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Abstract
The hallmark pathology underlying Parkinson disease (PD) is progressive synucleinopathy, beginning in caudal brainstem
that later spreads rostrally. However, the primarily subcortical pathology fails to account for the wide spectrum of clinical
manifestations in PD. To reconcile these observations, resting-state functional connectivity (FC) can be used to examine
dysfunction across distributed brain networks. We measured FC in a large, single-site study of nondemented PD (N = 107;
OFF medications) and healthy controls (N = 46) incorporating rigorous quality control measures and comprehensive
sampling of cortical, subcortical and cerebellar regions. We employed novel statistical approaches to determine group
differences across the entire connectome, at the network-level, and for select brain regions. Group differences respected
well-characterized network delineations producing a striking “block-wise” pattern of network-to-network effects.
Surprisingly, these results demonstrate that the greatest FC differences involve sensorimotor, thalamic, and cerebellar
networks, with notably smaller striatal effects. Split-half replication demonstrates the robustness of these results. Finally,
block-wise FC correlations with behavior suggest that FC disruptions may contribute to clinical manifestations in PD.
Overall, these results indicate a concerted breakdown of functional network interactions, remote from primary
pathophysiology, and suggest that FC deficits in PD are related to emergent network-level phenomena rather than focal
pathology.
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Introduction
The pathologic hallmarks of Parkinson disease (PD) are α-synu-
clein aggregated Lewy bodies in substantia nigra, degeneration
of nigrostriatal dopaminergic neurons, and striatal dysfunction,
resulting in the classic motor deficits of PD. However, subcorti-
cal dysfunction alone fails to account for the full spectrum of
clinical manifestations in PD, which includes cognitive, psychi-
atric, and other nonmotor disturbances (Jankovic 2008;
Aarsland and Kramberger 2015). Although PD neuropathology
becomes progressively more complex as α-synuclein aggrega-
tion extends beyond the brainstem to subcortical structures
and eventually cortical regions later in the disease course
(Braak et al. 2004; Halliday et al. 2011; Kotzbauer et al. 2012), the
clinical presentation of PD does not necessarily follow the spa-
tiotemporal pattern of neuropathology. The functional mecha-
nisms that relate neuropathology and the varied behavioral
disturbances in PD remain unclear (Aarsland and Kramberger
2015). One possible mechanism is that neuropathology in PD
causes emergent effects on widespread brain networks that
underlie these varied behavioral manifestations.

Thus, the distributed nature of neuropathological and clinical
effects in PD emphasizes the need to examine the full functional
“connectome” to understand the functional consequences of PD,
rather than isolated regions or networks. Functional brain net-
works can be measured with resting-state functional connectiv-
ity (FC), the temporal correlations in fMRI blood oxygen level
dependent (BOLD) signal between pairs of brain regions (Biswal
et al. 1995). This approach has been fruitful in characterizing net-
works in healthy young (Power et al. 2011; Yeo et al. 2011) and
older (Chan et al. 2014) populations.

While a large number of FC studies have been conducted in
PD, these studies report highly variable differences in the dis-
ease (Tahmasian et al. 2015), likely reflecting differences in
scope and methodology (reviewed in Supplementary Table S1).
Many FC investigations in PD focused on circumscribed brain
regions and networks, concentrating primarily on the striatum
as the principle locus for motor-related pathophysiology
(Helmich et al. 2010; Hacker et al. 2012; see review by
Tahmasian et al. 2015). Others focused on FC of cortical net-
works (Gottlich et al. 2013; Olde Dubbelink et al. 2014; Baggio
et al. 2015; Campbell et al. 2015; Gorges et al. 2015; Peraza et al.
2017) without measuring differences in subcortical systems.
Moreover, head motion—even submillimeter—may confound

FC analyses (Power et al. 2012; Satterthwaite et al. 2012; Van
Dijk et al. 2012; Ciric et al. 2017); most studies in PD do not ade-
quately address this issue despite being classified as a move-
ment disorder (Supplementary Table S1). Thus, current studies
have not provided a thorough examination of the extent and
relative magnitude of network-level FC differences in PD across
the entire connectome.

To address this need, we take a broad and multiscale
approach to measure the effect of PD on functional networks.
We analyzed a large and well-characterized PD dataset (107 PD
off medication, 46 age-matched healthy controls [HC]) with
meticulous attention to data quality and motion artifacts. We
measure disruptions to functional networks at multiple levels:
the whole connectome, individual networks, and by region,
comprehensively sampling cortical, striatal, thalamic, and cere-
bellar regions. We use split-half testing to examine the repro-
ducibility of our findings. Finally, we examine the relationship of
behavior to these functional network differences. This compre-
hensive approach allows us to robustly determine the relative
magnitude and specificity of functional network effects in PD.

Methods
Data Collection Overview

The data included in this article were collected as part of a
larger on-going, longitudinal study that acquires MRI, PET, CSF,
behavioral, and clinical measures from PD participants and HC
with autopsy confirmation and biochemical measures (Foster
et al. 2010; Campbell et al. 2015; Lucero et al. 2015; Buddhala
et al. 2015a, 2015b). Here we analyze MRI data from nondemented
PD and HC participants from the first time-point that met rigorous
quality control standards (baseline visit for N = 129, with the
remaining from follow-up visit years 1–6). All PD participants com-
pleted neuroimaging, cognitive, and motor assessments after
overnight withdrawal of PD medications (i.e., “OFF” meds). Control
participants were screened for neurological and cognitive
impairment as well as biomarkers of preclinical Alzheimer’s dis-
ease (i.e., CSF and PET measures of β-amyloid) (Sperling et al.
2011). The Washington University in St. Louis Institutional Review
Board and Radioactive Drug Research Committee approved all
procedures; all participants gave written informed consent.

Participants

A total of 143 participants with PD and 58 HC completed MRI
scans. Of these, 107 PD and 46 HC participants were included in
our analyses. For PD, 5 participants were excluded for dementia,
19 due to excessive movement, 11 due to coregistration issues,
and 1 due to poor brain coverage during scanning; for HC, 5 parti-
cipants were excluded due to elevated cortical β-amyloid
(Pittsburgh compound B; PIB, (Mintun et al. 2006)) PET levels, 5 due
to excessive movement, and 2 due to registration errors (exclusion
criteria are described in detail throughout the Methods). See
Supplementary Methods for a description of PD and HC inclusion
criteria and Table 1 for PD and HC characteristics.

Cognitive and Motor Assessments

Participants completed an extensive battery of motor and cog-
nitive assessments, off medication, including tests of memory,
attention, language, visual–spatial, and executive function, and
motor severity using the Unified Parkinson Disease Rating
Scale motor evaluation (UPDRS-III) (Fahn et al. 1987). See
Supplementary Methods for additional details.

Table 1 Clinical characteristics. Values represent group means and
standard deviations (SD). Two participants were missing MMSE; 3
participants were missing OFF UPDRS and LEDD. MMSE = Mini-
mental State Exam; UPDRS-III OFF = Unified Parkinson’s Disease
Rating Scale (III), off medication; LEDD = Levodopa equivalent daily
dose

Clinical characteristics PD HC PD vs. HC
Mean (SD) Mean (SD) P-value

N 107 46 –

Sex (% male) 56.1 30.4 0.004
Age 65.2 (7.3) 63.8 (11.0) 0.37
Years of education 16.2 (2.6) 14.8 (2.7) 0.002
MMSE 28.6 (1.6) 29.0 (1.1) 0.13
Disease duration (years) 6.3 (4.2) –

Age onset of PD 59.0 (7.6) –

UPDRS-III OFF total 23.1 (8.5) –

LEDD 792 (545) –

Note: Bold values highlight significant group differences.
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Image Acquisition and Preprocessing

MRI data were collected on a 3 T Siemens Trio (Erlangen,
Germany) using a 12-channel head coil. A T1-weighted
MPRAGE structural scan was collected from each participant in
each scan session with: repetition time (TR) = 2400ms, echo
time (TE) = 16ms, inversion time (TI) = 1000ms, flip angle = 8°,
with 0.9mm3 isotropic voxels. A T2-weighted MRI was collected
with TR = 3200ms, TE = 455ms, and 1mm3 isotropic voxels.

Participants also completed 1–3 resting-state fMRI runs, off
medication, per scan session using a gradient echo pulse
sequence with: 200 volumes (7.26min), TR = 2200ms, TE =
27ms, flip angle = 90°, with 4mm3 isotropic voxels and 48 axial
slices (no gaps; FOV = 256mm2). Three resting-state fMRI runs
were acquired for most participants. In some cases, 1 (or, rarely,
2) runs were omitted because of limited participant tolerance,
time constraints, or excessive head motion. Coverage included
all of the cerebral cortex, cerebellum, and brainstem (1 partici-
pant was excluded for poor cerebellar coverage). Participants
were instructed to rest quietly with eyes closed and to stay
awake. Wakefulness was confirmed verbally after each scan.
Participants were monitored during scans; runs with sustained
observable motion (e.g., tremors, dyskinesia, or dystonia) were
excluded. MRI data underwent standard preprocessing as previ-
ously described (Campbell et al. 2015; Fox et al. 2005; Hacker
et al. 2012) (see Supplementary Methods).

FC Processing and Quality Control

Additional preprocessing prior to FC analyses included: 1) spa-
tial smoothing (6mm Gaussian blur in each direction), 2) low-
pass temporal filtering (<0.1 Hz), and 3) regression of nuisance
signals from white matter, ventricles, the global signal, and 6
motion parameters and their derivatives. Global signal regres-
sion (GSR) was included to reduce physiological noise gener-
ated by head motion and respiration, as these sources of
artifacts can substantially contaminate FC data (Power et al.
2012; Satterthwaite et al. 2012; Van Dijk et al. 2012; Ciric et al.
2017) and the preponderance of studies comparing processing
strategies have demonstrated that GSR is the best way to
remove artifacts for group studies, especially from movement
and respiration (Power et al. 2012, 2014, 2015, 2017;
Satterthwaite et al. 2012, 2017; Burgess et al. 2016; Ciric et al.
2017). As PD is a movement disorder, GSR is particularly impor-
tant to properly interpret group differences in FC between PD
and HC. Despite the overwhelming evidence for its positive
effects, only 3 of the previous 18 studies reviewed in
Supplementary Table S1 include GSR as a processing step (and,
notably, only 1 of these also includes motion censoring)
(Campbell et al. 2015).

Motion Censoring
FC preprocessing was run (as described above) in 2 passes.
Processed data from the first pass was used to identify frames
with high frame-to-frame signal intensity changes (>0.3%)
(Power et al. 2012). In the second pass, these individual frames
contaminated by motion were censored before the start of pro-
cessing. Entire runs were removed from analysis if they had
fewer than 50 useable frames or >1.0mm root mean squared
head motion across the entire run. Furthermore, participants
were excluded if the participant had <150 usable frames
(5.5min) across all collected fMRI runs or a mean frame-to-
frame displacement (FD, calculated precensoring) >0.5mm; 19

PD and 5 control participants were excluded based on these
criteria.

After these steps, PD and HC groups did not differ in levels
of motion (mean precensoring FD, P = 0.60). In both groups, less
than 0.5% of functional connections showed significant correla-
tions with QC measures, benchmarking well against current
standards for motion correction (Ciric et al. 2017) (see
Supplementary Fig. S1). The number of retained volumes did
not differ between groups (P = 0.18; PD: mean = 457, range =
159–583; HC: mean = 454, range: 199–582).

Regions and Networks

Regions were defined to provide a comprehensive representa-
tion of cortical and subcortical regions, while controlling for
potential atrophy effects. Regions included previously defined
functional cortical parcels (Gordon et al. 2016), thalamic regions
derived from a group parcellation method (as in Greene et al.
(2014), subject-specific striatal and medial temporal lobe (MTL)
regions from FreeSurfer v5.3 (Fischl et al. 2002, 2004), and
subject-specific cerebellar regions from SUIT (Diedrichsen 2006;
Diedrichsen et al. 2009); (see below for details on region defini-
tion). Regions were masked by each participant’s gray matter to
account for possible atrophy; regions with fewer than 2 voxels
for any participant were removed from analysis (66 regions
removed; see Fig. 1). We also excluded regions of low BOLD sig-
nal that did not cluster well (“unassigned”) (Gordon et al. 2016)
leaving 285 ROIs. These criteria were included in an effort to
provide the cleanest and least biased functional network data
for the comparison of PD and HC networks, as some regions
cannot be studied accurately with MRI because they fall within
susceptibility voids or have limited signal due to atrophy. Two
HC and 11 PD participants were excluded owing to poor gray/
white segmentations.

Cortex
Cortical regions (N = 333) were from a previously published
group parcellation, based on applying a boundary mapping
technique on surface-based FC data in a large group of young,
healthy, individuals (Gordon et al. 2016). These surface regions
were projected into the volume for analysis. Cortical regions
were then restricted to each individual’s FreeSurfer (v5.3)
(Fischl et al. 2002, 2004) gray matter ribbon to account for possi-
ble atrophy.

Striatum and MTL
ROIs in the striatum (8 regions: bilateral caudate, anterior puta-
men, posterior putamen, and nucleus accumbens) and MTL (4
regions: bilateral hippocampus and amygdala) were defined
based on subject-specific segmentations from FreeSurfer. Each
of these regions (except nucleus accumbens) was eroded by set-
ting the FreeSurfer-defined ROI voxel intensity to 1.0, smooth-
ing with a Gaussian kernel with FWHM 4.0mm, and setting
voxels less than 0.75 equal to 0.0. Sections for the anterior and
posterior putamen were defined on a t88 atlas template image
by defining the anterior–posterior division as the posterior
aspect of the fornix on each axial slice (Hacker et al. 2012).
These sections were then applied to each participant’s puta-
men ROIs after their T1 image had been warped to t88 space.

Thalamus
Given the lack of reliable anatomical MRI markers for reliably
identifying the small nuclei of the thalamus, we delineated
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twelve thalamic regions (8mm spherical ROIs) based on a func-
tional parcellation of thalamic areas. The parcellation was gen-
erated using a functional network winner-take-all method
applied to resting state data from a separate group of adults
(see, Greene et al. 2014, for details on the method). Briefly, tha-
lamic parcels were defined according to the cortical functional
network that correlated most with each thalamic voxel. We then
placed a spherical ROI at the centroid of each proposed parcella-
tion, where we have the best confidence in labeling the function
of each region. Based on these parcels, we included 2 regions
with representation of the visual network (likely corresponding
to bilateral pulvinar nuclei), 4 regions with representation of
somatomotor networks (in the area of bilateral ventral nuclei),
and 6 with representation of frontal association networks (2 in
bilateral dorsal anterior thalamus, 2 in bilateral ventral anterior
thalamus, and 2 in bilateral dorsomedial thalamus). Thalamic
ROIs were masked by the FreeSurfer generated thalamic region
from each participant.

Cerebellum
Fifteen cerebellar regions were anatomically defined from subject-
specific SUIT segmentations (Diedrichsen 2006; Diedrichsen et al.
2009), optimized for older adult brains by masking CSF from the T2
image and constraining the cerebellar boundary with the
FreeSurfer generated cortical ribbon (Myers et al. 2017).

Networks
Network definitions followed Gordon et al. (2016), representing
well-established and validated network architecture (Power
et al. 2011), with the addition of 5 subcortical networks: basal
ganglia, thalamus, reward (nucleus accumbens and orbitofron-
tal regions), cerebellum, and MTL. Thus, 17 networks shown in
Figure 1 were used for all subsequent analyses.

Network definitions were confirmed in this dataset
(Supplementary Fig. S2) using the infomap community detec-
tion algorithm (Rosvall and Bergstrom 2008; Power et al. 2011)
jointly on all cortical parcels, subcortical, and cerebellar ROIs,
on weighted graphs created from 1% to 10% edge densities.

This data-driven approach produced similar network defini-
tions for cortical areas as previously defined, including sensori-
motor (e.g., somatomotor, somatomotor lateral, visual, and
auditory) and association (e.g., default mode, salience, cingu-
loopercular, frontoparietal, dorsal attention, and ventral atten-
tion) networks. In addition, subcortical regions clustered into 5
networks: basal ganglia, thalamus, reward (nucleus accumbens
and orbitofrontal regions), cerebellum, and medial temporal
lobe.

Spherical Parcellation
As an additional test of whether effects were consistent across
cortical parcellations and with regions of matched size, 300
8–10mm spherical ROIs (Power et al. 2011; Greene et al. 2014;
Seitzman et al. 2017) with coverage across cortex, striatum,
thalamus, MTL, and the cerebellum were used to examine the
pattern of functional network differences in PD. Cortical ROIs
were spheres from Power et al. (2011) and subcortical ROIs were
defined as for the thalamus above (Greene et al. 2014). No gray
matter masking was performed on these spherical ROIs.

FC Calculation

FC was calculated as Fisher z-transformed temporal correla-
tions between pairs of averaged BOLD signals from each region.
Results were assembled into region × region matrices, sorted
by network assignment. Sets of correlations between a given
pair of networks (or within the same network) are referred to as
“blocks” in this matrix structure. These FC matrices define an
unthresholded weighted graph that represents the organization
of functional networks across the whole brain, in which regions
are represented as nodes, and FC values are represented as
weighted, undirected, edges.

Connectome and Network-Level Analyses

Principal statistical results were obtained by comparing PD
and HC groups using a novel technique for contrasting

Figure 1. Networks and Regions. We examined resting-state correlations in a comprehensive set of cortical and subcortical regions representing 17 distinct networks.

(A) Cortical networks, defined by cortical parcellation, included sensorimotor and association networks (Gordon et al. 2016). (B) Subcortical networks included striatal,

medial temporal (MTL), thalamic, and cerebellar regions.
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connectomes (object-oriented data analysis [OODA] (La Rosa
et al. 2012, 2016); see below). To test the robustness of our
methods, we repeated OODA on random split-half samples of
our data. We then conducted post hoc comparisons using a
permutation approach (see below) to assess which network
blocks showed significant group differences. We also examined
more traditional correlation maps obtained using seeds in key
regions (e.g., striatum). Finally, we examined how post hoc
selected network blocks relate to cognitive and motor perfor-
mance, partialing out the effects of age, sex, and education. A
more complete description of these analyses is below.

Object Oriented Data Analysis
A weighted graph OODA method (La Rosa et al. 2012, 2016) was
used to test whether correlation matrices differ systematically
between PD and HC groups. OODA is a multidimensional com-
parison of the differences between whole matrix objects that
preserves individual edges and their ordering within the matrix
in comparisons (conceptually related to comparing the similar-
ity of the upper triangle of matrices). Specifically, in this
approach, individual correlation matrices are treated as a single
object. Average weighted (G*) matrices from each sample are
computed under the assumption that the matrices follow the
Gibbs distribution. Average matrices are then compared with
one another by taking the Euclidian distance between them
(i.e., by computing the Euclidean distance between the upper
triangles of each average matrix). To assign a P-value to the
observed differences, a distribution of distances is generated by
bootstrapping the samples (N = 1000 times) in each original
dataset to create new average G* matrices. The OODA method
reduces the need for substantial data reduction in the correla-
tion matrices by allowing full matrices to be compared, rather
than individual networks or connections, thereby obviating the
loss of power from testing each connection separately. Thus,
OODA provides an omnibus-level statistical test of the entire
graph (i.e., correlation matrix).

Multidimensional Scaling
Multidimensional scaling (MDS) plots were used to represent
the similarity among matrices based on their distances (com-
puted as the Euclidian distance between matrix objects). In
MDS, data points are represented in an N-dimensional space,
computed to best preserve the relative distances between each
point (note that absolute values/directions are not meaningful
in this representation); the initial dimensions in MDS represent
the primary variance in the data. We use the classical MDS
algorithm implemented in the Matlab 2012 cmdscale.m function,
applied to the full set of PD and HC participants.

Matched Group Analyses
An additional control analysis was conducted on a sub-sample of
PD participants matched to HC on sample size, sex, age, and years
of education. The matched samples were statistically compared
with one another using the OODA method described above.

Split-Half Analyses
To determine the robustness of our findings, we conducted
additional analyses on a split-half sample of our dataset. PD
and HC participants were randomly split into 2 halves (for each
half, NPD = 54, NHC = 23) and statistically compared with one
another using the OODA statistic described above. The process
was repeated for 50 random splits of the data.

Post Hoc Permutation Testing
We used a permutation approach to determine which network-
to-network blocks differed significantly between PD and HC
groups. Group identity labels from the participants were ran-
domly permuted (N = 1000 times) and these new permuted
assignments were used to generate 1000 novel average “PD” and
“HC” matrices. We then measured the average absolute FC differ-
ence for each block between the permuted PD and HC matrices.
The true PD versus HC difference was contrasted with this
block-specific permuted distribution of differences to generate a
P-statistic. We corrected P-values for multiple comparisons across
blocks using the FDR approach (requiring that P(FDR) < 0.05).

FC Seed-Based Correlation Maps
Seed-based correlation analyses were used to study the topogra-
phy of FC differences in greater detail and to contrast with previ-
ously published results. Specially, we calculated seed-based FC
correlation maps, focused on some of the primary regions of dif-
ferences, including cortical motor areas, thalamus, and striatum
given previous papers focused on this area. As seeds, we used
the same ROIs as defined above. To create a seed-based correla-
tion map, the average signal for a given ROI was correlated with
signals from every other voxel in the brain. These maps were
Fisher z-transformed and averaged across participants in a group.
Cortical motor and thalamic correlation maps were created for
display purposes, to explore the pattern of FC differences across
cortical and subcortical structures. For striatal correlation maps,
we additionally conducted Monte Carlo permutation-based clus-
ter correction (N = 10 000; for t > 3.0, FWE P < 0.05) to directly
compare our findings with previous literature on striatal FC dif-
ferences in PD.

Relationship to Behavior
Finally, we examined whether mean FC in the selected blocks
relate to behavioral performance. For each block, we examined
the correlation between the average FC in that block with cog-
nitive (attention, memory, language, visuospatial, executive,
and average cognitive performance) and motor (UPDRS-III total
score, and bradykinesia, tremor, rigidity, and PIGD UPDRS-III
subscores) scores, partialling out age, sex, and education.
Partial-correlation P-values were FDR corrected for multiple
comparisons across selected blocks.

Results
Overview

We examined large-scale, whole-brain networks in 107 nonde-
mented PD (off-medication) and 46 HC participants. First, we
demonstrate functional connectome-level differences between
PD and HC participants using novel omnibus-level statistical
methods (OODA). We show that these differences are robust,
replicating in sub-samples of our data, and not driven by sam-
ple characteristics. FC differences—primarily reductions in
(positive and negative) FC magnitude—were widespread, but
highly selective to particular network-to-network blocks,
within and between cortical and subcortical networks. We pres-
ent a detailed analysis and ranking of these “block-wise” net-
work effects, and, finally, show that a subset of FC blocks relate
to motor and cognitive performance.
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Participant Characteristics

PD and HC participant characteristics are shown in Table 1. PD
and HC groups were matched on age, however, PD participants
had more education (P < 0.005), and a higher proportion of
males than HC participants (χ2 = 8.47, df = 1, P < 0.005). See
analyses below (Evaluation of FC Differences: Matched Groups)
to address this issue; additionally, sex, age, and education were
included as covariates for FC-behavior analyses.

Although not demented, PD participants performed worse
than HC participants across many cognitive domains, including
attention, memory, and executive function (Supplementary
Table S2). Thus, this was a heterogeneous sample, with a range
of motor and cognitive features typical of PD.

Connectome Characteristics

We measured large-scale functional networks in PD and HC
across cortical, subcortical, and cerebellar regions comprehen-
sively representing the functional connectome (Fig. 1). Both

groups showed similar network organization (Fig. 2A), that is,
both matrices exhibited high within- and low between-network
correlations. Indeed, similar network divisions were found in
both groups with data-driven community detection algorithms
(Supplementary Fig. S2) largely consistent with networks iden-
tified in young HC (Gordon et al. 2016). However, direct group
comparison reveals widespread and selective block-level FC dif-
ferences between PD and HC participants (Fig. 2B), impacting a
combination of cortical sensorimotor, subcortical, and associa-
tion networks. In these blocks, PD participants demonstrated
decreased positive connections and increased negative connec-
tions in PD, corresponding to a reduced absolute magnitude
of FC.

Connectome-Level Differences

We applied graph-based statistical techniques to determine
whether these observed FC differences significantly differed
between PD and HC. The groups clustered separately from one
another along the first 3 MDS dimensions, qualitatively

Figure 2. Large-scale networks in Parkinson disease and controls. (A) Large-scale networks in HC (left) and PD (right) participants, shown in the form of a correlation

matrix. Both PD and HC participants showed strong network organization, with high correlations within each network (diagonal) and low correlations between net-

works (off-diagonals). (B) Direct comparison between groups shows prominent and highly structured differences characterized by a block-specific pattern.

(C) Multidimensional scaling plot shows the relative positions of PD (blue) and HC (red) matrices in multidimensional space. Large diamonds represent the central

tendency of each group (G*), determined using the Gibbs distribution. The dashed line marks the distance between the 2 G* matrices. (D) The difference between GPD*

and GHC* matrices using OODA is depicted, with significance assessed by bootstrapping (P < 0.001).
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demonstrating distinct FC distributions between groups
(Fig. 2C; each point represents a full FC matrix). We used OODA
to quantify group differences. OODA identifies the average
graph of a sample (G*). Differences between 2 average graphs
then can be quantified by calculating the distance between
them in multidimensional space. Finally, bootstrapping was
used to determine the significance of this distance. As shown
(Fig. 2D) PD and HC connectomes differed significantly (P <
0.001), with the difference in G* matrices reproducing a similar
pattern to the simple differences shown in Figure 2B. Similar
results were also seen with a different parcellation based on
300 spherical regions of matched size (OODA P < 0.001;
Supplementary Fig. S3).

Matched Groups
Given that the PD and HC groups differed in number, sex ratio,
and education, we conducted a supplementary analysis with a
subsampling of PD participants to match the groups on these
variables (Supplementary Fig. S4). OODA indicated that the
matched groups were significantly different (P < 0.001); further-
more, the distribution of differences was analogous to those
shown in Figure 2.

Reliability of FC Results
Finally, given the novel techniques employed in the current
study, we used a split-half procedure to evaluate the reliability
of our findings. PD and HC participants were randomly split into
2 equal halves (NHC = 23, NPD = 54 per half) and compared quali-
tatively as well as quantitatively using OODA (Supplementary
Fig. S5). Despite the smaller sample sizes, results were similar
for the 2 halves, with significant PD versus HC OODA differences
per each half (Supplementary Fig S5A shows the distribution of
P-values across 50 random splits, mean ± SD, P = 0.02 ± 0.03,
median P = 0.008). The difference in G* matrices (Supplementary
Fig. S5B, shown for the median split-half result) demonstrates a
similar pattern to the one described above, with prominent
block-specific FC differences between PD and HC participants.

Thus, these results indicate robust network-wide FC differences
between PD and HC.

Block-Level FC Differences

We next used permutation testing to identify network blocks
with significant average absolute FC differences between PD and
HC participants (P < 0.05, FDR corrected for multiple compari-
sons across blocks). Significant blocks are shown in Figure 3A
and listed in order of magnitude difference in Table 2.

The networks affected in PD generally showed lower magni-
tudes (whether positive or negative FC) compared with HC; in
other words, a shift towards zero. Thus, the dominant pattern
of differences was a reduced magnitude of FC within and
between affected networks (Fig. 3B, Supplementary Fig. S6).

Although widespread, FC differences were selective and sys-
tematically organized, aligning with specific network blocks
involving cortical and subcortical regions (Fig. 3). The most pro-
nounced differences occurred within and between cortical sen-
sorimotor, thalamic, and cerebellar networks. A more modest
and complex pattern of differences existed between these net-
works and association networks. Notably, association network
impact in nondemented PD was limited to these interactions;
there were no differences within or among association net-
works. Interestingly, blocks involving the striatum (“BG” in Figs
2 and 3) exhibited less prominent FC differences, suggesting
that functional differences were downstream of the structures
generally thought to be the main sites of dysfunction in PD.

We describe the patterns of FC differences in detail here.
Prominent relationships (e.g., among cortical somatomotor,
thalamus, cerebellum) were explored further with seed-based
FC to determine the spatial distribution of effects and how they
align with motor- and nonmotor subregions of subcortical sys-
tems. Descriptions of group differences refer to differences in
absolute magnitude of FC in PD compared with HC (i.e., magni-
tude enhancement or reduction, whether from positive or neg-
ative, in PD relative to HC—as opposed to a directional increase
or decrease in FC), except where specifically noted otherwise.

Figure 3. Significant Block-Level Differences between PD and HC. (A) We permuted participant group labels to identify blocks with significant mean absolute differ-

ences between PD and HC groups (P < 0.05, FDR correcting for the number of blocks). Significant blocks are shown in hot colors, as the absolute difference in FC per

block. See Table 2 for a ranking of blocks. (B) Here, we separately show the PD-HC differences of significant blocks, for connections that were positive in HC (left) and

negative in HC (right). Most positive connections decrease and most negative connections increase in PD relative to HCs, indicating a reduction in FC magnitude

(Supplementary Fig. S6).

Emergent Functional Network Effects in PD Gratton et al. | 2515



• Within-network FC: The magnitude of intranetwork FC was
reduced in cortical somatomotor (SM), somatomotor-lateral
(SM-lat), auditory, thalamic, and cerebellar networks. These
FC reductions indicate decreased integrity of these cortical
sensorimotor and subcortical networks. Notably, striatal FC
differences were not significant (see Striatal FC section below).

• Between-network cortical-to-cortical FC:
o Cortical sensorimotor FC: FC magnitude was strongly
reduced between somatomotor networks and sensory cor-
tical networks (especially visual, and to a lesser extent,
auditory; Figs 2 and 3; shown for a motor seed in Fig. 4A).
FC also was diminished between visual and auditory net-
works. These differences represent a reduced FC magni-
tude among typically coherent sensorimotor regions.
o Cortical sensorimotor-association FC: Somatomotor (and, to
a lesser extent, visual and auditory) networks exhibited
moderate to large magnitude reductions of negative corre-
lations with salience and FP networks (Figs 2 and 3, 4A).
More mixed effects were seen among SM and the CO,
DMN, and VAN networks (Fig. 3B).

• Between-network cortical-to-subcortical FC: Significant differences
were also observed in the interactions between sensorimotor

network FC and several subcortical networks, most promi-
nently cerebellar and thalamic (Fig. 3). Interestingly, however,
the regional pattern of differences within each structure varied
as shown in detailed seed-based FC analyses (Fig. 4B); similar
patterns were observed in sensory networks.

o Cortical–Thalamic FC: Dorsal anterior thalamic subregions
typically associated with frontal association areas (Johansen-
Berg et al. 2005; Zhang et al. 2010; Hwang et al. 2017) exhib-
ited prominent reductions of negative FC magnitude in PD
(see seed-based FC in Figs 4 and 5; note the thalamic location
with high FC to motor cortex in HC shows little difference).
Similar differences occurred in thalamic FC with cortical sen-
sory networks.
o Cortical–cerebellar FC: Sensorimotor cortical-to-cerebellar
FC differed throughout the cerebellar lobules in PD. In
contrast to the thalamus, seed-based analyses reveal that
motor subregions of the cerebellum exhibit enhanced pos-
itive FC in PD (Fig. 4B). Other subregions exhibited smaller
magnitude differences, in this case reduced magnitude of
negative FC.

Figure 4. Motor hand seed. We present correlation maps for a motor seed

(region shown with a gray patch, indicated with gray arrow in A). (A) Motor cor-

tex FC is projected onto an inflated cortical surface for HC (left), PD (middle), or

the group difference (right). PD was associated with decreases in motor FC to

sensorimotor and visual regions (cyan arrows) and increases to Salience/CO

and FP regions (purple arrows). These differences represent weaker FC in PD

relative to HC. Only the right hemisphere is shown, but FC differences were

bilaterally symmetric. (B) The same comparisons are shown for volumetric

views of subcortical regions. In PD relative to HC, motor cortex FC increased to

the cerebellum, especially in motor subregions (indicating stronger FC, maroon

arrows). In contrast, motor cortex FC showed little difference to motor subre-

gions of the thalamus, but increased substantially in association-related tha-

lamic subregions (purple arrows; Fig. 5). Motor cortex FC also weakly increased

to the striatum, especially in nonmotor subregions of the caudate and anterior

putamen (pink arrows; see Supplementary Fig. S7). As with cortical FC, thalamic

and striatal FC differences were associated with weakened FC magnitude in PD.

Motor cortex FC differences were consistent across sensorimotor regions.

Table 2 Block difference ranking. This table reports the blocks with
the largest absolute FC differences between PD and HC groups for
all significant blocks (FDR-corrected P < 0.05). The second column
reports the number of standard deviations away from the null (per-
muted) mean and the third column reports the mean absolute FC
difference within the block.

FDR-Pval STDperm Mean Names

0 11.34 0.1058 SM-Visual
0 11.24 0.1025 SM-SM
0 10.8 0.0886 SM-Cerebellum
0 8.53 0.1064 SM-lat-Visual
0 8.2 0.0944 SM-Salience
0 8.02 0.0901 Cerebellum-Cerebellum
0 7.54 0.0686 Auditory-Visual
0 6.83 0.0695 Visual-Thalamus
0 6.32 0.0479 CO-BG
0 6.05 0.0682 SM-Thalamus
0.001 6.31 0.0545 SM-lat-FP
0.001 6.05 0.0807 Thalamus-Cerebellum
0.002 6.27 0.0864 SM-SM-lat
0.002 6.14 0.0462 SM-FP
0.002 5.8 0.0688 SM-lat-Cerebellum
0.002 5.79 0.0868 SM-lat-Salience
0.003 6.14 0.0836 Auditory-Auditory
0.006 5.55 0.0626 Auditory-BG
0.007 4.96 0.0364 Auditory-FP
0.011 4.42 0.0366 SM-VAN
0.016 4.69 0.0451 Reward-Cerebellum
0.017 4.86 0.0508 Auditory-Cerebellum
0.017 4.74 0.0547 Visual-Cerebellum
0.017 4.54 0.0465 SM-CO
0.02 3.81 0.0627 Thalamus-Thalamus
0.022 4.38 0.0624 SM-MTL
0.022 3.79 0.089 SM-lat-SM-lat
0.028 3.99 0.0491 Auditory-Thalamus
0.028 3.63 0.0528 SM-lat-Thalamus
0.035 3.89 0.0402 SM-Default
0.035 3.67 0.0364 SM-Reward
0.035 3.52 0.0344 Default-Visual
0.044 3.45 0.0439 Auditory-Retrosplenial
0.05 3.34 0.0426 Visual-Salience
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o Cortical–other subcortical FC: In PD, stronger (i.e., increased
magnitude) negative FC was also present between sensori-
motor networks and the MTL and reward networks, indic-
ating enhanced anticorrelations between these regions.

• Subcortical-to-subcortical FC: Reduced FC occurred between cer-
ebellar and thalamic networks, indicating a loss of coherence.
In addition, PD showed a reduced magnitude of negative cor-
relations between cerebellum and reward networks.

• Striatal FC: Differences in the striatum were generally smaller
than those in the cerebellum, thalamus, and cortical sensori-
motor networks, only reaching significance in the BG-
Auditory and BG-CO blocks. To compare our findings with
previous striatal FC results, we conducted focused seed-based
striatal FC analyses (Supplementary Fig. S7). These results
confirm previously published findings of altered striatal FC
with cortical somatomotor and association (especially CO)
networks, and, to a lesser extent, cerebellar and visual
regions (Hacker et al. 2012; Campbell et al. 2015). As shown in
Figure 4 and Supplementary Figure S7, sensorimotor–striatal
FC demonstrated a similar pattern as the thalamus, with the
strongest FC magnitude reductions for nonmotor striatal
regions (anterior putamen, caudate). Thus, our results sug-
gest that striatal FC effects in PD are smaller in magnitude
compared with FC differences in other subcortical and corti-
cal networks.

These selective intranetwork and internetwork alterations are
illustrated in Figure 6, in which connectomes are represented
as graphs. Node positions were determined using a spring-
embedding algorithm, which positions more strongly functionally
connected nodes closer together. Note the altered size and

positions of somatomotor (teal), visual (navy), thalamic (burnt
orange), and cerebellar (dark red) networks, which, in PD are
larger, pushed farther apart from one another, and interdigitated
with other (DAN, CO) networks. This depiction recapitulates
the selectively disrupted network integrity—and cross-network
interactions—in PD.

Relationship Between FC and Behavior

Finally, to determine whether FC differences relate to clinical
manifestations in PD, we examined the relationships between
motor and cognitive performance with FC for each significant
block (partialing out the effects of age, sex, and education), cor-
recting for multiple comparisons. UPDRS-III measures of motor
severity in PD participants (off medication) correlated with the
magnitude of FC, with greater motor severity related to
decreased magnitude of negative SM-Reward FC (UPDRS-III
total score: partial-r = 0.32, P(FDR)<0.05; bradykinesia subscore:
partial-r = 0.35, P(FDR) < 0.05) and decreased magnitude of posi-
tive FC within the thalamus (UPDRS-III total score: partial-r =
−0.28, P(FDR)= 0.08; bradykinesia subscore: partial-r = −0.32,
P(FDR) < 0.05). Other blocks showed similar relationships but
did not reach significance after multiple comparisons correc-
tion. These findings suggest that motor dysfunction relates to
reduced FC of motor-related cortical and subcortical networks
(Supplementary Fig. S8).

Cognitive measures showed more complex relationships
within and across networks, not limited to motor-related net-
works, and differed across cognitive functions (Supplementary
Fig. S9). Global cognition scores did not relate to block-level FC,
but a subset of cognitive domains correlated with mean block

Figure 5. Thalamic seeds. Thalamic FC is shown for 2 thalamic seeds: a seed centered on somatomotor subregions (top row) and a seed centered on frontal associa-

tion subregions (bottom row; see seeds in gray to the right of B). Columns represent the HC, PD, and group difference FC maps, respectively. Cortical (A),

striatum/thalamus (B), and cerebellum (C) differences are shown. The strongest thalamic differences were for frontal thalamic subregions, rather than motor thalamic

subregions. This included increases between thalamic subregions and sensorimotor and visual cortex (cyan arrows), decreases to the cerebellum (maroon arrow), and

mixed effects in the striatum, with increases to the caudate and decreases to anterior putamen (pink arrow).
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FC in the full group of PD and HC participants. Specifically,
impaired visuospatial performance was associated with
reduced magnitudes of positive intracerebellar FC (partial-r =
0.25, P(FDR) < 0.05) and negative cerebellar-visual FC (partial-r =
−0.26, P(FDR) < 0.05). Cerebellar-reward FC flipped from primar-
ily negative in HC to positive in PD, in association with lower
visuospatial performance (partial-r = −0.24, P(FDR) < 0.05).
These findings suggest that interactions within and between
the cerebellar network and other networks may be central to
visuospatial function. Executive function scores also positively
related to FC between the SM and MTL networks (partial-r =
0.27, P(FDR) < 0.05), with better performance associated with a
switch from negative to increasingly positive FC.

Discussion
PD produces a striking “block-wise” pattern of network-level dis-
ruptions in FC. Surprisingly, the striatum was not the most sig-
nificantly affected network; instead, the most prominent
disruptions involved interactions among cortical sensorimotor,
thalamic, and cerebellar networks. Split-half replication demon-
strates the robustness of these results. Thus, in PD, FC disrup-
tions impact specific network-to-network blocks, rather than a
regionally limited pattern of differences or global desegregation.
Our comprehensive whole-brain sampling combined with novel
statistical approaches demonstrates new insights into the extent

and relative impact of PD on network-level FC. Overall, these
results indicate a concerted breakdown of functional network
interactions, remote from primary pathophysiology, suggesting
emergent network-level phenomena rather than deficits attribut-
able to focal pathology.

PD is Associated With Selective Network-Level
Vulnerabilities

We find that the pattern of differences between PD and HC is
strikingly block-wise, influencing specific sets of network-to-
network connections, within and between systems. Whereas
other studies focused on limited sets of networks, within network
alterations, or global measures of FC (see review (Tahmasian et al.
2015); Supplementary Table S1), our results highlight the impor-
tance of widespread, but selective, deficits in network interac-
tions. These findings suggest that dysfunction in PD may occur
fundamentally at a network level, impacting swaths of vulnerable
network-to-network relationships.

Disrupted FC in PD appears distinct from the pattern of FC
changes in healthy aging, which are more widespread, less
block-specific, and centered on association networks (Chan
et al. 2014). Thus, FC reductions with PD do not simply reflect an
exaggerated aging process. Whether this pattern of block-wise
FC differences is specific to PD or represents a general pattern
common to neurodegenerative diseases, including Alzheimer

Figure 6. Spring Embedded Graphs. (A) Graph depictions of networks in HC (top) and PD (bottom; shown for 6% edge density). Brain regions are shown as nodes (filled

circles, colors indicate network identity), and edges between nodes indicate functional connections. (B) We highlight the strongest FC differences between PD and HC

(red lines = increased FC magnitude for PD, blue lines = decreased FC magnitude for PD; shown for the top 1.5% of differences; nodes are positioned as in the top

graph in A). Strong FC reductions appeared within and between sensorimotor, cerebellar, and thalamic networks. A few selective increases were present between SM

and association networks (CO, FP, Salience) and the cerebellum.
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disease (AD), remains to be determined. Some findings suggest
that dysfunction in neurodegenerative diseases map onto dis-
tinct large-scale networks (e.g., DMN in AD, salience in fronto-
temporal dementia) (Buckner et al. 2005; Seeley et al. 2009).
Alternatively, given some shared pathology (e.g., β-amyloid
deposition) and clinical features (e.g., cognitive decline), a simi-
lar pattern may exist among diseases, but with differences in
the relative prominence and magnitude of the network effects.
The end-stage presentation may converge and produce global,
cascading failure of networks.

Generally, the distributed nature of FC differences empha-
sizes the need for whole-brain examination, rather than a focus
on a circumscribed set of regions or networks, to understand
functional deficits in PD and other neurodegenerative diseases.
We applied newly developed graph-based statistical methods
(i.e., OODA) that improve the sensitivity of network analyses by
computing statistical inferences on the full connectome. This
powerful approach provides a more detailed, quantitative char-
acterization of regional, network, and connectome-level FC,
which may prove widely useful in network neuroscience.

PD Impacts Specific Cortical and Subcortical Networks
and, Especially, Their Interactions

The most prominent FC differences in PD involved cortical sen-
sorimotor, thalamic and cerebellar networks, both within and,
especially, between networks as highlighted by the relative
ranking of FC blocks (Table 2). Thus, unlike previous studies
that focused largely on the striatum or a few cortical networks
(Tahmasian et al. 2015), we show a breadth—but selectivity—of
network differences that jointly impact cortical and subcortical
systems. The prominent loss of interactions between these net-
works in PD suggests that PD may lead to a loss of appropriate
internetwork integration, as implicated by previous studies
investigating internetwork FC (Baggio et al. 2015; Campbell
et al. 2015; Peraza et al. 2017).

For example, dysfunction of somatomotor networks is not
surprising, given the characteristic motor manifestations of PD
(Jankovic 2008) and previous reports of their disruptions (Hacker
et al. 2012; Gottlich et al. 2013; Olde Dubbelink et al. 2014;
Campbell et al. 2015; Canu et al. 2015; Gorges et al. 2015; Tan
et al. 2015; Guimaraes et al. 2016; Koshimori et al. 2016; Peraza
et al. 2017). However, we show disruptions of internetwork
somatomotor interactions. These internetwork differences
included somatomotor to cortical sensory and association sys-
tems and subcortical systems, like the cerebellum and thala-
mus. Interestingly, lower internetwork FC of the motor system
weakly mirrored that found in other sensory systems (visual,
auditory, seen also in (Olde Dubbelink et al. 2014; Canu et al.
2015; Guimaraes et al. 2016; Ma et al. 2017; Peraza et al. 2017)).
Reduced internetwork FC between somatomotor and sensory
networks in PD may relate to reports of impaired sensory pro-
cessing and sensorimotor integration (Abbruzzese and Berardelli
2003; Patel et al. 2014; Richards et al. 1993), as further suggested
by the relationship between visual–cerebellar FC and visuospa-
tial performance reported here.

The large, prominent, intranetwork and internetwork dis-
ruptions of the cerebellar and thalamic systems are particularly
interesting. Although known to have central roles in motor
function as well as important processing and gating roles for
many other cortical networks (Alexander et al. 1990; Middleton
and Strick 2000; Saalmann and Kastner 2011; Buckner 2013;
Hwang et al. 2017), few prior studies comprehensively included
these regions in studies of connectome-wide disruption in PD

(although for cerebellum see (Onu et al. 2015; Guimaraes et al.
2016; Ma et al. 2017) and for thalamus see (Baggio et al. 2014;
Gorges et al. 2015; Vervoort et al. 2016)). Our findings indicate
that the cerebellum and thalamus may be key sites of dysfunc-
tion in PD. Notably, subregions within the thalamus and cere-
bellum showed distinct patterns of differences between PD and
HC. In the thalamus, disruptions primarily related to frontal
association subregions. In contrast, FC was most strongly
enhanced in motor subregions of the cerebellum. The signifi-
cance of these patterns remains unclear, but we speculate that
they may reflect disrupted or possibly compensatory interac-
tions between motor and executive control functions. As FC of
both the cerebellum and thalamus related to behavioral perfor-
mance, these structures may play a role in the clinical manifes-
tations of PD.

In contrast to these consistent blockwise differences in FC,
association networks exhibited a more variable pattern. Robust
reductions in the magnitude of negative correlations occurred
between somatomotor and certain control related networks (e.g.,
frontoparietal and salience), while other association networks
showed mixed patterns (e.g., cinguloopercular, ventral attention,
and default). Of note, interactions did not differ within or among
association networks, likely reflecting the ubiquitous motor defi-
cits and the heterogeneity of cognitive function across our sam-
ple of nondemented PD participants, with some cognitively
intact and others with cognitive impairment. More focused
analyses of specific association networks in a more cognitively
impaired PD group may reveal additional network disruptions
(Rektorova et al. 2012; Tessitore et al. 2012; Baggio et al. 2014,
2015; Amboni et al. 2015; Gorges et al. 2015; Peraza et al. 2017).

PD Disrupts Networks Downstream of the Primary Sites
of Pathology

The pattern of strongest disruptions—among cortical sensori-
motor, thalamic, and cerebellar networks—is intriguing, as it
differs from previous research focused on nigral–striatal dopa-
mine pathway degeneration and dysfunction (Helmich et al.
2010; Hacker et al. 2012; Tahmasian et al. 2015). Although PD
participants demonstrated reduced striatal FC, consistent with
previous reports (Campbell et al. 2015; Hacker et al. 2012), these
differences were relatively modest and notably less prominent
than FC reductions in other networks.

Cortical α-synuclein proteinopathy (i.e., Lewy bodies, neur-
ites, and grains) and abnormal β-amyloid deposition (Kotzbauer
et al. 2012) may contribute locally to network-level FC disrup-
tion. However, α-synuclein deposition typically progresses from
caudal brainstem to the midbrain, and then affects frontal and
limbic cortical regions, whereas, sensorimotor cortical regions
are among the last to develop Lewy pathology (Braak et al.
2004). Thus, the most prominent network disruptions in our
nondemented PD sample, of cortical sensorimotor systems as
well as the cerebellum and thalamus, suggest that these dis-
ruptions reflect remote, downstream effects since synucleino-
pathy does not develop in these areas until late stages. This
finding is consistent with previous PET blood flow and metabol-
ism studies, which also suggest downstream consequences of
neuropathology (Wooten et al. 1982; Perlmutter and Raichle
1985; Eidelberg 1998; Hershey et al. 1998; Sala et al. 2017). In
support of this idea, previous studies have demonstrated that
proteinopathy may influence sensorimotor network function,
suggesting that reduced FC arises as a downstream consequence
of pathology in other regions. For example, CSF α-synuclein
levels relate to sensorimotor network integrity (Campbell et al.
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2015) and CSF α-synuclein and β-amyloid levels relate to a global
measure of network disruption (Madhyastha et al. 2015). A
related possibility is that FC disruption in PD arises from neuro-
transmitter deficits, caused by disruptions to dopaminergic, nor-
adrenergic, cholinergic, and serotonergic nuclei (Braak et al. 2004;
Kehagia et al. 2010; Halliday et al. 2011; Buddhala et al. 2015b),
whose projections impact widespread cortical regions.

We propose that a combination of proteinopathy and neuro-
transmitter deficits leads to emergent disruptions in network
organization. For instance, deficits in brainstem and subcortical
nuclei important for motor function may contribute to func-
tional deficits in cortical motor areas through frontostriatal cir-
cuitry (Alexander et al. 1990; Middleton and Strick 2000);
similarly, deficits in dopaminergic or cholinergic projections
may affect the function of control, reward, or sensory systems
(Bohnen and Albin 2011; Cools 2006; Muller and Bohnen 2013;
Tahmasian et al. 2015). By carefully and comprehensively
defining functional network differences in PD, this work lays an
important foundation for future studies aimed at understand-
ing the mechanisms underlying FC disruptions in PD, using a
combination of multimodal, longitudinal, and interventional
approaches.

Network Disruptions Relate to Motor and Cognitive
Performance

Altered network-level FC may relate to the clinical aspects of
PD, which include motor, cognitive, and psychiatric features.
For example, motor severity correlated with both thalamic FC
and the interaction between somatomotor and reward net-
works. Previous studies also demonstrated links between stria-
tal and motor network FC with motor severity (Hacker et al.
2012). Cognitive deficits also occur with PD, initially affecting
attention and executive function, and later include visuospatial
and memory deficits as dementia develops (Barker and
Williams-Gray 2014; Gasca-Salas et al. 2014). Consistent with
these cognitive deficits, we found network deficits related to
visuospatial and executive function. Worse performance was
primarily associated with lower magnitude (i.e., weaker) nega-
tive as well as positive FC. Interestingly, the majority of signifi-
cant brain–behavior relationships involved internetwork FC,
and all involved subcortical network FC, highlighting the
importance of these FC differences. These findings indicate
that functional network disruptions relate to the heteroge-
neous pattern of behavioral manifestations in PD. One interest-
ing question is whether FC deficits reflect direct or indirect
markers of behavioral disruptions in PD; future work with lon-
gitudinal data could delineate the temporal sequence of FC and
behavioral deficits to address this question more fully.
Moreover, these findings suggest that another exciting avenue
for future research will be to examine the links between net-
work alterations and behavioral subtypes in PD.

Strengths and Limitations

Our robust findings address important methodological issues.
The large, well-characterized PD cohort, novel statistical tech-
niques, and comprehensive sampling of cortical and subcortical
regions across much of the connectome represent clear
strengths. Importantly, our paper is one of few in the field to
rigorously account for motion artifacts (see Supplementary
Table S1) (Tahmasian et al. 2015); given that PD is a movement
disorder, this constitutes a major advance. Furthermore, we

replicated findings in split-half samples of the data demonstrat-
ing the robustness of these results and the sensitivity of these
novel techniques. The large sample size also allowed us to
address the potential confounds of sex and education; a sub-
group analysis demonstrated that groups matched on sex and
education (as well as number and age) resulted in analogous
network differences to those found in the full group
(Supplementary Fig. S4). Thus, these patient characteristics are
unlikely sources of the differences between PD and HC groups.
Jointly, these methodological improvements clarify our under-
standing of the effects of PD on functional networks, addressing
the large inconsistencies in results reported in the literature.

Our findings should be qualified by the potential for sleep
differences between the PD and HC groups. Resting-state data
were collected with eyes-closed, which could encourage sleep
during fMRI scans. Sleep systematically modifies FC and may
contaminate putative resting state fMRI (Tagliazucchi and
Laufs 2014). This may be of particular concern as sleep distur-
bances (e.g., REM sleep disorder) commonly occur in PD
(Comella 2007). We repeatedly emphasized the importance of
wakefulness to our participants and we assessed this verbally;
scans with overt sleep contamination were removed from analy-
sis. Future studies with concurrent EEG-based sleep monitoring
may address this potential confound. Secondly, we restricted our
analyses to account for potential atrophy in the PD group, an
unaddressed concern in most prior studies of FC in PD
(Supplementary Table S1); however, due to this restriction, a few
small regions were not included in our analyses (see gaps in
Fig. 1). Supplementary Figure S3 includes analyses on a different
full set of regions matched for size, demonstrating similar
results. Relatedly, while PD pathology impacts brainstem regions,
the brainstem is a small structure in which heterogeneous nuclei
are packed closely together, and has high susceptibility to pulsa-
tion artifacts, presenting a signal quality and spatial resolution
challenge for fMRI (Astafiev et al. 2010). Future work targeted at
improving measurements from these regions may help to more
directly illuminate the relationship between pathology and net-
work dysfunction in PD. Although we demonstrate robust
network-level differences using split-half analyses, replication in
an independent data set would be ideal. Finally, as the current
study is a cross-sectional analysis, we cannot directly measure
disease progression; we infer disease progression based on the
range of severity of PD features in this sample and the results of
the behavioral correlations. However, future work with longitudi-
nal samples will more directly reveal the course of disease pro-
gression within PD.

Conclusions

We demonstrate that PD is associated with striking “block-
wise” disruptions of functional brain networks. Network dis-
ruptions—primarily reflecting reduced FC magnitude—were
highly selective, affecting blocks of network-to-network inter-
actions, most prominently among cortical sensorimotor, tha-
lamic, and cerebellar networks. These findings suggest that PD
may be characterized as a selective “network-level” disease.
Furthermore, the most prominent disruptions occurred down-
stream of the primary neuropathology and pathophysiology in
PD, suggesting an emergent nature to the functional network
differences. Finally, FC disruptions related to motor and cogni-
tive performance, indicating a potential link to clinical manifes-
tations in PD.
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