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Abstract
Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (Nox), comprise seven family

members (Nox1–Nox5 and dual oxidase 1 and 2) and are major producers of reactive oxygen

species in mammalian cells. Reactive oxygen species are crucially involved in cell signalling and

function. All Noxs share structural homology comprising six transmembrane domains with two

haem-binding regions and an NADPH-binding region on the intracellular C-terminus, whereas

their regulatory systems, mechanisms of activation and tissue distribution differ. This explains the

diverse function of Noxs. Of theNoxs, NOX5 is unique in that rodents lack the gene, it is regulated

by Ca2+, it does not require NADPH oxidase subunits for its activation, and it is not glycosylated.

NOX5 localizes in the perinuclear and endoplasmic reticulum regions of cells and traffics to

the cell membrane upon activation. It is tightly regulated through numerous post-translational

modifications and is activated by vasoactive agents, growth factors and pro-inflammatory cyto-

kines. The exact pathophysiological significance of NOX5 remains unclear, but it seems to be

important in the physiological regulation of sperm motility, vascular contraction and lymphocyte

differentiation, and NOX5 hyperactivation has been implicated in cardiovascular disease, kidney

injury and cancer. The field of NOX5 biology is still in its infancy, but with new insights into its

biochemistry and cellular regulation, discovery of the NOX5 crystal structure and genome-wide

association studies implicating NOX5 in disease, the time is now ripe to advance NOX5 research.

This reviewprovides a comprehensiveoverviewofour currentunderstandingofNOX5, frombasic

biology to human disease, and highlights the unique characteristics of this enigmatic Nox isoform.
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1 INTRODUCTION

Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases

(Nox) are a family of transmembrane proteins that transfer electrons

across membranes. In an NADPH-dependent manner, Noxs catalyse

the reduction of O2 to produce superoxide (O2
−) (NADPH + 2O2 →

NADP+ +H+ + 2O2
−), which in turn dismutates to generate hydrogen

peroxide [H2O2; spontaneously or catalysed by superoxide dismutase

(SOD); Bedard & Krause, 2007; Maghzal, Krause, Stocker, & Jaquet,

2012]. This cascade of reactions leads to generation of secondary

reactive oxygen species (ROS), including the reaction ofO2
− with nitric
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oxide (NO) to formperoxynitrite, the iron-catalysed Fenton reaction to

produce hydroxyl radical (OH−), and peroxidase-catalysed generation

of hypochlorous acid (HOCl;Maghzal et al., 2012).

To date, seven mammalian Noxs have been identified, including

Nox1–Nox5, dual oxidase 1 (duox1) and dual oxidase 2 (duox2)

(Sedeek et al., 2012). All Noxs share structural homology in that

they possess six transmembrane domains with two haem-binding

regions containing histidine residues and a NADPH-binding region on

the intracellular C-terminus, which facilitates O2
− production (Leto,

Morand, Hurt, & Ueyama, 2009; Figure 1). Noxs are differentially

regulated, heterogeneously expressed and functionally distinct
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F IGURE 1 Diagram demonstrating structure of NOX5. NOX5
possesses six transmembrane domains with two haem-binding sites,
an N-terminal domain with EF hands and a C-terminal domain with
phosphorylation sites (Bedard & Krause, 2012; Chen,Wang et al.,
2015;Maghzal et al., 2012; Sedeek et al., 2012)

(Bedard, Lardy, & Krause, 2007; Lassègue, San Martín, & Griendling,

2012). Unlike Nox1–Nox4, duox1 and duox2, which have been well

characterized, there is a paucity of information about NOX5, the

most recently discovered Nox (Bánfi et al., 2001; Cheng, Cao, Xu, van

Meir, & Lambeth, 2001). Here, a comprehensive review of the current

knowledge of NOX5 is presented, with a focus on the unique charac-

teristics of this unusual oxidase. To contextualiseNOX5within theNox

family, we provide a brief overview of Nox functions andNox isoforms.

2 Noxs, REACTIVE OXYGEN SPECIES,

PROTON PUMPS AND INTRACELLULAR pH

Noxs are enzymes that constitute a multifunctional and diverse group

that are tightly regulated by many NADPH oxidase subunits and

binding proteins in numerous cell types and tissues. During Nox

activation, the electron donor NADPHprovides two electrons that are

translocated across the membrane to reduce O2 to O2
−, hence the

primary function of Noxs is the generation of O2
− (Bedard & Krause,

2007; Maghzal et al., 2012). However, in this process two protons are

produced, which influence intracellular pH (pHi), and accordingly, it

has been suggested that Noxs might have a dual function: firstly, the

transport of electrons to generate ROS; and secondly, the conductance

of protons across membranes (DeCoursey, Cherny, Zhou, & Thomas,

2000; Lamb, Moreland, & Miller, 2009; Vignais, 2002). Nox activation

generates large quantities of ROS, especially in phagocytes, leading to

depolarization and decreased pHi, which are direct effects of oxidase

activity. In the 1980s, it was suggested that Nox2 itself is a phagocyte

proton pump (Henderson, Chappell, & Jones, 1987); however, this

notion could not be confirmed, and more recently, specific voltage-

gated proton channels (HV1), associated with Noxs, were found to be

responsible for conductance of protons (DeCoursey, 2016). It seems

that Nox moves electrons, whereas HV1 moves protons. These trans-

porters, which are closely interrelated, have a symbiotic association,

in which HV1 is required for optimal generation of ROS by Nox2, and

NewFindings

• What is the topic of this review?

This review provides a comprehensive overview of Nox5

from basic biology to human disease and highlights unique

features of this Nox isoform

• What advances does it highlight?

Major advances inNox5 biology relate to crystallization of

the molecule and new insights into the pathophysiological

role of Nox5. Recent discoveries have unravelled the

crystal structure of Nox5, the first Nox isoform to be

crystalized. This provides new opportunities to develop

drugs or small molecules targeted to Nox5 in an isoform-

specific manner, possibly for therapeutic use. Moreover

genome wide association studies (GWAS) identified Nox5

as a new blood pressure-associated gene and studies in

mice expressing human Nox5 in a cell-specific manner

have provided new information about the (patho) physio-

logical role of Nox5 in the cardiovascular system and

kidneys. Nox5 seems to be important in the regulation of

vascular contraction and kidney function. In cardio-

vascular disease and diabetic nephropathy, Nox5 activity

is increased and this is associated with increased

production of reactive oxygen species and oxidative

stress implicated in tissue damage.

HV1 is influenced by Nox-induced electrogenic H+ efflux (DeCoursey,

2016; Seredenina, Demaurex, & Krause, 2015). Although most studies

showing this association have focused on Nox2, other Noxs, and

especially NOX5, might also be regulated by HV1 and pH (Seredenina

et al., 2015).

3 A PRIMER ON Nox ISOFORMS

Nox2, also called gp91phox-containing Nox and typically expressed in

phagocytic cells, is the prototype NADPH oxidase and was the first

to be identified (Gabig & Babior, 1979). In its activated state, Nox2

associates with the transmembrane protein p22phox, three cytosolic

subunits (p47phox, p67phox and p40phox) and the small G proteins

Rac1 or Rac2 (Dang, Cross, & Babior, 2001). The molecular weight of

Nox2 is 58 kDa, but because it is highly glycosylated it appears as a

smear of bigger size, ∼91 kDa on western blot (Paclet, Henderson,

Campion, Morel, & Dagher, 2004). It should be highlighted that ‘Nox’

specifically refers to the electron-transporting element of the enzyme

(gp91phox) but is commonly used to denote the complete multi-unit

oxidase (DeCoursey, 2016). Nox2 is typically found in neutrophils,

monocytes, macrophages and other phagocytic cells, but is also

expressed in cells of the lung, heart, skeletal muscle and vasculature

(Ferreira & Laitano, 2016; Sirker et al., 2016; Touyz et al., 2002). In

phagocytic cells, Nox2 generates bursts of O2
−, important in host

defence responses (Touyz et al., 2002). Its essential clinical function is
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observed in patients with chronic granulomatous disease, an immuno-

deficiency syndrome caused by defective phagocytic Nox (Casimir

et al., 1992). TheotherNox isoformshaveaheterogeneousdistribution

inmultiple cell types.

Nox1, the first Nox2 homologue to be discovered, requires cyto-

solic subunits p47phox (or the homologues NOXO1𝛽 and NOXO1𝛾)

and p67phox (NOXA1) for its activation (Suh et al., 1999; Takeya et al.,

2003). It is most abundant in colon, prostate, uterus and vascular cells,

and its expression is markedly increased in cancer cells (Juhasz et al.,

2017; Parascandolo & Laukkanen, 2019). Nox1 was originally called

Mox1 for ‘mitogenic oxidase’ because of its role in cell proliferation

and mitogenesis (Suh et al., 1999). Nox1 is also an important driver

of inflammation and fibrosis, and Nox1/4 inhibitors (GKT136901 and

GKT137831) delay disease progression in experimental models of

chronic inflammatory and fibrotic diseases (Teixeira et al., 2017).

GKT137831 is currently being tested clinically in patientswithprimary

biliary cholangitis, pulmonary fibrosis and liver fibrosis.

Nox3 is typically found in the inner ear and regulates vestibular

function in an ROS-dependent manner (Rousset, Carnesecchi, Senn,

& Krause, 2015). Nox3 is also found in low abundance in the brain,

lung and in fetal tissue, but the function in these tissues is unclear

(Michihara, Oda, &Mido, 2016).

Nox4 is highly expressed in the kidney and in osteoclasts,

fibroblasts, cardiomyocytes, endothelial and vascular smooth muscle

cells (Yang et al., 2018; Zhang et al., 2018). It is also abundant in

tumour cells and has been considered an oncoprotein (Graham et al.,

2010). Similar to Nox1, Nox2 and Nox3, Nox4 requires p22phox for

its activation and maturation, as demonstrated in human embryonic

kidney 293 (HEK293) cells, in which Nox4 was inactive when p22phox

was knocked out by CRISPR/Cas9 (Prior et al., 2016). Nox4 does not

require p47phox and p67phox cytosolic subunits for its activation,

but is regulated by polymerase 𝛿-interacting protein 2 (Poldip2), a

multifunctional protein (Hernandes, Lassègue, & Griendling, 2017;

Vukelic et al., 2018) and tyrosine kinase substrate 5 (Tks5) (Diaz et al.,

2009). Unlike other Noxs, Nox4 produces both O2
− and H2O2 and

is constitutively active. The H2O2-generating potential is attributed

to a histidine residue within an extracytosolic loop, rendering Nox4

with dehydrogenase function, which promotes electron transfer from

NADPH to FAD and consequent H2O2 formation (Takac et al.,

2011). Nox4 is associated with focal adhesions (Lyle et al., 2009), is

important in cell migration and has been demonstrated in the nucleus,

mitochondria and endoplasmic reticulum (ER), where its function

remains unclear, although the ER might be a site of synthesis or

post-translational modification (Laurindo, Araujo, & Abrahão, 2014;

Santos et al., 2014). In the endothelium, Nox4-derived H2O2 has

been considered to be an endothelium-derived relaxing factor, causing

vasodilatation (Liu, Bubolz, Mendoza, Zhang, & Gutterman, 2011).

Studies in Nox4 knockout and Nox4 overexpressing mice have shown

that Nox4 is both cardiovascular protective and injurious (Morawietz,

2018; Schürmann et al., 2015). Suggestions have also been made

that NOX4 dimerizes with NOX5, but mechanisms remain unclear

(Kawahara, Jackson, Smith, Simpson, & Lambeth, 2011; Montezano

et al., 2011).

TABLE 1 Unusual characteristics of NOX5

(i) Gene is absent in rodents

(ii) Activated by increased [Ca2+]i

(iii) Unlike other Noxs, it is notN-glycosylated

(iv) Does not require p22phox for its activation

(v) Activation is independent of NADPH oxidase subunits

(vi) Activation involves conformational changes

(vii) NOX5 is the only Nox isoform to be crystallized

Duox1 and Duox2 are Ca2+-activated Noxs that localize primarily

in epithelial cells at mucosal surfaces and are highly expressed in the

thyroid gland. Duox1/2 play an important role in thyroid hormone

biosynthesis (Carvalho & Dupuy, 2017) and have recently been shown

to be involved in mediating innate immune responses (van der Vliet,

Danyal, & Heppner, 2018).

NOX5, which has a more widespread distribution with unique

characteristics, is the focus of the present review and is discussed in

detail below.

4 NOX5, AN UNUSUAL MEMBER OF THE

Nox FAMILY

NOX5 was discovered in 2001 by the Lambeth (Cheng et al., 2001)

and Krause (Bánfi et al., 2001) laboratories and is the most recently

characterized member of the Nox family. On western blot it is an

85 kDa protein, which is consistent with its predicted molecular mass

(Bánfi et al., 2001; Cheng et al., 2001). Similar to otherNoxs, NOX5 has

six conserved predicted transmembrane 𝛼-helices containing putative

haem-binding regions and a flavoprotein homology domain containing

predicted binding sites for FAD and NADPH on the intracellular

C-terminus (Bánfi et al., 2001; Biberstine-Kinkade et al., 2001; Cheng

et al., 2001). However, it has many unusual features that distinguish

it from the other Nox family members (Bedard, Jaquet, & Krause,

2012). Accordingly, we define NOX5 as the ‘enigmatic Nox’ (Table 1).

Characteristics that distinguish NOX5 include the following: (i) the

NOX5 gene is absent in rodents, yet it is present in lower forms

and mammals; (ii) it generates O2
− from a single gene product; (iii)

it does not require any NADPH oxidase subunits for its activation;

(iv) it has a unique N-terminal extension that contains three or four

Ca2+-binding helix–loop–helix structure domains (EF hand); (v) NOX5

activation is highly sensitive to changes in intracellular free Ca2+

concentration ([Ca2+]i), as shown in cell studies where NOX5 is unable

to generate O2
− in Ca2+-free conditions; (vi) NOX5 is regulated

by post-translational modifications, including phosphorylation and

oxidation, but unlike Nox2 does not seem to be glycosylated and has

been described as a ‘bona fide non-glycoprotein’; and (vii) to date,

NOX5 is the first and only NADPH oxidase to be crystallized (Magnani

et al., 2017) and thus provides opportunities to design specific

NOX5 inhibitors and activators, crucial for biomedical research and

potentially for therapeutic utility.
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5 EXPRESSION OF NOX5 IN

PHYSIOLOGICAL AND PATHOLOGICAL

CONDITIONS

The early NOX5 studies demonstrated that mRNA of NOX5 is

expressed in pachytene spermatocytes of the testis and in B- and

T-lymphocyte-rich areas of the lymph nodes and spleen (Bánfi

et al., 2001; Cheng et al., 2001). Whether NOX5 is expressed

and functionally active in circulating phagocytic cells has been

debated, because original studies failed to identify NOX5 in peripheral

lymphocytes, whereas recent studies indicate that NOX5 is expressed

in human monocytes and macrophages (Manea et al., 2015; Marzaioli

et al., 2017) and that NOX5 regulates humanmonocyte differentiation

into dendritic cells (Marzaioli et al., 2017). However, most of those

studies were performed in monocyte/macrophage leukaemia cell lines

(Marzaioli et al., 2017), and the physiological role of neutrophil NOX5

is unclear. In the developing zebrafish, Nox5 is expressed throughout

the CNS and, together with Nox2, it might be important in neuro-

development and regeneration (Weaver et al., 2018; Weaver, Leung,

& Suter, 2016). This is confirmed in human oligodendrocytes, which

requireNOX5 for differentiation andmaturation (Accetta et al., 2016).

NOX5 has also been demonstrated in many non-immune cells and

tissues, including placenta, bone marrow, uterus, stomach, skeletal

muscle, cancer cells and hepatocytes and in cells of the cardio-

vascular system, such as cardiomyocytes, endothelial and vascular

smooth muscle cells (Mahbouli et al., 2017; Montezano et al., 2010;

Yeung et al., 2016). The functional significance of this widespread

expression profile suggests thatNOX5 is likely to be important inmany

(patho)physiological processes in multiple systems that involve ROS.

In particular, in physiological conditions, NOX5 has been implicated

in the regulation of spermatozoa through redox-dependent processes

that control sperm motility, sperm–oocyte fusion, cell proliferation

and cytokine secretion (Ghanbari, Keshtgar, & Kazeroni, 2018).

InhibitionofNOX5activity reduceshumanspermmobility andviability

(Ghanbari et al., 2018). NOX5 might also be important in lymphocyte

function, and we identified a physiological role for NOX5 in vascular

contraction (Montezano et al., 2018).

Cell migration, contraction and proliferation are Ca2+-dependent

processes, and this is particularly pertinent to NOX5, because NOX5

itself is regulated by Ca2+. The relationship between Ca2+, ROS and

NOX5 is highlighted in NOX5-expressing cells that generate large

amounts of O2
− in response to increasing concentrations of intra-

cellular Ca2+ (Banfi et al., 2001). In these conditions, NOX5might also

act as a proton channel, possibly to balance changes in charge and pH

secondary to electron export involved in O2
− production, as discussed

in detail above.

6 REGULATION OF NOX5

NOX5 plays a major role in O2
− generation in various cell

types, hence NOX5 activation needs to be regulated tightly to

maintain cellular redox status. NOX5 activation involves numerous

regulatory processes, including genetic factors, changes in [Ca2+]i,

Fe
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F IGURE 2 Schematic diagram demonstrating regulatory
mechanisms of NOX5. NOX5 is activated when the [Ca2+]i increases
and in response to various activators, including regulatory proteins
(calmodulin), kinases (PKC𝛼, ERK1/2, CAM kinase II and c-Abl) and
through post-translational modifications (phosphorylation). NOX5 is
inactivated by regulatory proteins [caveolin-1 (Cav-1)] and chaperone
molecules [heat shock protein 70 (Hsp70)] and through
post-translational modifications (oxidation, nitrosylation and
SUMOylation) (Chen, Haigh et al., 2015; Chen,Wang et al., 2015;
Chen, Yin, Dimitropoulou, & Fulton, 2016; Fulton, 2009)

phosphorylation and interaction with regulatory proteins. On the

contrary, inactivation of NOX5 seems to involve post-translational

modifications, especially oxidation, S-nitrosylation and SUMOylation

(Figure 2).

6.1 Regulation ofNOX5 gene

In humans, the NOX5 gene is located on chromosome 15, with six

isoforms having been identified [NOX5𝛼, 𝛽 , 𝛾 , 𝛿, 𝜀 (also called short

NOX5, NOX5S) and 𝜁 ; Serrander et al., 2007]. NOX5𝛼, NOX5𝛽 and

NOX5𝛾 are functionally active and generate ROS. NOX5𝛼 and NOX5𝛽

are the major isoforms expressed in human cells and seem to be

negatively regulated by NOX5𝜀, which inhibits NOX5-induced ROS

production (Fulton, 2009). NOX5𝛿, NOX5𝜀 and Nox𝜁 do not seem to

produce appreciable amounts of O2
−, and their functional significance

is unclear. Epigenetic factors, including overexpression of histone

deacetylase 2, cause upregulation of theNOX5 gene promotor activity

in vascular smooth muscle cells (Manea, Todirita, Raicu, & Manea,

2014).

Within the coding sequence of the human NOX5 gene, a number

of polymorphisms have been described. To assess whether these

impact enzymatic activity, Wang, Chen, Le, Stepp, & Fulton (2014)

investigated how single nucleotide polymorphisms within the coding

region of NOX5 influence ROS production by studying Cos cells

expressing various NOX5𝛼𝛽 mutants. They demonstrated that exonic

single nucleotide polymorphisms inNOX5 influence oxidase activity by

reducing, rather than by increasing, enzymatic function (Wang et al.,

2014).
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6.2 NOX5 regulatory proteins

Although NOX5 does not require NADPH oxidase subunits for its

activation, it is influenced by various regulatory proteins, some of

which interact directly with NOX5, including protein kinase C (PKC),

calmodulin, caveolin-1, c-Abl1 and chaperone molecules (Hsp90 and

Hsp70) (Chen, Yu, et al., 2014; Chen et al., 2015). These interactions

influence NOX5 activity differentially and might also stabilize the

enzyme. For example, PKC and calmodulin increase NOX5 sensitivity

to Ca2+, promoting activation, whereas interaction with caveolin-1 is

associated with NOX5 inactivation (Chen, Yu, et al., 2014; Chen et al.,

2015; El Jamali et al., 2008). Pro-inflammatory transcription factors,

such as nuclear factor-𝜅B, AP-1 and STAT1/STAT3, have also been

shown to regulate NOX5 in human aortic smoothmuscle cells (Pandey

& Fulton, 2011).

6.3 NOX5 activation is Ca2+ dependent

One of the distinguishing features about NOX5 is its dependence on

Ca2+ for its regulation (Bánfi et al., 2001). Activation of NOX5 in

response to elevated Ca2+ is a multi-phased process (Tirone, Radu,

Craescu, & Cox, 2010). The first phase involves an increase in [Ca2+]i,

followed byCa2+ binding to the EF hand on theN-terminal region. This

causes conformational changes that lead to exposure of hydrophobic

areas. The regulatory domain then binds to the catalytic domain in

the C-terminus, causing its activation. The amount of Ca2+ necessary

to activate NOX5 fully is high, and accordingly, additional systems

involving regulatory proteins are operational that increase sensitivity

to Ca2+, thereby facilitating ROS generation at lower [Ca2+]i. Hence,

NOX5 can be activated directly by Ca2+ or indirectly by interacting

with other proteins and kinases, such as Ca2+-bound calmodulin or

PKC (Wei et al., 2012).

6.4 Post-translational modification of NOX5

Post-translational modification of Noxs is not Nox specific, because

Nox1, Nox2, Nox4 and NOX5 have been found to be phosphorylated,

oxidized and nitrosylated. Nox1–Nox4, but not NOX5, also undergo

glutathionylation.

6.4.1 NOX5 phosphorylation

The C-terminal domain of NOX5 contains a group of serine and

threonine residues (Ser475, Ser490, Ser494, Ser 498, Ser516 and

T5120) that are phosphorylated in response to various kinases,

including PKC𝛼 (Jagnandan et al., 2007), ERK1/2, c-Src, Abl1 and

Ca2+–calmodulin-dependent protein kinase II (CAM kinase II) (Jha,

Watson, Mathew, de Vos, & Jandeleit-Dahm, 2017). Recent studies

in podocytes showed that NOX5 is a downstream target of the Toll-

like receptor pathway and that NOX5-induced ROS generation is

modulated by IRAK1/4 activity; processes that are likely to involve

phosphorylation of the oxidase (Holterman et al., 2018). NOX5

phosphorylation increases sensitivity to Ca2+, which increases oxidase

activity.

6.4.2 NOX5 oxidation

Recent studies suggest that oxidation of NOX5 is associated with

inactivation of the enzyme. NOX5 contains cysteine and methionine

residues,whicharehighly sensitive tooxidation (Pendyala&Natarajan,

2010). Using isothermal titration calorimetric methods, Petrushanko

et al. (2016) demonstrated that in the presence of increased ROS,

cysteine and methionine residues in the Ca2+-binding (EF) domain

of NOX5 are oxidized, which causes a decrease in bound Ca2+.

They also showed by ultraviolet circular dichroism spectroscopy that

oxidation decreases NOX5 𝛼-helical content and alters the secondary

and tertiary structure of NOX5 (Petrushanko et al., 2016). These

processes lead to a decrease in stoichiometry of the binding domain

for Ca2+, with a consequent decrease in enzymatic activation. This

phenomenon might act as a potential cellular protective mechanism

against excessive NOX5-induced ROS generation and oxidative stress.

6.4.3 NOX5 nitrosylation

Using the biotin switch assay and mass spectrometry, NOX5 was

found to be N-nitrosylated on four major sites: C107, C246, C519 and

C694 (Qian et al., 2012). When exposed to NO, NOX5 is nitrosylated,

resulting in reduced oxidase activity and decreased O2
− production.

This is a reversible process. Exogenous and endogenously generated

NO decrease NOX5-induced ROS production in a dose-dependent

manner; effects that are blocked by NO synthase inhibitors (Qian

et al., 2012). This NO synthase–NO NOX5 effect is dependent on nit-

rosylation, but not on phosphorylation or glutathiolation. Hence, NO

might protect against excessive NOX5-induced ROS generation and

contribute to redox balance, especially in conditions associated with

oxidative stress. Nitrosylation of NOX5 has also been demonstrated in

insect models (Oliveira, Lieberman, & Barillas-Mury, 2012).

6.4.4 SUMOylation of NOX5

SUMOylation is a form of post-translational modification of proteins

that functions as a molecular competitor of ubiquitination. It involves

a member of the small ubiquitin-like modifier (SUMO) family of

proteins that conjugates to lysine in target proteins (Yang et al., 2010).

Increased expression of SUMO1 is associated with decreased NOX5

activity, whereas inhibition of SUMO1 caused an increase in NOX5-

inducedO2
− production (Pandey et al., 2011). Themechanisms under-

lying these processes are unclear, but NOX5 does not seem to be a

direct target for post-translational SUMOylation.

6.4.5 Palmitoylation of NOX5

NOX5 might also be palmitoylated (Touyz RM, Fuller W; unpublished

data), although direct evidence for this is still awaited. Protein S-

palmitoylation is a reversible post-translational modification that

influences subcellular localization, trafficking and function of proteins

(Oddi et al., 2017).

6.5 Intracellular trafficking of NOX5

Nox1, Nox2, Nox3 and Nox4 are primarily associated with the cell

membrane, in large part because of their obligatory need for cell
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membrane-associated p22phox (Bedard & Krause, 2007; Maghzal

et al., 2012). In contrast, NOX5 is expressed mainly in intracellular

compartments localized mainly in the perinuclear area and ER

(Ahmarani et al., 2013). The reason why NOX5 is abundant in these

areas is unclear, but the ER is a site of protein synthesis and post-

translational modification. Also, ER function is redox sensitive, and

the ER is a rich store of intracellular Ca2+ important for NOX5

activation. Hence, the ER–NOX5 association might be important in

NOX5 regulation, and the ER might be a region of cross-talk between

Ca2+- and redox-sensitive signalling through NOX5 (Montezano et al.,

2018).

Within cells, NOX5 is dynamic and traffics from intracellular sites

to the cell membrane, where it may associate with cholesterol-rich

microdomains (caveolae/lipid rafts), bringing it into close proximity

to regulatory proteins, such as PKC, that influence its activation

(Anagnostopoulou, Persson, Montezano, & Touyz, 2017; Chen et al.,

2014; Figure 3). In addition, co-localization of NOX5-derived ROS and

redox-sensitivemolecules facilitates efficient signalling in thesemicro-

domains. The molecular mechanisms controlling NOX5 trafficking are

unclear, because unlike other Noxs, which traffic from the ER to

the plasma membrane through pathways that involve N-glycosylation

and Sar1/Stx5 signalling, NOX5 is not glycosylated (Kiyohara et al.,

2018). Nevertheless, NOX5 trafficking seems to involve Sar1 without

being glycosylated. Other mechanisms of NOX5 trafficking involve

polybasic domains in the N-terminus of NOX5, which bind to

phosphatidylinositol 4,5-bisphosphate, a multifunctional regulatory

lipid in the plasma membrane that influences the temporal and spatial

specificity of intracellular signalling pathways and vesicular and sub-

cellular trafficking (Kawahara & Lambeth, 2008).

7 PATHOPHYSIOLOGY OF NOX5

NOX5-derived ROS have been implicated in a number of pathologies,

especially cardiovascular disease, renal disease and cancer. Other

pathologies, such as neurodegenerative diseases (Tarafdar & Pula,

2018), pulmonary arterial hypertension (Peng, Liu, Xu, Peng, & Luo,

2017) and liver fibrosis (Andueza et al., 2018), have also been linked

to NOX5, but there is very little supporting evidence for this.

7.1 NOX5 and cardiovascular diseases

Calcium- and redox-dependent signalling play a major role in cardiac

and vascular contraction and function, hence Ca2+-regulated NOX5-

induced ROS generationmight be especially relevant in these systems.

We recently defined NOX5 as a pro-contractile Nox isoform that

influences the molecular contractile machinery in vascular smooth

muscle cells (Montezano et al., 2018). We also demonstrated that

NOX5 regulates vascular contraction in NOX5-expressing mice and
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that it is essential for smooth muscle contraction in arthropod models

(Montezano et al., 2018), supporting earlier studies in Drosophila

(Ritsick, Edens, Finnerty, & Lambeth, 2007). In the heart, NOX5 plays a

role in the regulation of intermediate-conductance Ca2+-activated K+

channels (KCNN4), important for coronary artery smooth muscle cell

contraction and progression of atherosclerosis (Gole, Tharp, & Bowles,

2014).

Among the first studies suggesting a role for NOX5 in the cardio-

vascular system was the demonstration that NOX5 protein is

expressed in the ER and perinuclear area of human microvascular

endothelial and vascular smooth muscle cells and that NOX5 is

constitutively active, contributing to basal ROS production (Ahmarani

et al., 2013; BelAiba et al., 2007). In humans, NOX5 is the primary

vascular ROS-generating Nox isoform and is stimulated by vaso-

active agents (angiotensin II and endothelin-1), growth factors

(platelet-derived growth factor and epidermal growth factor) and

pro-inflammatory mediators (transforming growth factor-𝛽 and cyto-

kines) (Jay et al., 2008; Manea, Manea, Florea, Luca, & Raicu, 2012;

Montezano et al., 2010; Touyz, Anagnostopoulou, Camargo, Rios, &

Montezano, 2019). Increased activation of endothelial cell NOX5

causes cell proliferation and formation of capillary-like structures,

important in atherosclerosis and angiogenesis (Guzik et al., 2008;

Wang&Hartnett, 2017), and these processes aremediated via stromal

cell-derived factor-1𝛼 and c-Jun N-terminal kinase 3 (Pi et al., 2014).

Many of the molecular and cellular processes involved in vascular

remodelling associated with ageing, atherogenesis, hypertension and

aneurysm formation, such as cell proliferation, inflammation and

fibrosis, might involve NOX5-dependent mechanisms (Guzik et al.,

2013; Guzik, & Touyz, 2017). One of the best-studied vasoactive

regulators of NOX5 is angiotensin II, which increases expression and

activation of the enzyme, in part through its effects on increasing

[Ca2+]i (Montezano et al., 2015). In contrast, activation of the

vasoprotective axis of the renin–angiotensin system through

angiotensin-(1–7) prevents actin cytoskeleton reorganization

and inhibits thrombin-induced vascular inflammation by reducing

expression and activity of NOX5 (Pai, Lo, Hsu, Peng, &Wang, 2017).

NOX5 has been demonstrated in human coronary artery disease,

and its expression is increased in intramyocardial arteries in myo-

cardial infarction (Hahn et al., 2012). In human atherosclerosis,

oxidative and inflammatory processes involve increased expression

and activation of NOX5 in vascular cells and resident macrophages

(Chen et al., 2016; Hahn et al., 2012). In in vitro studies, exposure

of monocytes and monocyte-derived macrophages to increasing

concentrations of interferon-𝛾 or oxidized low-density lipoprotein,

conditions that recapitulate atherogenesis, induced a dose-dependent

increase inNOX5 expression andROS production (Manea et al., 2018).

However, not all models of vascular inflammation and remodelling

are associated with NOX5, as demonstrated in a primate model of

atherosclerosis, where NOX2, but not NOX5, was involved in vascular

injury (Stanic, Pandey, Fulton, &Miller, 2012).

Experimental models suggest that NOX5 also plays a role in the

pathophysiology of stroke. In mice expressing human NOX5 in an end-

othelial cell-specific manner, blood pressure was elevated and the risk

of stroke increased (Kleikers et al., 2014). This seemed to be especially

important in female mice, suggesting sexual dimorphism for NOX5-

related stroke. These studies suggested that targeting NOX5might be

vaso- andneuro-rotective in conditions associatedwith elevatedblood

pressure and risk of stroke.

NOX5has also been implicated in thedevelopment of hypertension.

Kidney NOX5 expression and activity are increased in patients with

essential hypertension, and NOX5 is likely to be a major cause of renal

oxidative stress in hypertension (Holterman, Thibodeau, & Kennedy,

2015). We previously demonstrated increased blood pressure in mice

expressing human NOX5 in the kidney (Holterman et al., 2014; Jha

et al., 2017). However, the relationship between vascular NOX5 and

blood pressure seems to be an age-dependent phenomenon, because

we found that in 16- to 20-week-old mice expressing human NOX5

specifically in vascular smooth muscle cells, blood pressure was not

elevated (Montezanoet al., 2018),whereas in 30- to35-week-oldmice,

blood pressure was significantly increased (Montezano AC, Touyz

RM; unpublished data). Clinically, a putative role for NOX5 in hyper-

tension was recently unravelled in a genome-wide association study

searching for novel blood pressure-associated genes (Kraja et al.,

2017). In that study of 475,000 people, NOX5 was identified as a

putative blood pressure-associated gene, especially linked to systolic

blood pressure (Kraja et al., 2017). Other genetic studies have also

shown associations between Nox and blood pressure. Findings from

theGenetic EpidemiologyNetwork of Salt-Sensitivity study (Han et al.,

2017) demonstrated that common variants of Nox-related genes are

associated with blood pressure responses to dietary sodium inter-

vention in a Chinese population. However, more research in the field

is needed to elucidate fully the role of NOX5 in the development of

hypertension and associated cardiovascular disease.

7.2 NOX5 and kidney disease

NOX5 is expressed in numerous cell types in the kidney and seems

to be the predominant Nox isoform in human renal proximal tubule

cells (Chen et al., 2016). We were amongst the first to demonstrate

that NOX5 is upregulated in human diabetic nephropathy and that

it influences filtration barrier function and blood pressure through

the generation of ROS (Holterman et al., 2014). These findings were

supported by studies in mice expressing human NOX5 in a podocyte-

specific manner that exhibited podocyte dysfunction, albuminuria and

hypertension, processes that were exacerbatedwhenmiceweremade

diabetic by treatment with streptozotocin (Jha et al., 2017). NOX5-

induced renal inflammation involves induction of cytokine expression

and upregulation of Toll-like receptors, which causes a feedforward

system where Toll-like receptor activation enhances NOX5-induced

generation of ROS and consequent oxidative stress and renal injury

(Jha et al., 2017). More recently, we have shown that expression

of human NOX5 in mice in a vascular smooth muscle/mesangial

cell-specific manner causes renal oxidative stress, glomerulosclerosis,

mesangial expansion, renal inflammation and fibrosis, processes that

accelerate progression of renal disease in diabetes (Jha et al., 2017).

Other forms of renal disease are also associated with increased NOX5

expression, including sepsis-induced acute kidney injury (Ge, Huang,

Zhu, Bian, & Pan, 2017) and metabolic disease-related renal damage
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(Wan, Su, & Zhang, 2016). Although NOX5 has been demonstrated in

human kidney cells, the major renal Nox isoform is NOX4, which was

originally called Renox (renal Nox). The relationship between NOX4

and NOX5 in the kidney is unclear, but NOX4 might regulate NOX5-

induced ROS production (Montezano et al., 2011).

7.3 NOX5 and cancer

Overexpression of Noxs and uncontrolled redox-dependent cell

proliferation have been demonstrated in various cancers (Gào &

Schöttker, 2017; Roy et al., 2015). NOX5 expression and activity

are increased in gastric cancer, malignant melanoma, breast cancer,

prostate cancer and oesophageal cancer (Antony et al., 2017; Dho

et al., 2017;Gào&Schöttker, 2017; Kalatskaya, 2016; Roy et al., 2015).

Increased Nox activity and dysregulated production of ROS cause

tissue injury, DNA damage and uncontrolled cell proliferation that

are already evident in pre-malignant conditions, especially Barrett's

oesophagitis (Kalatskaya, 2016). Pathways implicated in these NOX5–

ROS-dependent processes include signalling molecules (MAP kinases,

PI3K, PKC and p27Kip1), transcription factors (APE1/Ref-1, hypoxia-

inducible factor-1𝛼, AP-1,Nrf2, nuclear factor-𝜅B, p53, FOXO, STAT5A

and 𝛽-catenin) (Antony et al., 2017; Dho et al., 2017; Roy et al.,

2015) and adaptor proteins (Ruk/CIN 85) (Bazalii, Horak, Pasi chn yk,

Komisarenko, &Drobot, 2016).

7.4 NOX5 and cancer cell sensitivity to cisplatin

NOX5 has also been associated with sensitivity of cancer cells

to chemotherapeutic drugs, such as cisplatin. In skin, breast and

lung cancer cells, cisplatin treatment increased expression of NOX5,

with an associated increase in ROS-mediated cancer cell death

(Dho et al., 2015); responses that seem to be dose dependent.

Exposure of U937 histiocytic lymphoma cells to cisplatin also

caused an increase in NOX5 expression (Park et al., 2018). When

NOX5 was downregulated in these cells, sensitivity to cisplatin

was increased through pathways that involve N-Myc downstream-

regulated gene 2 (NDRG2) (Park et al., 2018). In human ovarian

adenocarcinoma cells exposed to cisplatin, development of drug

resistance was associated with increased gene expression of anti-

oxidant enzymes (SOD2, CAT,GPX1,HO-1) and the transcription factor

Nrf2, and decreased expression of NOX5, suggesting an adaptive anti-

oxidant response underlying molecular mechanisms associated with

cancer cell resistance to cisplatin (Kalinina et al., 2018). Taken together,

NOX5hasbeen suggestedas apotential targetof cancer cell sensitivity

to chemotherapies, such as cisplatin.

8 CONCLUSIONS

All ROS-generating Noxs are characterized by their ability to trans-

port electrons across membranes and to produce O2
− and/or

H2O2, which are important signalling molecules that influence all

aspects of cell function (Chen, Wang, Barman, & Fulton, 2015). The

regulation, mechanisms of activation and tissue distribution of the

seven members of the Nox family are distinct. This is especially

relevant for NOX5, which is unique in that it is absent in rodents,

it generates ROS from a single gene product, it does not require

any NADPH oxidase subunits for its activation, it has a unique

N-terminal extension that contains Ca2+-binding domains, and

it is not glycosylated. In physiological conditions, NOX5-induced

ROS generation seems to be important in the regulation of sperm

motility, smooth muscle contraction and lymphocyte function, and

in pathological conditions it has been implicated in cardiovascular

disease, kidney disease and cancer. The field of NOX5 pathophysiology

is still immature, but with advancements in NOX5 biochemistry

and biology, the development of novel transgenic NOX5-expressing

experimental models, characterization of the NOX5 crystal structure

and identification of NOX5 mutations and polymorphisms, the

significance of NOX5 in human health and disease will become more

apparent.
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