shows
wide spread expression from basal to apical layer. (D): Expression of HMGCR in fetal retina at 6 PCW; (E) 10 PCW; (F) 14 PCW; (G) 18 PCW in
INBZ, ONBZ, and GCL. (H): Expression of HMGCR in adult retina in the IS, ONL, INL, and GCL. (I): Immunohistochemical analysis for HMGCS1
in retinal organoid at day 90. (I0): Inset: high magnification shows widespread expression from the basal to the apical layer. (J): Expression of
the HMGCS1 in the fetal retina of 6 PCW; (K) 10 PCW; (L) 14 PCW; and (M) 18 PCW, in the INBZ, ONBZ, and GCL. (N): Adult human retina
shows HMGCS1 immunoreactivity in GCL, IPL, OPL, and IS. Scale bars (C, C0, D, E, F, G, H, I, I0, J, K, L, M, and N): 50 μm. Abbreviations: GFP,
green fluorescent protein; ONBZ, outer neuroblastic zone; INBZ, inner neuroblastic zone; PCW, postconception weeks; IS, inner segment;
RPE, retinal pigment epithelium; ONL, outer nuclear layer; OPL, outer plexiform layer; INL inner nuclear layer; IPL, inner plexiform layer and
GCL, ganglion cell layer. Note: GFP in retinal organoids represents endogenous GFP expression.
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and outer plexiform layers (OPLs) and inner segments and low to
absent expression in the OS [30]. To gain more insight into the
expression of key cholesterol genes enriched in cluster 2, we
took advantage of a recent RNA-seq study performed by our
group in human developing retina from 4.6 to 18 postconcep-
tion week (PCW) [31] to investigate the expression 2 of the dif-
ferentially expressed genes involved in cholesterol biosynthesis,
HMGCR and HMGCS1 (Fig. 5A, 5B), which indicated their peak
expression at 7.7–10 PCW, a developmental window during
which RGC and cone photoreceptor emergence is observed
[31]. To investigate the possible cellular localization of HMGCR
and HMGCS1, we performed immunocytochemical analysis for
two of the differentially expressed genes involved in cholesterol
biosynthesis, in day 90 retinal organoids, human fetal retina, and
adult retina. In the retinal organoids both proteins were
expressed in the plasma membrane of CRX+ cells (Fig. 5C, 5C0, 5I,
5I0). Expression in the basal layer of the organoids was also
observed and in the case of HMGCS1, the basal expression was
much higher than the expression observed in the apical layer of
the organoids (Fig. 5I, 5I0) and this was not always restricted to
the plasma membrane. In the fetal retina at 6 PCW, both markers
were expressed in the inner neuroblastic zone (INBZ) and the
outer neuroblastic zone (ONBZ; Fig. 5D, 5J). Both proteins were
observed at 10 PCW in all layers with greater immunoreactivity in
the INBZ (Fig. 5E, 5K). The intensity of immunostaining was the
highest at this developmental stage, corroborating the RNA-Seq
data (Fig. 5A, 5B). Similarly to retinal organoids, expression of both
proteins was observed in the plasma membrane of photoreceptor
precursors in the ONBZ (Fig. 5E, 5K). From 14 PCW the HMGCR
expression was detected in the cell’s nucleus in ONBZ, INBZ, and
ganglion cell layer (GCL; Fig. 5F), whereas expression of HMGCS1
was observed in the processes of RGCs and INBZ (Fig. 5L). Simi-
larly, expression was found, for both markers, at 18 PCW with
immunostaining for HMGCR observed in the photoreceptor pre-
cursors, INL and RGCs (Fig. 5G) and for HMGCS1 in the processes

of RGCs, INL and RPE (Fig. 5M). In the adult retina, immunoreactiv-
ity for HMGCR was detected in the plasma membrane and nuclei
of cells throughout the retina (Fig. 5H). In accordance with pub-
lished data [29], HMGCR expression was observed in inner but not
OS of photoreceptors in human adult retina (Fig. 5H) whereas
HMGCS1 expression was found in the processes of RGCs and INL
(Fig. 5N).

The literature precedence suggest that lipids (for example
docosahexaenoic acid) promote photoreceptor differentiation
of CRX-expressing cells both in vitro and in vivo such that CRX
expression sets a permissive stage that is essential for photo-
receptor differentiation, but which needs other environmental
signals (for example lipids) to accomplish further differentia-
tion [30, 31]. In light of such results, we are inclined to propose
that the higher cholesterol biosynthesis genes in cluster 2
together with lower expression of “photoreceptor/cone
markers” may be attributed to a photoreceptor precursor-like
state which is upregulating the cholesterol and lipid biosynthesis
as a necessary step for further photoreceptor differentiation.
This hypothesis is further corroborated by the significant upre-
gulation of genes involved in mitochondrial biogenesis and/or
cristae formation shown in Figure 4C, 4D. The photoreceptor
inner segments are rich in mitochondria and changes in mito-
chondria mass and metabolism are associated with inherited
and age-related retinal dystrophies [32]. Photoreceptor differen-
tiation is also associated with exit from cell cycle [33, 34], thus
upregulation of genes involved in mitosis and cytokinesis in clus-
ter 2 is highly suggestive of an immature photoreceptor precur-
sor phenotype.

In summary, our single cell RNA-Seq data of hESC-derived-
CRX+ cells reveals a dominant cell subpopulation with a transcrip-
tional profile consistent with an early cone photoreceptor state
and a smaller photoreceptor precursor like cell cluster with lower

CRX expression which is characterized by higher expression of

cholesterol/lipid, mitosis, and mitochondrial biogenesis genes.

Figure 6. Whole mount analysis of Pde6brd1 mice subretinally transplanted with hESC-derived CRX+ cells. (A): Schematic chart showing
the number of GFP+ cells per retina. Data is presented as mean � SD; n = 10 mice. (B, B0): Whole mount view of GFP+ cells found in the
retina of Pde6brd1 mice transplanted with CRX+ cells; inset: Individual channel image showing the GFP+ cells with the nuclei and pro-
cesses in green (white arrowheads). (C): High magnification image showing the GFP+ cells with the green nuclei (white arrow) compared
with the nuclei of mouse cells (red arrow). Scale bars: 100 μm (B), 50 μm (B0), and 10 μm (C). Abbreviation: GFP, green fluorescent pro-
tein. Note: GFP in (B), (B0) and (C) represents endogenous GFP expression.
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Figure 7. Legend on next page.
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Transplantation of CRX+-GFP hESC-Derived
Photoreceptor Precursors into Adult Pde6brd1
(C3H) Mice

Robust integration of human photoreceptor precursors in dis-
eased mammalian retina is essential for restoring the visual
function and optimizing transplantation therapy; hence, we
sought to assess the transplantation capacity of CRX+ hESC-
derived photoreceptor precursors into a model of end stage
Retinitis Pigmentosa, Pde6brd1-C3H mice. In this mouse model,
retinal degeneration is caused by a null mutation in the rod
photoreceptor cyclic GMP (cGMP) phosphodiesterase β subunit
(Pde6-β) gene [35, 36]. This mutation leads to an accumulation of
cGMP in the rods and results in photoreceptor cell death [37].
The photoreceptor degeneration starts by postnatal day 8 (P8).
Ninety-seven percentage of rod photoreceptors are lost by P17,
followed by cone photoreceptor apoptosis around P30 [35, 38],
resulting in the loss of a functional outer nuclear layer (ONL) by
6–10 weeks of age [39–41]. This fast mode of photoreceptor
degeneration provides an optimal model for testing donor
photoreceptor engraftment in the absence of material trans-
fer between host and donor photoreceptors which has been
shown to account for the majority of donor-reporter-labeled
cells in the host in nondegenerative animal models [42–44].

To confirm this fast degeneration, we compared the wild-
type (WT) and Pde6brd1 (C3H) retina at 10 postnatal weeks.
Immunostaining with pan photoreceptor and cone bipolar marker,
Recoverin, confirmed the loss of the ONL in Pde6brd1 retinae
(Supporting Information Fig. S4A, S4B). As expected, no endoge-
nous GFP signal was obtained from the Pde6brd1 retinae (Sup-
porting Information Fig. S4B). We did not observe any changes in
the localization of the rod bipolar cells between the WT and
degenerative Pde6brd1 retinae (Supporting Information Fig. S4C,
S4D). A few Recoverin positive cells were observed in the INL of
Pde6brd1 retina; however, these cells did not show immunoreac-
tivity to PKC-α antibody (Supporting Information Fig. S4E, S4F),
which suggests that the remaining Recoverin positive cells are
most likely cone bipolar cells. Furthermore, evidence of the pho-
toreceptor loss is the absence of the rhodopsin, opsin blue, and
opsin red/green expression in the Pde6brd1, compared with the
WT which display strong expression of these rod and cone markers
in the photoreceptor OS (Supporting Information Fig. S4G, S4H,
S4I, S4J, S4K, S4L). The null mutation in Pde6β gene in Pde6brd1
prevents the expression of the functional PDE6-β protein subunit

which is normally localized in the photoreceptors OS of WT mice
(Supporting Information Fig. S4M, S4N). Synaptophysin is a critical
factor for the synaptic vesicle recycling, expressed in the OPL and
inner plexiform layer (IPL) of WT mice, which is only observed in
the IPL of Pde6brd1 retinae, most likely due to the absence of the
ONL (Supporting Information Fig. S4O, S4P). As expected, there
was no immunoreactivity for the human mitochondria in both WT
and Pde6brd1 retinae (Supporting Information Fig. S4Q, S4R). In
addition, no changes were observed in the in the GCL at this stage
of the degenerative process (Supporting Information Fig. S4S, S4T).

At day 90 of differentiation, retinal organoids were col-
lected, dissociated and CRX-GFP+ and CRX-GFP− cells were iso-
lated by fluorescence-activated cell sorting as described in
Collin et al. [17] and transplanted into the subretinal space of
Pde6brd1 mice. To prevent immune-rejection of human cells,
immunosuppression with cyclosporine was administrated to
the host mice through daily subcutaneous injections starting
one day prior to the transplantation and continuing through-
out the experiment. Three groups of 10 mice each were trans-
planted with CRX-GFP+, CRX-GFP− (150,000 cells per eye) or
vehicle solution (HBSS), respectively, in both eyes. Three weeks
after grafting, mice were sacrificed and host retinae were
investigated for human cell engraftment. GFP+ cells were
found next to the host murine INL in retina (330 � 196 cells
per retina; Fig. 6A) of mice transplanted with CRX-GFP+ cells.
No GFP positive cells were found in Pde6brd1 mice trans-
planted with CRX-GFP− cells (data not shown). The GFP+ cells
were mainly localized around the injection site as shown in
the retinal whole mounts analysis (Fig. 6B, 6B0, 6C).

We also assessed the outcome of the transplantation of
CRX-GFP+ cells, in cross-sections, which showed the presence of
the cell mass in close proximity to host retina and donor cells
next to the host INL (Fig. 7A). The human origin of these cells was
confirmed in retinal cryosections by costaining of human mito-
chondria, CRX (Fig. 7B, 7B0), human nuclei (Fig. 7C), and human
nuclear antigen (HNA; Fig. 7D) and measuring the size of the
human GFP+ nuclei, in comparison to the mouse nuclei. The mean
diameter of the GFP+ nuclei was 12.5 μm (�1.87, means � SD,
n = 45 nuclei), compared with 6.5 μm (�1.29, means � SD,
n = 42 nuclei) for mouse nuclei (Fig. 7E).

The GFP+ human cells coexpressed the pan-photoreceptor
marker Recoverin (Fig. 7F, 7F0, 7F00) and began to form a dis-
tinct layer in direct contact with the secondary order neurons

Figure 7. Subretinal transplantation of hESC-derived CRX+ cells into Pde6brd1 adult mice. (A): Low magnification of transplanted retina
showing in green the cell mass in the subretinal space (SRS). (B, B0): Grafted cells colocalized with the human mitochondria and coex-
pressed CRX; insets: high magnification images show the immunoreactivity for human mitochondria and CRX in grafted cells. (C, D): Expres-
sion of human nuclei and human nuclear antigen, respectively. (E): Schematic chart showing the difference in size of GFP+ and mouse
nuclei. Data is presented as mean � SD. (F, F0, F00): Incorporation of GFP+ cells and costaining with Recoverin; insets: individual channel
images of incorporated cells. (G): Transplanted cells coexpress the pan cone marker, cone Arrestin 3 and show typical inner and outer seg-
ment expression (white arrows), indicating that human cells are able to acquire a cone photoreceptor phenotype. (H, I): Some of the CRX-
GFP+ cells coexpress opsin blue (OPN1SW) and opsin red/green (OPN1LW/MW) in vivo. (J): No costaining with rhodopsin was observed in
the transplanted CRX-GFP+ cells. (K, K0): PKC-α + host bipolar cell were found in close proximity to the GFP+ transplanted cells. (K0): Inset:
high magnification image showing the CRX-GFP+ in close apposition to the bipolar cells. (L, L0, L00): Expression of bassoon (purple), a ribbon
synaptic marker, was present between the host INL and the human GFP+ cells; insets: (L0) single channel image for bassoon; (L00) higher
magnification image showing CRX-GFP+ and the localization of the bassoon (purple arrow). (M, M0): Expression of presynaptic protein
Ribeye (red) between the CRX-GFP+ cells and the host cells; insets: high magnification images of CRX-GFP+ cells extending neurites which
show punctate Ribeye+ ribbon synapses (red arrows). (N): Incorporation of CRX-GFP+ cells obtained from day 120 organoids and costaining
with Recoverin. (O, P): Some of the CRX-GFP+ cells obtained from day 120 organoids coexpress opsin blue (OPN1SW) and opsin red/green
(OPN1LW MW) in vivo. Scale bars: 50 μm (B, H I, J, K L, L0, and K) and 10 μm (A, B0, C D, F, F0, F00, G, K0, L00, M, M0, O, and P). Abbrevia-
tions: GFP, green fluorescent protein; CRX, cone-rod homeobox; HNA, human nuclear antigen; SRS, subretinal space; INL, inner nuclear
layer; GCL, ganglion cell layer. Note: GFP in (A), (B), (B0), (C), (D), (F), (F0), (F00), (G), (H), (I), (J), (K), (K0), (L), (L0), (L00), (M), (M0), (N), (O), and
(P) represents endogenous GFP expression.
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of the Pde6brd1 mice also shown by Recoverin expression,
representing the host cone bipolar cells. Although the expres-
sion of the pan-cone marker, Arrestin 3, was not found in the
CRX-GFP+ cells prior to transplantation (data not shown), strong
expression was found in the 33% of the CRX-GFP+ cells in the
putative ONL, indicating photoreceptor maturation upon inte-
gration into the host retina (Fig. 7G). To confirm that the CRX-
GFP+ cells differentiate into cone photoreceptors in vivo, we
assessed the presence of the cone opsins: blue (OPN1SW) and red/
green (OPN1LW/MW). The cone markers were expressed in the
CRX-GFP+ cells and were located in the putative ONL (Fig. 7H,
7I). No rhodopsin immunostaining was observed in the trans-
planted CRX-GFP+ cells (Fig. 7J), again confirming the cone phe-
notype of the CRX-GFP+ cells. To transmit a visual signal, the
transplanted cells would need to connect with the inner retina
of the host, thus to assess donor–host connections we used
IHC with a number of synaptic markers. The afferent terminal
of host PKC-α bipolar cells, which is normally in contact with
photoreceptors in the INL, was found in the host INL cells at
the sites of contact with the donor cells (Fig. 7K, 7K0), indicat-
ing a potential mechanism of donor–host interaction. To fur-
ther explore the anatomy of the synapses, we also verified the
expression of Bassoon, an essential component of the ribbon
synapse (Fig. 7L, 7L0, 7L00). This analysis showed that ribbon
synapses were forming between the CRX-GFP+ cells and host
bipolar cells. These data were further corroborated by the
immunoreactivity of the presynaptic protein Ribeye, the main
protein component of synaptic ribbons [43], that was found in
close apposition with the CRX-GFP+ cells and the host INL
(Fig. 7M, 7M0) [45]. In addition, we transplanted a small group
of Pde6brd1 mice with CRX-GFP+ cells at day 120 of differentia-
tion. As expected, the GFP+ human cells coexpressed Recoverin
(Fig. 7N), and the opsins: OPN1SW (Fig. 7O) and OPN1LW/MW
(Fig. 7P). Together, these data suggest that graft-host integration
occurs within the 3 weeks post-transplantation, and that hESC-
derived-CRX+ photoreceptor precursors are a promising resource
for cone photoreceptor cell replacement in a mammalian model
of retinal degeneration.

DISCUSSION

The application of single cell RNA-Seq has enabled major advances
and better understanding of embryogenesis and stem cell dif-
ferentiation, immunity, neurobiology, organ development, and
tumorigenesis [46–50]. This approach has facilitated the study
of complex molecular heterogeneity within tumor, immune,
and stem cell compartments as well as enabled identification
of new cell types and characteristic markers [51]. Retina is par-
ticularly suitable for this molecular approach being composed
of multiple cell types including photoreceptors, interneurons,
ganglion cells, and Müller Glia. A recent single cell genome-
wide expression profiling of mouse retina revealed the pres-
ence of 39 cell clusters and novel candidate cell subtypes [52].
Similar approaches are being applied to developing human
organs [53] and organoids generated from pluripotent stem
cells with the hope of better understanding the complexity
and emergence of various cellular subtypes during development
[18, 54]. Deciphering this, wealth of data can often be difficult,
as canonical markers to identify cells and precursors at earliest
developmental stages are lacking. Often these precursors can

present intermediate transient states at low frequency, which
necessitates enrichment for adequate analysis. Thus, definition
of transcriptomes for retinal cell precursors enriched through
well-defined cell surface markers or fluorescent reporters can
be of immense use for generating gene expression trajectories
as they emerge during development or differentiation of hESC
and hiPSC to retinal organoids.

In this study, we set out to investigate the cellular heteroge-
neity of CRX expressing cells during differentiation of a hESC
reporter line based approach [24]. CRX is expressed in photore-
ceptors and the pinealocytes of the pineal gland [55] and its
expression is essential for ensuring high expression of photore-
ceptor and pineal specific genes, formation of photoreceptor
OS and circadian entrainment [56]. CRX+ cells purified from
mouse embryonic retina are found into the ONL of recipient
retina where they express cone markers [20]; however, postna-
tal CRX+ cells generate a much higher number of rods, suggest-
ing that CRX+ cells may be suitable for replacement of lost
cones or rods depending on their stage of developmental matu-
ration. Since markers of cone and rod photoreceptors are well
delineated in both mouse and human, we anticipated that sin-
gle cell RNA-Seq of CRX+ cells isolated from hESC-derived retinal
organoids would not only reveal the heterogeneity within this
population, but also define the developmental maturation of
these cells and thus inform the transplantation outcome. Our
single cell RNA-seq data analysis revealed a dominant cell clus-
ter within the CRX+ cells at day 90 of differentiation, which con-
tained 72% of cells and showed a high expression of genes
expressed in early cone photoreceptors. A smaller cluster con-
taining 28% of the cells displayed lower expression of photore-
ceptor markers and a significantly higher expression of genes
involved in cholesterol/lipid biosynthesis, mitochondrial biogen-
esis, and cell cycle genes which we associated with an “earlier
precursor”-like state. At 3 weeks post-transplantation into the
subretinal space of 8 to 10-week-old Pde6brd1 mice, human
GFP+ cells expressing the pan-photoreceptor marker Recoverin
were found in a distinct outer nuclear like layer in direct con-
tact with the host secondary order neurons. Some of the trans-
planted human CRX+ cells displayed the expression of pan
cone photoreceptor marker, Arrestin 3, and cone opsins, which
indicates further differentiation to more mature cones upon
transplantation and corroborates recent data obtained with
mouse ESC and retinal-derived CRX-GFP+ photoreceptor pre-
cursors [11]. Since no cones were found in the host retina, it is
impossible for the CRX-GFP+ to have acquired the cone fate
through cellular transfer.

The question arises as to why these CRX+ cells mature into
cones upon transplantation into this animal model of retinal
degeneration. The most likely explanation is that CRX-GFP+ cells
were transplanted when committed to an early cone fate as
shown by the single cell RNA-Seq analysis. Since cones emerge
before rods during retinogenesis, it can be argued that CRX+ pho-
toreceptor precursors first express cone markers and later during
differentiation acquire the expression of rod precursor markers
which may facilitate their differentiation into mature rods upon
transplantation. Single cell transcriptomic analysis of CRX+

enriched from early (day 70) and late stage (day 218) retinal
organoids did not reveal this to be the case [22]: at both stages,
CRX expression was associated and most similar with cone
markers which may indicate a transcriptional driven propensity
of CRX+ cells to differentiate into cone photoreceptors in retinal
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organoids up to day 218 of differentiation at least. Mouse stud-
ies have, however, indicated that postnatal CRX+ do give rise to
rods upon transplantation, therefore it remains to be deter-
mined if CRX+ cells enriched from much later stages of retinal
organoid differentiation (after day 270) express rod marker
genes. This is corroborated by single cell analysis of adult retina
[22], which shows predominant expression of rod marker genes
in the CRX+ photoreceptors, suggesting a change in transcrip-
tomic profile as these cells mature during development.

In addition to developmental maturation, it is of interest to
investigate the role of host retina. In this study, we used a model
of fast retinal degeneration to ensure lack of host photoreceptors
and minimize the likelihood of material transfer between host and
donor photoreceptors, thus enhancing the possibility of hESC-
derived photoreceptor precursor engraftment [11, 42, 43]. We per-
formed immunocytochemistry using two different antibodies to
HNAs and in both cases we observed colocalization with the CRX
immunostaining and endogenous GPP expression, thus demon-
strating that these cells were not endogenous mouse photorecep-
tors and did not arise through material transfer. We did not
observe any polyploid nuclei, thus excluding cell fusion as poten-
tial mechanism for the presence of CRX-GFP+ cells next to the
host INL. In a recently published article, Waldron et al. (2018)
show that the retinal environment of Nrl−/− and Prph2rd2/rd2

models supports both donor cone-derived photoreceptor integra-
tion alongside material transfer, which the authors associated with
a cone rich retinal environment and a disrupted OLM due to injec-
tion trauma [11]. The Pde6brd1 mouse model is different to the
two models described above in that it degenerates extremely fast
and thus is unlikely to host cone or rod cells which would enable
material transfer with the transplanted human cells. Recent papers
have also shown that material transfer is a developmentally reg-
ulated process with cones derived from postnatal stages engag-
ing in material transfer more frequently than immature retinal
cells [11, 57]. Our molecular analysis indicates an early cone like
transcriptomic profile for CRX+ cells at day 90 of differentiation,
which could also underline the lack of material transfer in addi-
tion to degenerative nature of the Pde6brd1 mouse model.

CONCLUSION

Collectively, our data provide new insights into the transcrip-
tional profile of CRX+-derived pluripotent stem cell photore-
ceptor precursors and provide evidence of their usefulness as

a source of transplantable cone photoreceptors. Future trans-
plants into various animal models of retinal degeneration as
well as behavioral, electrophysiological, and functional ana-
lyses are required to determine the presence of any light
response from these grafts and the feasibility of this approach.
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