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Abstract

We have identified a generally effective Pd catalyst for the highly enantioselective cooperative 

Lewis base/Pd-catalyzed α-allylation of aryl acetic esters using electron-deficient electrophiles. 

Changing between aldehyde, ketone, ester, and amide substituents at the terminus of intermediate 

cationic π-(allyl)Pd species affects both the efficiency of the reaction and, in the case of amides, 

control over the stereochemistry of the product alkene, as a function of the ligand. Tris[tri(2-

thienyl)phosphino]Pd(0) serves as a broadly effective catalyst and overcomes these challenges to 

provide a general, high-yielding, and operationally simple C(sp3)–C(sp3) bond-forming method 

that gives products with high levels of enantioselectivity.

Graphical Abstract

Keywords

cooperative catalysis; Lewis base; palladium; allylic alkylation; enantioselective; synergistic

*Corresponding Author tsnaddon@indiana.edu.
#These authors contributed equally.

ASSOCIATED CONTENT

Supporting Information
The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acscatal.8b03507.
NMR spectra (CIF)
Experimental details and data (PDF)

The authors declare no competing financial interest.

HHS Public Access
Author manuscript
ACS Catal. Author manuscript; available in PMC 2019 November 02.

Published in final edited form as:
ACS Catal. 2018 November 2; 8(11): 10537–10544. doi:10.1021/acscatal.8b03507.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1. INTRODUCTION

Enantioselective Pd-catalyzed allylic alkylation has emerged as one of the most robust and 

versatile methods for the construction of C(sp3)−C(sp3) bonds.1 During such reactions, a 

range of carbon-based nucleophiles engage intermediary cationic π-(allyl)Pd(II) 

electrophiles and, by effectively tailoring the steric and electronic parameters of the 

supporting chiral nonracemic P(III) ligands on palladium,2 excellent control over both 

reactivity and enantiofacial selectivity is possible.

Our laboratory has a long-standing interest in enantioselective allylic alkylation, and we 

have recently described a cooperative Lewis base/Pd dual catalysis platform that efficiently 

addresses the stereocontrol challenges engendered by acyclic ester pronucleophiles.3 In this 

regime, the Lewis base serves to control and direct intermediate enolate geometry, as well as 

enantiofacial selectivity, whereas the Pd catalyst is primarily responsible for regulation of 

electrophile reactivity (see Figure 1a and Scheme 1 (left)). This process has proven to be 

general, as a consequence of the disparate roles played by these two catalysts, which permits 

the reactivity of the Pd center to be tuned via the ancillary ligands without compromising the 

nature or efficiency of enantiocontrol, which is governed by the Lewis base. We have 

exploited this feature to overcome unexpected reactivity and stereocontrol challenges posed 

by differentially functionalized electrophiles.3 Herein, we further demonstrate the utility of 

this by identifying a broadly effective Pd(0) catalyst that allows for the enantioselective α-

alkylation of aryl acetic acid esters by a wide range of carbonyl-substituted electrophiles.

The efficiency of Pd-catalyzed allylic alkylation is significantly affected by the precise 

electronic and steric composition of intermediate π-(allyl)Pd(II) species.1 Although their 

reactivity can be fine-tuned by the supporting ligands, it is nonetheless challenging to 

identify single-catalyst systems that are broadly effective. For example, the presence of 

strongly electron-withdrawing carbonyl functional groups at the termini of the 

organopalladium intermediates directs attack by the incoming nucleophile to the distal 

carbon by virtue of orbital control,4 thus reinforcing the regiochemical preference in favor of 

linear products as is common in Pd-catalyzed allylic alkylation. However, the degree of 

electron-withdrawing character, dipole, and steric demand varies significantly across the 

carbonyl series5 and can drastically affect the behavior of the electrophilic intermediates. For 

example, isomeric syn and anti π-(allyl)Pd(II) complexes can differ greatly in their relative 

electrophilicities and, as such, their ratio and the rate of their interconversion via π−σ−π 
isomerization can affect both the product alkene stereochemistry and the enantioselectivity 

of bond formation (see Scheme 1 (right)).6,7 Thus, identification of a broadly effective and 

general Pd/ligand system is far less trivial than it might first appear (see Figure 1b and 

Scheme 1 (right)).

2. RESULTS AND DISCUSSION

2.1. Initial Substituent Assessment.

Beginning with our previously developed conditions employing Birman’s benzotetramisole 

(BTM),8,9 in conjunction with Buchwald’s thirdgeneration Xantphos-ligated Pd precatalyst,
10 we evaluated the influence of four common carbonyl-containing functional groups on the 
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reactivity, alkene stereoselectivity, and enantioselectivity of our cooperative catalysis process 

(see Scheme 2). Thus, the direct α-allylation of phenyl acetic acid pentafluorophenyl ester 

with allylic tosylates11 1a–d revealed stark differences in the challenges facing the Pd 

catalyst and control elements that are inherent to the putative cationic π-(allyl)Pd(II) 

intermediates. The ester-substituted electrophile 1a provided the expected product in good 

yield, as a single alkene isomer and with good levels of enantiocontrol.12 However, 

decreasing the carbonyl oxidation level in electrophiles 1c and 1d provided lower yields of 

products, which also exhibited slightly lower levels of enantiocontrol, albeit as a single 

alkene E-isomer. Finally, most challenging was the amide-appended electrophile 1b, which 

also gave lower chemical yields as well as poor levels of control over alkene 

stereochemistry. Noteworthy is the high enantioselectivity of the major E-isomer. While 

these results demonstrate the flexibility of this cooperative catalysis protocol and further 

validate the broad capability of the Lewis base catalyst to impart useful levels of 

enantioselectivity, they also reveal disparate challenges facing the Pd catalyst that must be 

overcome in order to develop a fully general protocol for the direct asymmetric α-allylation 

of aryl acetic acid esters by electron-deficient electrophiles.

We have previously described the inherent modularity of this mechanistic construct, where 

the supporting ligands on Pd can be tuned to (i) overcome poor steric-derived reactivity, (ii) 

control chemoselectivity, and (iii) control alkene stereochemistry, in a manner that is 

independent of enantioselectivity, which continues to be administered by the Lewis base 

catalyst.3

In considering these results, and other notable contributions by the groups of Smith,13 

Hartwig,14 and Gong,15 we expected that a Pd catalyst could be identified that would 

address the distinct challenges posed by each of the functional groups presented in Figure 1. 

As the amide-substituted electrophile 1b possessed the added complication of control over 

the alkene stereochemistry, we began our investigations with this subclass.

2.2. Amide-Substituted Electrophiles.

Informed by our earlier studies, we surveyed a representative range of bidentate and 

monodentate phosphine ligands and assessed their capacity to influence both chemical yield 

and alkene stereoselectivity (see Table 1). Comparison of Xantphos-ligated Pd(0) derived 

from Buchwald’s G3 precatalyst,10 or formed in situ by stirring with Pd2dba3 gave similar 

levels of E/ Z selectivity and enantioselectivity, although product yield using the latter 

method was slightly improved (Table 1, entries 1 and 2). Using in situ catalyst preparation, 

other bidentate phosphines with varying bite angle and backbone flexibility offered no 

improvement (Table 1, entries 3–5). Standard monophosphines (Table 1, entries 6–10) 

exhibited a range of activity and E/Z selectivity, with PCy3 and P(o-tolyl)3 providing no 

reaction (Table 1, entries 6 and 7) and P(4-OMePh)3 affording comparable levels of 

reactivity and selectivity to the parent PdXantphos G3 system (see Table 1, entry 8 vs entry 

1). We have previously described the enhanced reactivity engendered by P(2-furyl)3 and P(2-

thienyl)3 ligands in related cooperative catalysis processes via C1-ammonium enolate 

nucleophiles.3c,d In the case of the former, the product was obtained exclusively as the E-

isomer, albeit in prohibitively low yield and with a slight reduction in enantioselectivity 
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(Table 1, entry 9). The latter provided the product in useful 6.6:1 E/Z ratio, with excellent 

levels of enantioselectivity and more useful chemical yield (entry 10). A brief assessment of 

Pd:ligand stoichiometry (entries 11 and 12) resulted in further yield enhancement (90%) and 

E/Z stereoselectivity (7.9:1) without compromising the level of enantiocontrol (96:4 er). At 

this juncture, we considered our optimization complete and moved forward to assess the 

scope of the appended amide and performed a direct comparison between our previous 

conditions employing PdXantphos G3 and our newly identified in situ Pd2dba3/P(2-thienyl)3 

conditions (see Scheme 3, columns 1 and 2).

Comparison of secondary and tertiary anilides (2 and 3), branched secondary amide (4), 

acyclic secondary amide (5), and Weinreb amide (6) revealed the broad superiority of the 

Pd2dba3/P(2-thienyl)3 protocol in terms of yield and E/Z selectivity; however, 

enantioselectivity was largely variable and was attributed to product epimerization during 

the prolonged reactions times.16 Accordingly, and because of the induction time necessary 

for in situ catalyst formation, we expected that a preformed Pd(0) catalyst would exhibit 

greater reactivity and enable a reduction in reaction time (see Supporting Information for 

full time study results). Employing Pd[P(2-thienyl)3]3 revealed its generally superior control 

over the alkene E/Z ratio and preservation of the high levels of enantioselectivity (see 

Scheme 3, column 3).17

At this juncture, it is appropriate to offer some comments concerning the alkene isomer 

ratio. In Pd-catalyzed allylic alkylation the E/Z selectivity originates from the relative 

stability (and reactivity) of syn and anti π-(allyl)Pd(II) intermediates,6 which, in turn, can 

derive from electronic and/or steric bias imparted by both the substrate and the supporting 

ligands. On a case -by-case basis, some combination of these influence not only the relative 

energies of syn and anti but also the relative facility of π–σ−π isomerization en route.18 The 

data presented in Table 1 and Scheme 3 indicate clear ligand dependence, with respect to the 

obtained alkene stereochemistry and led us to consider those factors responsible. Although 

neither in situ spectroscopic interrogation nor single-crystal analysis of species relevant to 

catalysis have offered any insight, available Xantphos ligand analogues provide a toolbox for 

potential qualitative assessment via modulation of the steric demand or electronic 

parameters of the P(III) donor atom substituents (see Scheme 4, Question).19 Consequently, 

formation of the parent α,β-unsaturated anilide 2 (E/Z 2.3:1) was re-evaluated using 

commercially available Xantphos ligand analogues 9–12 that present an indicative range of 

steric and electronic features. The gem-dimethyl → NH ligand backbone modification in 

NiXantphos 9 constitutes a remote electronic modification that does not significantly affect 

the donor properties of the P(III) donor atom.20 Consistent with this, 9 gave the product in 

almost-identical alkene ratio (2.5:1 E/Z) to the parent ligand (see Scheme 3, column 1) 

suggesting little substantive influence over the reactivity of the associated π-(allyl)Pd(II) 

fragment. More direct influence can be expected by altering the substituents on the P(III) 

donor atom, and the corresponding bis-phosphonous diamide 10 or Reetz’s (R)-BINOL-

derived diphosphonite ligand 11 only further favored the E alkene isomer relative to 

Xantphos itself. Given the enhanced π-accepting character of these substituents via the 

classical backdonation from the appropriate metal d-orbital to the lowlying σ*P–N and σ*P–O 

orbitals,21 respectfully, this might well indicate why 2-(thienyl)phosphine, which is a ligand 
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with low steric demand and strong π-accepting character,22 is so generally effective. Finally, 

poorer acceptor properties coupled with increased steric demand via di-t-butyl substitution 

(12) shut down the reaction completely. While this last result might suggest inhibition of 

catalysis due to deleterious steric effects, the poor reactivity of PCy3 (see Table 1, entry 6) 

more likely suggest that electron-rich alkyl-substituted phosphines lack the electronic 

properties necessary for catalysis at the Pd(0) center. While elucidation of the factors 

responsible for E/Z control must await further study, these data further illustrate the 

unexpected breadth of effect that relatively minor modifications to a given ligand scaffold 

can have on product selectivity.

2.3. Ketone-Substituted Electrophiles.

As depicted in Scheme 2, using the PdXantphos G3 catalyst,10 ketone, and aldehyde-

substituted electrophiles provided products in low yield, although they did not suffer from 

alkene isomer distributions. As indicated by the results of our amide assessment, we 

reasonably expected that the chemical yield could be improved upon identification of an 

appropriate Pd catalyst, and that any decrease in enantioselectivity might also be addressed 

through the ligand selection or by limiting in situ product racemization. Assessment of the 

same ligands/ conditions again revealed the critical influence of the supporting phosphine 

ligand (see Table 2, entries 2–10), and again revealed P(2-thienyl)3 to be superior (Table 2, 

entries 10–12). Finally, the preformed zerovalent Pd[P(2-thienyl3)]3 again proved optimal 

(Table 2, entry 13).

Using these optimal conditions, we assessed the steric profile of aliphatic ketones (Scheme 

5, 13–16), which provided the products in good isolated yields as single E-isomers and with 

consistently high levels of enantioenrichment. Cyclopropyl ketone 17 and phenyl ketone 18 
were similarly effective.

2.4. Ester-Substituted and Related Electrophiles.

The identification of Pd[P(2-thienyl)3]3 as an effective Pd catalyst offered some prospect of 

a general Lewis base/Pd protocol independent of the carbonyl substituent on the 

electrophile. Therefore, we assessed its competence with electrophiles bearing ester (19–23), 

thioester (24), and nitrile (25) moieties (see Scheme 6). All products were formed in high 

chemical yield, with high levels of enantioenrichment and with exclusive control over the 

alkene stereochemistry. The nitrile product 25 displayed only minimal deviation from this 

(9:1 E/Z) and slightly lower levels of enantioselectivity. Noteworthy is the performance of 

the aldehyde-substituted electrophile, which is sensitive and must be used immediately. The 

product 26 was obtained in 50% yield and with enhanced levels of enantioenrichment (cf 

Scheme 2).

Finally, we sought to evaluate control over alkene stereochemistry in trisubstituted α,β-

unsaturated esters. In the event, α-Me and β-Me substituents (27 and 28) displayed marked 

preference for the E-stereoisomer while retaining the levels of enantioselectivity (see 

Scheme 6, bottom).
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2.5. Nucleophile Scope.

Our systematic investigation of carbonyl-based substituent effects on the stereochemical 

outcome of our direct asymmetric α-allylation of prochiral aryl acetic acid ester 

nucleophiles23 has led to the identification of a general and effective cooperative Lewis 

base/Pd-catalyzed protocol. In concert with this broad tolerance of electrophile structure, we 

evaluated a range of aryl acetic acid ester nucleophiles and further confirmed the 

effectiveness of this catalytic system (see Scheme 7). We began by assessing the reaction of 

the ethyl ester-bearing electrophile with three standard nucleophiles, all of which performed 

as expected (29–31) and provided the products in good yields as single E-isomers and with 

high levels of enantioselectivity. From here, we explored the efficiency of this catalyst via 

different nucleophile–electrophile combinations (32–43). Again, these all performed as 

expected. Noteworthy is the ability to incorporate aryl halides in conjunction with different 

α,β-unsaturated carbonyl systems. In combination with electro-philic Pfp esters,24 these 

moieties provide ample opportunity for further orthogonal diversification.

3. CONCLUSIONS

In summary, we have identified the compatibility and broadly effective cooperative catalytic 

effect of BTM/Pd[P(2-thienyl3)]3 for the direct enantioselective α-allylation of prochiral 

esters. Products are obtained exclusively as the linear regioisomer, with high levels of E-

selectivity (or exclusively E) and with high levels of enantiocontrol. Within the context of 

our own efforts, this cements BTM/Pd as a general reactivity platform for the direct 

enantioselective alkylation of acyclic prochiral esters. Moreover, this study furthers the 

notion that Lewis base/transition-metal cooperative catalysis provides unique opportunities 

for enantioselective reaction design as the properties of the metal can be tuned and 

modulated independently of the source of enantioselectivity, which resides on the Lewis 

base catalyst. This can be considered complementary to traditional ligand-centered 

asymmetric induction.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(a) Cooperative Lewis base/Pd-catalyzed enantioselective allylic alkylation using acyclic 

ester pro-nucleophiles. (b) Can a Pd catalyst be identified to overcome the varying influence 

of common electron-withdrawing groups on reaction yield, E/Z selectivity, and 

enantioselectivity?
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Scheme 1. 
Postulated Mechanism (Left); Challenges for Pd(0) Catalysis (Right)
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Scheme 2. 
Influence of Commonly Encountered Electron-Withdrawing Groups on Reaction Yield, E/Z 
Selectivity, and Enantioselectivity
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Scheme 3. 
Scope and Comparison of Ligands/Conditions for Amide-Substituted Electrophiles
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Scheme 4. 
Comparison of Xantphos Ligands, Showing the Effect of Electronic and Steric Modification 

on E/Z Selectivitya
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Scheme 5. 
Scope of Ketone-Substituted Electrophiles
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Scheme 6. 
Scope of Ester-Substituted Electrophiles*
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Scheme 7. 
Demonstration of Generality–Nucleophile Scope, in Combination with Different 

Electrophiles*
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Table 1.

Optimization of 4-Me-Anilide-Substituted Electrophile: Effect of Ligand

Entry
a Pd(mol%) PR3(mol%) Yield[%]

b
E:Z

c
er

d

1 PdXantphos G3 -- 40 2.3:1 96.4

2 Pd2dba3(5) Xantphos (10) 56 2.5:1 95.5

3 Pd2dba3(5) DPEphos (10) 40 3:1 96.4

4 Pd2dba3(5) dppf (10) 37 2.1:1 95.5

5 Pd2dba3(5) dppe (10) 26 1.9:1 96.4

6 Pd2dba3(5) PCy3 (20) 0 -- --

7 Pd2dba3(5) P(o-tolyl)3 (20) 0 -- --

8 Pd2dba3(5) P(4-OMePh)3 (20) 28 2.5:1 94.6

9 Pd2dba3(5) P(2-furyl)3 (20) 15 100:1 92.8

10 Pd2dba3(5) P(2-thienyl)3 (20) 43 6.6:1 96.4

11 Pd2dba3(5) P(2-thienyl)3 (10) 85 7.2:1 94.6

12 Pd2dba3 (10) P(2-thienyl)3 (25) 90 7.9:1 96.4

a
Reactions performed on a 0.1 mmol scale.

b
Yields determined by 1H NMR by comparison with an internal standard (1,2,4,5-tetramethylbenzene).

c
E/Z ratio calculated from crude 1H NMR.

d
Determined by chiral HPLC analysis.
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Table 2.

Optimization of t-Butylketone-Substituted Electrophile: Effect of Ligand

Entry
a Pd (mol%) PR3 (mol%) Yield [%]

b
E:Z

c
er

d

1 PdXantphos G3 -- 45 E only 85:15

2 Pd2dba3(5) Xantphos (10) 41 E only --

3 Pd2dba3(5) DPEphos (10) 0 -- --

4 Pd2dba3(5) dppf (10) 36 E only -

5 Pd2dba3(5) dppe (10) 0 -- -

6 Pd2dba3(5) PCy3 (20) NA NA NA

7 Pd2dba3(5) P(o-tolyl)3 (20) NA NA NA

8 Pd2dba3(5) P(4-OMePh)3 (20) 0 -- -

9 Pd2dba3(5) P(2-furyl)3 (20) 50 E only -

10 Pd2dba3(5) P(2-thienyl)3 (20) 70 E only 86:14

11 Pd2dba3(5) P(2-thienyl)3(10) 70 E only 93:7

12 Pd2dba3 (10) P(2-thienyl)3 (25) 70 E only 93:7

13 Pd[P(2-thienyl)3]3 (5) -- 87 E only 96:4

a
Reactions performed on a 0.1 mmol scale.

b
Yields determined by 1H NMR by comparison with an internal standard (1,2,4,5-tetramethylbenzene).

c
E/Z ratio calculated from crude 1H NMR.

d
Determined by chiral HPLC analysis
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