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Abstract
Introduction:  Functional connectivity (FC) of the human brain’s intrinsically connected networks underpins cognitive functioning and disruptions of FC are 

associated with sleep and neurological disorders. However, there is limited research on the impact of circadian phenotype and time of day on FC.

Study Objectives:  The aim of this study was to investigate resting-state FC of the default mode network (DMN) in Early and Late circadian phenotypes over a socially 

constrained day.

Methods:  Thirty-eight healthy individuals (14 male, 22.7 ± 4.2 years) categorized as Early (n = 16) or Late (n = 22) using the Munich ChronoType Questionnaire took 

part. Following a 2-week baseline of actigraphy coupled with saliva samples for melatonin and cortisol rhythms, participants underwent testing at 14:00 hours, 20:00 

hours, and 08:00 hours the following morning. Testing consisted of resting-state functional magnetic resonance imaging (fMRI), a structural T1 scan, attentional 

cognitive performance tasks, and self-reported daytime sleepiness. Seed-based FC analysis from the medial prefrontal and posterior cingulate cortices of the DMN 

was performed, compared between groups and linked with behavioral data.

Results:  Fundamental differences in the DMN were observed between Early and Late circadian phenotypes. Resting-state FC of the DMN predicted individual 

differences in attention and subjective ratings of sleepiness.

Conclusion:  Differences in FC of the DMN may underlie the compromised attentional performance and increased sleepiness commonly associated with Late types 

when they conform to a societally constrained day that does not match their intrinsic circadian phenotype.

Key words:  resting-state functional magnetic resonance imaging (fMRI); circadian phenotype; sleep; default mode network; attentional performance; sleepiness; 

circadian rhythms

Statement of Significance

Misalignment between an individual’s biological timing and behavior (e.g. as a result of shift work or jet lag) has adverse impacts on brain 
function, performance, and health. We found that people with a late sleep-wake preference, often called “night owls,” have significantly lower 
functional connectivity in the brain’s “default mode network,” which is involved in maintenance of consciousness and a range of cognitive 
functions. Importantly, these differences at rest were predictive of poorer attentional performance (slower reaction time) and increased subjective 
sleepiness. This may represent an intrinsic neuronal mechanism, which leads to “night owls” being comprised during a normal working day. 
Future work needs to account for these differences while targeting sleep/circadian biology could aid in improving health and performance.
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Introduction

It is estimated that nearly 70 million individuals in the United 
States alone suffer from some sort of disturbance to the sleep/
wake axis which impedes normal functioning and has potentially 
damaging effects on health and well-being [1]. Societal demands 
are often in conflict with an individual’s endogenous biological 
rhythms, leading to adverse impacts on mental and physical 
health as well as performance. An extreme example of this 
is shift work, whereby misalignment between an externally 
imposed work/rest schedule and internal circadian timing can 
lead to cognitive deficits [2], poorer mental health [3], increased 
health risks including cancer [4] and a compromised immune 
system [5].

However, misalignment does not have to be driven by 
unusual work schedules. By definition, the important issue 
is that one’s internal temporal organization (i.e. circadian 
phenotype) and external schedule are in conflict. In particular, a 
standard working day of 09:00–17:00 hours may be detrimental 
for an individual whose biological preference is for a late sleep-
wake cycle. Compounding the problem, misalignment can also 
be associated with a cumulative sleep debt, as sleep is curtailed 
because of late sleep onset, with a similar type and range of 
adverse outcomes [6]. This aspect of misalignment is much less 
understood than night shift work, but potentially of greater 
importance given that, according to estimates from the Office 
of National Statistics, 12% of the population work night shifts, 
whereas around 50% have a late preference favoring a wake-up 
time later than 08:18 hours [7]. Therefore, there is a critical 
need to increase our understanding of these issues in order to 
minimize health risks in society and maximize productivity.

It is well established that there are individual differences in 
circadian timing, that is, diurnal preference [8] and chronotype 
[7]. At the extreme end of the continuum, these different groups 
of individuals can be identified as “larks” or “owls” (referred to 
here as Early [ECP] and Late [LCP] circadian phenotypes based on 
objective actigraphy and circadian phase markers). Compared 
to LCPs, ECPs have less disrupted sleep [9], make healthier food 
choices [10], thereby minimizing risks of obesity and diabetes 
[11], and reach higher standards in the sports world [12]. 
Conversely, LCPs have been linked to greater daytime sleepiness 
[13], increased alcohol consumption and substance abuse [14], 
decreased psychological well-being through higher rates of 
depression [15], sleep disorders [16], negative health outcomes 
[17], and have even been linked to higher mortality rates [18]. 
Constant desynchronization of their internal circadian rhythms 
through trying to “fit in” to external societal time, for example, 
work/school schedules has been suggested as the root cause of 
these adverse impact on LCPs. This mismatch of biological and 
social time has been called “social jetlag” [19].

The consequences of sleep and circadian disruption on health 
and cognitive performance are well established. The application 
of functional magnetic resonance imaging (fMRI) in this area is 
still relatively sparse and much of the literature surrounding 
the relationship between brain function and attention has 
been focused on task-based fMRI. However, optimal cognitive 
performance and good mental health rely upon the appropriate 
coordination of activity between distributed intrinsic functional 
neuronal networks (often referred to as intrinsically connected 
networks, ICNs). One ICN, the default mode network (DMN), is 
particularly affected by sleep onset [20], sleep deprivation [21], 

variations in habitual sleep patterns across individuals [22], and 
exhibits diurnal variation in its functional connectivity (FC) [23]. 
The DMN is most active in the absence of external cognitive 
demand [24], and has been associated with functions as diverse 
as self-referential processing [25] maintaining consciousness 
[26], regulating cognition [27], attention [28], and working 
memory [29]. It is also modified in a range of psychiatric and 
neurological disorders [30], including Alzheimer’s disease [31] 
and depression [32].

Resting-state fMRI provides a complementary approach to 
task-based fMRI, with the efficiency and integrity of ICNs been 
linked to intellectual performance [33] and greater intelligence 
[34], marking the importance that testing resting-state FC (rs-
FC) could play in predicting measures of cognitive function. 
Only a handful of studies have explored the link between FC, 
sleep, circadian phenotype and cognitive performance [35, 
36]. However, these investigations used task-based fMRI and 
controlled for the effect of circadian phenotype by scheduling 
testing based on internal biological time, for example, every 4 
hours starting 1.5 hours after waking, preventing the exploration 
of the effect of circadian phenotype in real-life throughout a 
typical societally constrained day.

In summary, neuroimaging is increasingly used as a technique 
in sleep research, but inter-subject variability, for example, 
circadian phenotype brings another level of complexity that is 
rarely accounted for, despite emerging research showing diurnal 
variation in brain function [23, 37]. Given that the DMN is evidently 
vital to basic maintenance of consciousness, affected by sleep 
alterations, and plays a role in cognitive functioning, it was used 
as the network of interest in the present study to examine the 
impact of circadian phenotype on resting-state brain function 
during the course of a typical societally constrained day (08:00 
hours to 20:00 hours). Both anterior (medial prefrontal cortex, 
mPFC) and posterior (posterior cingulate cortex, PCC) regions of 
the DMN were used as seed regions to gather information about 
the functional integrity of the DMN at rest, and these data linked 
to attentional performance and sleepiness outside of the MRI 
scanner. We hypothesized that LCPs would show disrupted FC 
compared to ECPs, and that FC differences would be correlated 
with behavior.

Methods

Participants

The study was approved by the University of Birmingham 
Research Ethics Committee. Individuals (n  =  204) from the 
University of Birmingham and surrounding community 
completed the Munich Chronotype Questionnaire (MCTQ [38]) 
and were screened for any contraindications to inclusion in the 
study based on medical history and magnetic resonance safety. 
Exclusion criteria were (1) no prior or current diagnoses of sleep, 
neurological or psychiatric disorders; (2) taking medications that 
affect sleep or melatonin/cortisol rhythms; and (3) intermediate 
chronotype indicated by corrected mid-sleep times on free days 
(MSFsc) from the MCTQ.

A total of 38 healthy individuals (14 male, 22.7 ± 4.2 years) 
who were categorized as “Early” (n = 16, age 24.7 ± 4.6 years, nine 
female, MSFsc 02:24 ± 00:10 hours) or “Late” (n = 22, age 21.3 ± 
3.3 years, 15 female, MSFsc 06:52 ± 00:17 hours) chronotypes and 
who also passed all inclusion criteria were invited to take part 
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in the main study. Participants gave written informed consent 
before involvement and all details provided were given on a 
voluntary basis. After completing questionnaires, physiological 
sampling and between 13–16  days of actigraphy in their 
home environment (details below), participants attended the 
Birmingham University Imaging Centre for testing sessions at 
14:00 hours, 20:00 hours, and 08:00 hours (GMT) the following 
morning. Individuals went home in between testing sessions. 
Testing sessions were conducted in a specific order (14:00 hours, 
20:00 hours, and 08:00 hours) to prevent the 14:00 hours and 
20:00 hours sessions being affected by sleep deprivation. This 
design allowed all individuals to wake-up naturally for the 14:00 
hours and 20:00 hours. Summary details of participants’ data 
can be found in Table 1. At each testing session, participants 
underwent a resting-state fMRI and T1 scan followed by 
cognitive testing (psychomotor vigilance task [PVT] and Stroop 
task) and subjective sleepiness ratings (details below). As part 
of the cognitive testing that was completed at each session, a 
questionnaire was developed and administered to gather details 
about what was occurring between sessions when participants 
left the laboratory. In an attempt to partially control for external 
variables and confirm no differences between the groups, 
information gathered included hours since (1) food intake; (2) 
caffeine consumption; (3) exercise; (4) exposure to natural light; 
and (5) exposure to indoor light (Table 1).

Sleep analysis

Actigraphs (Actiwatch Light, AWLs, 2006, Cambridge 
Neurotechnology Ltd) were worn on participants’ nondominant 
wrist to gather activity and light exposure data (1–32 000 lux) 

for 13–16  days prior to testing sessions. This allowed sleep 
and activity patterns to be monitored continuously in the 
home environment. Data were acquired in 1-minute epochs 
(medium sensitivity setting), confirmed with daily sleep diaries, 
and analyzed using Sleep Analysis 7 Software (version 7.23, 
Cambridge Neurotechnology Ltd). Throughout this period 
participants were following preferred routines and were not 
confined to particular schedules.

Physiological data

Saliva samples were provided during one morning and one 
evening the week of testing by spitting into pre-labeled 
polypropylene collection tubes (7-ml plastic bijou) following 
strict standardized protocols. Participants were trained in how to 
take the saliva samples in their home environment during their 
initial set up visit and the protocol instructions were discussed to 
ensure participants understood what was required. In addition, 
a sample collection record sheet was attached to both morning 
and evening protocols to ensure that the exact times samples 
were taken could be recorded. During the sampling periods, 
participants were asked to abstain from caffeinated drinks, 
alcoholic drinks or any drinks containing artificial coloring. They 
were also asked to refrain from cleaning their teeth, chewing 
gum or going to the bathroom at least 15 minutes before 
each sample. Evening samples were collected from a seated 
position while in dim lighting conditions (no overhead lights, 
no electronic screens, and curtains closed) every 30 minutes 
from 3 hours prior to individual habitual bedtime until 1 hour 
after. Morning samples were collected on awakening, every 15 
minutes for the first hour and every 30 minutes for the following 

Table 1.  Summary of demographic, actigraphic and physiological variables for ECPs and LCPs

Variable measured (mean ± SEM) ECPs LCPs Significance

Demographic variables
  Sample size N = 16 N = 22 n/a
  Number of scans/testing sessions N = 48 N = 66 n/a
  Percentage of males/females (%) M = 43.8 M = 31.8 nsc

F = 56.3 F = 68.2 nsc

  Age (years) (mean ± SD) 24.7 ± 4.0 21.2 ± 3.3 p = 0.028a

  Height (cm) 171.3 ± 2.0 171.1 ± 2.4 nsa

  Weight (kg) 66.4 ± 2.8 67.1 ± 2.1 nsa

  MCTQ score (hours:minutes) 02:24 ± 00:10 06:52 ± 00:17 p < 0.0001a

Actigraphic variables
  Sleep onset (hours:minutes) 22:57 ± 00:10 02:27 ± 00:19 p < 0.0001a

  Wake-up time (hours:minutes) 06:33 ± 0.10 10:13 ± 00:18 p < 0.0001a

  Sleep duration (hours) 7.59 ± 0.18 7.70 ± 0.14 nsa

  Sleep efficiency (%) 79.29 ± 1.96 77.23 ± 1.14 nsa

  Sleep onset latency (hours:minutes) 00:25 ± 00:06 00:25 ± 00:03 nsb

Physiological variables
  Phase angle (hours:minutes) 02:28 ± 00:16 02:34 ± 00:18 nsa

  Dim light melatonin onset (hours:minutes) 20:27 ± 00:16 23:55 ± 00:26 p < 0.0001a

  Cortisol peak time (hours:minutes) 07:04 ± 00:16 11:13 ± 00:23 p < 0.0001a

External variables (between sessions)
  Hours since last meal (hours) 3.58 ± 0.55 5.07 ± 0.58 nsb

  Hours since caffeine (hours) 8.47 ± 0.67 7.85 ± 0.82 nsb

  Hours since exercise (hours) 6.78 ± 0.74 7.44 ± 0.74 nsb

  Hours since natural light exposure (hours) 5.87 ± 0.80 3.51 ± 0.58 nsb

  Hours since indoor light exposure (hours) 1.88 ± 0.38 3.32 ± 0.51 nsb

Values are shown as mean ± SEM unless specified. Significance is shown with aparametric tests, bnonparametric tests or cFisher’s exact test. Phase angle is calculated 

by the interval time between dim light melatonin onset and sleep onset.
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2 hours. All samples were anonymized. Radioimmunoassays 
(RIA) of melatonin and cortisol were performed (Stockgrand Ltd, 
University of Surrey) using an Iodine-125 radioactive labeled 
tracer and solid phase separation [39]. Assays were run with 
quality controls (QCs) before and after samples. These QC values 
were then averaged to give one value per assay to calculate inter-
assay coefficients of variation (CV %). The limit of detection for 
the melatonin assay was 0.72 ± 0.08 pg/ml and CVs were 9.4% 
at 44.4 pg/ml, 9.9% at 20.1 pg/ml and 12.2% at 9.0 pg/ml (n = 13 
at each concentration). The limit of detection for the cortisol 
assay was 0.45 ± 0.06 nmol/L and inter-assay CVs were 8.3% at 
48.0 nmol/L, 6.1% at 15.9 nmol/L, and 9.8% at 3.0 nmol/L (n = 15 
at each concentration).

Individual dim light melatonin onset (DLMO) values 
were calculated using the mean of the individual baseline 
concentration values plus two SDs of the mean. Due to 
intra-subject variability in melatonin concentrations these 
calculations were performed relative to each individual. This 
concentration was used to calculate the timing of melatonin 
onset through a linear response function. The peak time 
of the cortisol awakening response was calculated as the 
time of highest cortisol concentration recorded. All results 
were calculated based on individual sample timings taken 
from sample collection record sheets. Due to insufficient 
or contaminated samples, DLMO values were unable to be 
calculated for two ECPs and four LCPs.

Neuroimaging acquisition

Imaging data were acquired using a Philips Achieva 3T MRI 
scanner with a 32-channel head coil. Whole brain coverage 
gradient echo-planar imaging data were acquired parallel to 
the AC-PC line with the following parameters: 15 minutes, 
450 volumes, TR = 2000 ms, TE = 35 ms, flip angle = 80°, 3 × 3 × 
4 mm voxels, 32 slices, no gap, matrix = 80 × 80 × 32. Standard 
high-resolution 3D anatomical T1-weighted scans (sagittal 
acquisition, TR  =  8.4  ms, TE  =  3.8  ms, flip angle  =  8°, 1  mm 
isotropic voxel, matrix = 288 × 288 × 175) were also collected to 
facilitate co-registration. Respiratory and cardiac fluctuations 
were recorded with the pulse oximeter and pneumatic belt 
provided by the scanner manufacturer. A  camera was placed 
in the scanner during each session to monitor participants’ 
eyes, confirm they remained open and that sleep had not been 
initiated. If eye closure exceeded 15 seconds, which is half 
a 30-second epoch according to the standard sleep staging 
approach [40], the scan was re-started. This occurred in one scan 
for one participant. Standard Birmingham University Imaging 
Centre operating procedures were followed for the MRI safety 
screening and during the scanning sessions, and participants 
were not asked to perform any task.

Neuroimaging preprocessing

FMRI preprocessing and analysis was performed using UF2C 
[41], PhysIO [42], and SPM12 [43] toolboxes implemented in 
MATLAB (MathWorks, United States). Preprocessing was carried 
out in UF2C using standardized methodologies implemented 
in SPM12. Data were reorientated to the anterior commissure 
as origin, motion corrected using rigid body transformations 
(three translational and three rotational planes), spatially 

normalized (MNI-152 template space), spatially smoothed with 
a 6-mm Gaussian kernel and detrended (temporal linear trends 
removal). Physiological noise corrections (RETROICOR for a third 
order cardiac, fourth order respiratory, and first order interaction 
Fourier expansion of cardiac and respiratory phase, heart rate 
variability and respiratory volume per time) were modeled using 
the PhysIO toolbox. This resulted in 18 nuisance regressors 
which were added to preprocessing routines in UF2C, along 
with average signals for white matter (WM) and cerebrospinal 
fluid (CSF) and six movement (three translational and three 
rotational) regressors. High-pass (>0.008 Hz) and low-pass (<0.1 
Hz) temporal filtering was applied to remove confounding 
physiological frequencies. Framewise displacement (FD) and 
derivative variance (DVARs) were calculated [44, 45], and any 
scan with an average FD value above 0.5  mm was excluded. 
This resulted in one scan (ECP, 14:00 hours) being removed from 
further analysis. Head movement (translational, rotational, FD, 
and DVARS) did not differ significantly between the groups or 
between times of the day.

Neuroimaging analysis

A seed-based FC approach was used to analyze the data using 
predefined seeds for the frontal (mPFC) and posterior (PCC) 
regions of the DMN [46]. Pearson correlation maps were then 
converted to z-score maps using Fisher’s Transformation. Using 
the general linear model (GLM) implemented in SPM12, second-
level group analyses were performed using a flexible factorial 
design. The second-level analyses were performed using a voxel-
level threshold FWE corrected at p < 0.05. A subsequent extent 
threshold (FWE corrected at p < 0.05) was used to concentrate on 
the significant results at the cluster level. Subject, group and time 
of day were added as factors and the model was set up for the 
main effect of group (ECPs and LCPs), the main effect of time of 
day (morning; 08:00 hours, afternoon; 14:00 hours, and evening: 
20:00 hours) as well as the interaction of group and time of day. 
All subject variability including age and gender were accounted 
for as covariates by adding subject as a factor. Descriptions of 
significant findings from the mPFC seed (voxel-level threshold 
FWE corrected at p < 0.05, with a subsequent extent threshold of 
100 voxels) and PCC seed (voxel-level threshold FWE corrected 
at p < 0.05, with a subsequent extent threshold of 150 voxels), are 
presented as total voxels, peak t score and peak MNI centroid 
cluster coordinates [x y z]. Extent thresholds were selected 
as a fifth of the biggest cluster. All significant areas were 
transformed in a binary mask and the z-scored values from the 
correlation map within this mask were averaged generating a 
single value representing average rs-FC across all significant 
clusters per participant for each scan. These values were used to 
explore the predictive effects of rs-FC on attention and daytime 
sleepiness using generalized estimating equations (details given 
in Statistical Analysis section).

Attentional performance and sleepiness

Following the scan, participants were immediately taken to a 
testing room where a 2-minute PVT [47] and a Stroop Colour-
Word Task [48] were completed. A visual version of the Stroop 
test was used which consisted of 60 trials with equal proportion 
of congruent and incongruent stimuli (30 of each). Presentation 
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time was not fixed, that is, stimuli were visible until response. 
Reaction time values were used from the PVT and the Stroop 
task (averaged correct congruent and incongruent trials) as 
indices of attentional performance. Incompletion of the Stroop 
test resulted in one participant’s results being excluded for 
further analysis. Daytime sleepiness, measured using the 
Karolinska Sleepiness Scale (KSS) [49], was completed before the 
cognitive tests were performed.

Statistical analysis

Statistical comparisons of behavioral data were performed 
in GraphPad Prism (version 7, La Jolla, CA) and SPSS (IBM SPSS 
Statistics, version 24, Chicago, IL) using two-sided unpaired t-tests, 
Mann-Whitney U tests, Fisher’s exact test, and linear regression 
after testing for equality of means with Levene’s test. All p-values 
were FDR corrected to control for multiple comparisons [50]. 
Diurnal variations in performance and sleepiness variables were 
plotted using second-order regression curves and analyzed using 
two-way analysis of variance (ANOVA) for repeated measures with 
post hoc multiple comparison tests. Nonparametric tests were 
implemented where data did not follow a normal distribution.

To explore the predictive effects of rs-FC on performance 
variables and daytime sleepiness an extension of the generalized 
linear model (generalized estimating equations, GEEs) were used 
in SPSS. GEEs account for repeated measures and within-subject 
variability and do not assume normal distributions or linear 
relationships. GEEs are often used in studies with time of day 
data to model the average effect, and have been used in sleep and 
circadian research to model the relationship between insomnia, 
depression, and chronotype [16] as well as in studies on sleep 
durations [51, 52] and circadian patterns in epilepsy [53]. Data 
used in GEE analyses were z-scored average rs-FC values across all 
clusters for each participant, individual reaction times (PVT and 
Stroop) and KSS score. A scale linear response GEE with identity 
link function for scale data was used to model the independent 
effects of rs-FC on attentional performance. A negative binomial 
GEE with log link function for count data was used to model the 
effects of rs-FC on sleepiness. Both models were designed adding 
Subject ID as a subject variable, and circadian phenotype (ECP/
LCP) and time of day (08:00 hours, 14:00 hours, and 20:00 hours) 
as within-subject variables. Time of day was also added as a 
fixed factor. When interaction terms were not significant they 
were removed from the model and the analysis re-run. Corrected 
quasi-likelihood under independence model criterion (QICC) 
values were used to choose the best fit for models.

Significance levels are displayed as not significant (ns), 
p < 0.05 (*), p < 0.01 (**), p < 0.001 (***), and p < 0.0001 (****). Exact 
p values are given apart from when significance is identified as 
less than 0.0001, in which case p  <  0.0001 is reported. Results 
are shown using the mean ± standard error of the mean (SEM) 
unless specified otherwise.

Results

Circadian phenotyping

Individuals were initially categorized into Early (n = 16) and Late 
(n = 22) chronotypes using MSFsc, calculated using the MCTQ [38]. 
These groups were confirmed as ECPs and LCPs by analysis of 

biological circadian phase markers, namely DLMO and time of 
peak morning concentration of the cortisol awakening response, 
in addition to sleep start and wake-up times calculated from 
actigraphy analysis. All parameters were significantly different 
between the groups, occurring approximately 3.5–4.5 hours 
earlier in ECPs than LCPs (Table 1). MSFsc was ~4 hours earlier 
in ECPs compared to LCPs (t(36) = 12.2, p < 0.0001). DLMO and 
peak time of morning cortisol also differed significantly by 
~3.5 hours and ~4 hours, respectively (t(30)  =  6.8, p  <  0.0001 
and t(36) = 8.0, p < 0.0001). These results were consistent with 
sleep onset and wake-up times calculated from actigraphy data, 
with a difference between the groups of ~3.5 hours (t(34) = 8.9, 
p < 0.0001 and t(34) = 9.9, p < 0.0001).

Each of these parameters was significantly correlated with 
MSFsc (Figure 1). Significant linear regressions were found 
between MSFsc and DLMO (R2  =  0.65, p  <  0.0001), peak time of 
cortisol awakening response (R2 = 0.75, p < 0.0001), sleep onset 
(R2 = 0.80, p < 0.0001) and wake-up time (R2 = 0.86, p < 0.0001). 
All other actigraphic parameters were not significantly different 
between ECPs and LCPs (Table 1). As all participants in this study 
were following their preferred schedules for the duration of the 
experiment, these findings confirmed that neither group were 
acutely sleep deprived during the baseline period. However, in 
order to rule out a baseline sleep debt effect, additional analyses 
were run to examine the relationships between sleep efficiency 
and rs-FC. No significant correlations were found. These 
results support the classification into circadian phenotypes 
and demonstrate that these two groups are behaviorally and 
physiologically different in sleep timings and circadian phase 
but not in other sleep parameters.

Resting-state functional connectivity in circadian 
phenotypes

Whole group analyses showed a clear DMN from both seeds, 
with significant FC (FWE corrected p < 0.05) observed between 
all major components of the DMN including the PCC/precuneus, 
mPFC, bilateral angular and temporal gyri, and cerebellum 
(Figure 2, grayscale underlay).

The flexible factorial model showed clear significant 
differences between circadian phenotype groups but no 
significant main effect of time of day (Figure 2). ECPs had 
significantly increased FC compared to LCPs at all times of day in 
15 of the total 18 supra-threshold clusters identified from both 
seeds (FWE corrected at p < 0.05). When seeding in the PCC, there 
was significantly higher FC for ECPs from PCC to the precuneus, 
bilateral angular gyri, left medial temporal lobe, and cingulate 
gyrus. The largest cluster was found in the mPFC, along with 
two clusters in the left medial frontal and superior frontal lobe 
(Table 2; Figure 2, a and b). When seeding in the mPFC there was, 
again, significantly higher FC in ECPs from the seed to seven 
individual clusters including: within the mPFC, bilateral insula, 
left medial frontal lobe, left angular gyrus, left superior frontal 
gyrus, and right medial temporal lobe (Table 2; Figure 2, d and e).

In comparison, LCPs had higher FC to three of the 18 
identified clusters that survived FWE correction at p  <  0.05. 
When seeding in the mPFC, clusters were found in the anterior 
cingulate cortex and right superior frontal gyrus, while seeding 
in the PCC identified a cluster in the left angular gyrus (Table 2; 
Figure 2, c and f).
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Attentional performance and sleepiness

A significant interaction between circadian phenotype and time 
of day was found for PVT performance (F(2, 72) = 4.9, p = 0.01) 
but not Stroop performance (F(2, 70) = 1.6, p = 0.22). The main 
effect of time of day was significant for both PVT (F(2, 72) = 3.2, 
p = 0.048) and Stroop performance (F(2, 70) = 3.8, p = 0.028) as well 
as the main effect of circadian phenotype for PVT (F(1, 36) = 4.4, 
p = 0.044) but not Stroop (F(1, 35) = 3.7, p = 0.063) (Figure 3, b and 
c). Post-hoc tests revealed that the source of group effect for PVT 
was the 08:00 hours testing session, where LCPs’ performance 
was significantly worse than ECPs (p  =  0.0058). Significant 
diurnal variations were found for LCPs but not ECPs in both PVT 
and Stroop performance, showing that the source of time of 
day effects were driven LCPs. LCPs morning PVT performance 
was significantly worse compared to the afternoon and evening 
(p = 0.0079 and p = 0.0006). LCPs morning Stroop performance 
was significantly better in the afternoon compared to morning 
(p = 0.035).

For the KSS, there was a significant interaction between time 
of day and circadian phenotype (F(2,72) = 18.1, p < 0.0001), as well 
as a significant main effect of circadian phenotype (F(1,36) = 9.2, 
p = 0.0044) but not time of day (F(2,72) = 2.0, p = 0.15). Group effects 
were driven by LCPs being significantly sleepier at 08:00 hours 
compared to ECPs (p  <  0.0001). The interaction effect revealed 

significant diurnal variations in both groups with opposing 
relationships. ECPs were significantly more sleepy in the evening 
(4.9 ± 0.4) compared to the morning (3.1 ± 0.4) (p = 0.0054). LCPs 
showed the inverse relationship being significantly sleepier at 
08:00 hours (6.4 ± 0.3), compared to 14:00 hours and 20:00 hours 
(both p < 0.0001) (Figure 3a).

Predicting attentional performance and sleepiness

rs-FC could independently predict performance variables 
(Figure 4). Using FC values from regions with higher FC in ECPs 
than LCPs, GEEs showed that rs-FC of the mPFC could predict 
PVT (W  =  14.5, p  <  0.0001) and Stroop performance (W  =  9.0, 
p = 0.003). Rs-FC of the PCC (ECPs > LCPs) could also predict PVT 
performance (W  =  6.4, p  =  0.012) but not Stroop performance 
(W = 2.5, p = 0.12). Sleepiness score could be predicted by rs-FC 
of the PCC (W = 6.0, p = 0.015) but not rs-FC of the mPFC (W = 1.5, 
p = 0.22). No significant predictive effects of rs-FC were found for 
regions higher in LCPs (LCPs > ECPs) for either seed.

Time of day was also a significant independent predictor of 
performance and sleepiness. Using the mPFC model, time of day 
could predict PVT (W = 9.2, p = 0.01) but not Stroop performance 
(W  =  5.1, p  =  0.078). Using the PCC model, time of day was a 
significant predictor of both PVT and Stroop performance 

Figure 1.  Linear relationships between corrected mid-sleep on free days (MSFsc) and biological phase markers to validate circadian phenotyping. (a) Dim light melatonin 

onset (DLMO), (b) Sleep onset, (c) Time of peak cortisol concentration, (d) Wake-up time. MSFsc is displayed as time of day (hours) on the x-axis. Statistical analysis was 

carried out using linear regression analysis. Significance (****p < 0.0001) and R2 values are shown in the bottom right corner.
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(W = 6.3, p = 0.042 and W = 7.1, p = 0.028, respectively). Sleepiness 
could be independently predicted by time of day (mPFC: 
W = 17.1, p < 0.0001 and PCC: W = 11.1, p = 0.004) as well as by 
the interaction of rs-FC and time of day for both models (mPFC: 
W = 14.5, p = 0.001 and PCC: W = 8.7, p = 0.013).

In summary, averaged rs-FC of the mPFC from the regions 
higher in ECPs compared to LCPs predicted better attentional 
performance, that is, faster reaction times in both PVT and Stroop 
performance. Similarly, the equivalent measures from the PCC 
seed could predict better PVT performance and lower daytime 
sleepiness but not Stroop performance. The interaction of time 
of day and rs-FC predicted daytime sleepiness for both seeds. 
Time of day independently predicted attentional performance 
and sleepiness variables in both models. Averaged rs-FC from 
regions showing higher FC in LCPs compared to ECPs for both 
seeds showed no predictive effects on attentional performance 

or sleepiness, with only time of day predicting PVT and Stroop 
performance.

Discussion
According to previous research only around 15% of the population 
falls into extreme or moderate Early chronotypes (going to sleep 
between 20:30 and 23:00 hours and waking between 04:30 and 
07:00 hours) [7], meaning the majority of the population would 
not usually fit into the standard working schedule, preferring to 
go to sleep and wake-up later. Consequently, many individuals, 
in particular, those with extreme late preferences who can be 
classified as LCPs, are constantly fighting their innate circadian 
phenotype and sleep patterns to fit into socio-professional 
routines.

Figure 2.  rs-FC of the Default Mode Network between ECP and LCP. z-transformed connectivity maps show significant clusters (FWE-corrected p < 0.05 at voxel level 

and subsequent cluster level) and t-score scales for each contrast are shown in the center. Overall results from each seed are shown in a/d with results from each time 

point (hours) represented in b/c and e/f. (a) Summary results from the PCC seed with diurnal variations between circadian phenotype groups plotted in (b) and (c). (d) 

Summary results from mPFC seed with diurnal variations between circadian phenotype groups plotted in (e) and (f). Significant regions at the whole group level are 

represented in grayscale. Regions higher in ECPs (ECPs > LCPs) are shown in red and regions higher in LCPs (LCPs > ECPs) in green. Statistical analysis for (a) and (d) was 

carried out using a flexible factorial model in SPM12. Two-way ANOVA was used to analyze group and time of day differences in (b), (c), (e), and (f). *p < 0.05, ***p < 0.001, 

****p < 0.0001.
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Table 2.  Summary of significant brain regions (FWE, p < 0.05) between ECPs and LCPs when seeding in the PCC and mPFC

Region Contrast Seed region Cluster size (voxels) MNI centroid coordinates [x y z] Maximum t-score

mPFC ECPs > LCPs PCC 789 [−2 72 12] 13.71
Right angular gyrus ECPs > LCPs PCC 481 [46 −68 26] 8.14
Precuneus ECPs > LCPs PCC 431 [0 −64 18] 9.73
Left angular gyrus ECPs > LCPs PCC 257 [−54 −62 18] 14.75
Left medial temporal lobe ECPs > LCPs PCC 237 [−58 −6 −24] 7.94
Left superior frontal gyrus ECPs > LCPs PCC 212 [−18 60 26] 7.91
Left medial frontal lobe ECPs > LCPs PCC 173 [−46 16 56] 8.71
Cingulate gyrus ECPs > LCPs PCC 150 [−16 −42 26] 18.90
Left angular gyrus LCPs > ECPs PCC 428 [−32 −54 26] 16.29

mPFC ECPs > LCPs mPFC 384 [2 70 6] 10.99
Left anterior insula ECPs > LCPs mPFC 378 [−26 14 −24] 8.87
Right anterior insula ECPs > LCPs mPFC 241 [26 18 −20] 9.36
Left medial frontal lobe ECPs > LCPs mPFC 160 [−44 16 56] 9.62
Left angular gyrus ECPs > LCPs mPFC 134 [−56 −58 18] 10.19
Left superior frontal gyrus ECPs > LCPs mPFC 111 [−4 68 28] 8.96
Right medial temporal lobe ECPs > LCPs mPFC 108 [68 −12 −8] 6.15
Anterior cingulate LCPs > ECPs mPFC 233 [22 44 10] 7.20
Right superior frontal gyrus LCPs > ECPs mPFC 161 [22 42 52] 6.55

Figure 3.  Nonlinear regression curves to show diurnal variations in sleepiness, PVT and Stroop performance. (a) Subjective sleepiness score measured with the 

Karolinska Sleepiness Scale. (b) PVT performance (reaction time in seconds), (c) Stroop performance (reaction time in seconds) for Early circadian phenotypes (white) 

and Late circadian phenotypes (gray). Clock time of test (hours) is shown on the x axis for each parameter. Statistical analysis was carried out using two-way ANOVA. 

Post-hoc multiple comparison tests were run to determine group and time of day effects. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

Figure 4.  Summary of predictive analysis using rs-FC to predict attentional performance and subjective daytime sleepiness (black boxes). Solid arrows indicate the 

predictive effects of rs-FC on attentional performance (PVT and Stroop task) and sleepiness variables for models using data from seeds in the mPFC and PCC. Dotted 

lines and red boxes indicate where time of day or the interaction of time of day and rs-FC was also found to be a significant factor.
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Here we show, for the first time, fundamental differences in 
FC of the DMN between ECPs and LCPs during a typical working 
day (08:00–20:00 hours). Regardless of time of day, ECPs had 
higher rs-FC than LCPs in the majority of regions identified. 
Many of the regions identified as having higher rs-FC in ECPs 
are linked to cognitive function and control, including the right 
and left anterior insula (rAI and lAI), two main regions which are 
also featured in the salience network. FC between the mPFC and 
the rAI has previously been shown to correlate with cumulative 
habitual sleep duration [22], and with the current data this 
suggests that mPFC-insula FC during wakefulness could also be 
sensitive to sleep timings and circadian phenotype. Given that 
connectivity between similar regions are associated with either 
sleep duration or timing, these regions could be more broadly 
related to sleep and highlight the potential importance of inter-
network connectivity. Furthermore, rs-FC of these regions was 
predictive of attentional performance measures, that is, reaction 
time and subjective sleepiness. While we are not able to identify 
the causality of the relationships unambiguously within our 
experimental design, this could suggest that the higher rs-FC 
of the DMN observed in ECPs over relatively widespread regions 
mediates improved task performance. It is also important to 
note that while the interpretation of FC can be partially based 
on activation studies using task-based fMRI, the relationship 
between connectivity and activation is not straightforward and 
remains an active area of research [54, 55].

Interactions between the brainstem arousal systems and 
ventrolateral preoptic nucleus of the hypothalamus are known 
to play in determining circadian rhythmicity and sleep-wake 
cycles. The impact of an underlying biological predisposition 
(e.g. circadian phenotype) to particular sleep-wake patterns on 
brain function and subsequently behavior has not previously 
been demonstrated, but is consistent with previous observations 
linking FC to behavioral performance [56] and habitual sleep 
durations [22]. Therefore, an alternative proposal would be that 
there could be other brain regions, shown here in DMN FC, that 
contribute to variability between circadian phenotypes. These 
differences in intrinsic FC have not previously been linked to 
the known role of the DMN presenting an interesting area for 
future research.

Of the 18 regions identified as being significantly different 
in terms of their FC between ECPs and LCPs, the substantial 
majority (83%) demonstrated higher FC in ECPs. This suggests 
that an early sleep-wake pattern is generally associated with 
higher FC from the primary nodes of the DMN. Since the 08:00 
hours session required LCPs to wake earlier, these individuals 
were suffering from acute sleep restriction. As a result, the 
morning session was expected to show the greatest difference 
between the groups. PVT performance and sleepiness scores 
exhibited significant diurnal variations and were significantly 
lower in LCPs compared to ECPs at 08:00 hours, suggesting 
that these measures could be sensitive to the curtailment 
in sleep. However, this result is not reflected in FC, which 
shows consistent group differences at each time point but no 
significant diurnal variations. As such, these findings could 
be due to more intrinsic circadian phenotype traits and not 
acute sleep restriction. While LCPs tend to be heavily disrupted 
throughout their lifetimes when enforced to fit conventional 
societal days, those taking part in the current study were able 
to follow their own preferred routines throughout the study 
and had comparable sleep parameters to ECPs (e.g. duration, 

efficiency) with only sleep timings differing significantly. This 
would support the notion of LCPs showing adverse effects 
when persistently following an earlier schedule during the work 
week, even when trying to compensate on nonworking “free” 
days [19]. It is likely that a more chronic effect of long-term 
misalignment, for example, years of having to fit into school and 
subsequent work schedules, may extend to impact on intrinsic 
brain properties even when individuals are able to follow their 
own schedules for a period of 2 weeks. This is consistent with 
observations of continued cognitive deficits following prolonged 
shift work, even after the shift work has ceased [57]. Therefore, 
these findings may be underestimating the differences in FC and 
performance, which could be exacerbated by acute disruption.

The increasingly sophisticated ability of fMRI to probe and 
quantify the human brain’s functional architecture opens up new 
possibilities for understanding the impact of sleep and circadian 
preferences at the level of the individual. While considerable 
advances have been made in understanding the cellular and 
genetic underpinnings of sleep and circadian rhythmicity 
[58], and behavioral effects have been characterized [7], only 
recently have the methods been available to study their impacts 
on the human brain in vivo. These developments are crucial, 
given the intrinsic importance of understanding human brain 
function and the commonly-held view that the primary purpose 
of sleep is for the brain [59]. The use of rs-FC is particularly 
attractive for this endeavor because of the pervasiveness of the 
behavioral and cognitive effects of sleep patterns and circadian 
phenotype, which lend themselves to characterization of 
intrinsic network function rather than the more limited task 
responses. More broadly, the approach we have taken provides 
important information about how intrinsic lifestyle factors and 
biological phenotypes are reflected in the brain’s default state 
(DMN), suggesting new avenues for understanding individual 
differences in behavior.

Our analysis revealed that rs-FC of the DMN can 
independently predict measures of task performance and 
subjective daytime sleepiness. This suggests that the higher 
strength of rs-FC between these regions, the better an individual 
performs in an attention task and the less sleepy they feel. 
Since our analysis used seeds within the DMN, one could infer 
that the functional integrity of connections from key regions 
of the DMN facilitates attentional performance, and that 
perturbations of the DMN associated with misalignment are 
detrimental (caveats regarding causality as discussed above 
notwithstanding). The DMN is important in maintenance of 
consciousness and includes cognitive domains sub-served by 
the frontal cortex [60]. Altered FC of the DMN has been reported 
in a number of psychiatric disorders, suggesting that disrupted 
integrity of this network is linked to psychological processes 
(see [61] for review). Although decreased FC does not always 
relate to decreased task performance, reduced connectivity 
from mPFC and PCC regions of the DMN has been proposed to 
underlie impairments in attentional control, working memory 
and emotional processing [61]. The majority of this research, 
investigating both DMN connectivity and activation, has reported 
decreased FC in disorders such as Alzheimer’s, attention deficit 
hyperactivity disorder and autism. Conversely, an increase in FC 
from the subgenual anterior cingulate has been associated with 
depression [62]. We find that ECPs have higher rs-FC from the 
majority of significant clusters. However, of the three clusters 
that we identify as having higher rs-FC in LCPs, one was in 
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the anterior cingulate cortex. Since LCPs are a group who have 
frequently been linked to higher rates of depression, this result 
has potentially uncovered an interesting avenue for future work 
and highlights that interpreting increases/decreases in rs-FC 
are not always straightforward. Adding to the growing body of 
research into the consequences of disrupted DMN rs-FC, we 
now show that circadian and sleep variations can contribute to 
understanding how the integrity of the DMN at rest could hold a 
key role in achieving optimal cognitive functioning (shown here 
using attentional tasks).

Previous research has shown diurnal variations in FC of 
resting-state networks, suggesting that different ICNs have 
varying sensitivity to time of day [23, 37]. However, although in 
the current study diurnal variations were found in attentional 
performance and sleepiness measures, using a flexible factorial 
design to account for the complex study design, we found that 
the effect of circadian phenotype on rs-FC was much more 
marked than the effect of time of day. This suggests that rs-FC 
of the DMN is primarily sensitive to stable, trait-like differences 
between the two groups rather than more dynamic state-like 
effects. This is consistent with the fact that habitual sleep 
patterns have been linked with anatomical [63] as well as 
functional [22] differences, suggesting long-term modifications 
to brain function can occur as a result of modifications to 
the underlying structure. However, it is possible that the 
examination of additional networks beyond the DMN and the 
use of dynamic FC [64] would identify state-like impacts of 
circadian misalignment which might be more sensitive to the 
effects of time of day. It is also important to note that these data 
were gathered during typical working hours (08:00–20:00 hours) 
which could have resulted in failure to record time points in 
which LCPs could have shown higher FC and better attentional 
performance. However, LCPs are under constant pressure to 
fight again their endogenously driven circadian rhythms to fit 
into socio-professional imposed schedules. This could cause 
them to be in a state of “perpetual chronodisruption” despite 
being able to follow their preferred schedules for the duration 
of this study.

There are a number of limitations to this study. Firstly, to be 
able to investigate how ECPs and LCPs behave during a “normal 
socially constrained day,” for example, 08:00–20:00 hours, the 
study was designed using clock time instead of scheduling testing 
based on internal biological time. Although this design does not 
allow sleep and circadian influences to be separated, there is 
an increasing need to carry out “real-world” studies to increase 
external validity as behavior is impacted by both factors. In 
addition, we only investigated one ICN, the DMN, and therefore 
limit the ability to explore more complex whole-brain inter- and 
intra-network FC. Both the mPFC and PCC regions of the DMN 
were used as seeds because although the DMN is a coherent 
network, each of the regions that comprise it also have other 
functions and potentially have different susceptibility to the 
impact of circadian phenotype and time of day. Since the DMN 
is the most widely studied ICN, holds a key role in maintenance 
of consciousness, is affected by sleep, and disruption of this 
network has been linked to impaired attentional control, there 
was a strong rationale to choose it as the network of interest 
and provides a useful starting point for a relatively unexplored 
field. Nonetheless, studying the impact of circadian phenotype 
on other ICNs, as well as other measures of cognition which 
could be impacted differently, would be an important next 

step for future work. Similarly, given that ECPs and LCPs differ 
significantly in their physiology, another important step would 
be to explore biological and genetic mechanisms behind the 
observed changes in rs-FC.

The majority of variables were evenly matched between the 
groups with the exception of sleep timings (onset/offset) and 
circadian phase markers (DLMO). Sleep efficiency values were 
relatively low for healthy controls, although sleep durations 
are in the normal range for this cohort of young adults and 
additional analysis showed no significant correlations of sleep 
efficiency and rs-FC. This suggests that there is no baseline 
sleep debt effect and both groups are not acutely suffering 
from sleep debt during the course of this study. This allows 
us to confidently state we have distinct circadian phenotype 
differences. We did have a slight but significant difference in age 
between the groups, although not sufficient to account for the 
differences since studies examining the relationship between 
FC of the DMN and age demonstrate that FC is stable from young 
adulthood until 50–60 years [65].

Throughout the duration of the study, participants were 
following their preferred routines to allow a true indication of 
the impact of circadian phenotype in the absence of masking 
effects. However, this is likely to underestimate the practical 
impact on LCPs of conforming to a societal day, since in reality 
the LCPs are likely to have an additional burden of sleep debt 
which will have its own negative effect. In our study, the 08:00 
hours session will have caused the LCPs to wake earlier than 
usual and, therefore, be affected by sleep restriction. Although 
we are not able to determine the extent of shortening the 
sleep period before the morning session, the lack of diurnal 
variations found in FC suggests that we have identified more 
circadian trait-like differences between the groups. In addition, 
since LCPs commonly have to get up prior to habitual wake-up 
time, this study was specifically conducted to investigate these 
individuals in a “real-world” situation. Dissociating the impact of 
circadian misalignment and sleep deprivation is often difficult, 
with protocols such as forced desynchrony and constant routine 
generally providing the gold standard. However, these protocols 
have disadvantages in terms of their ability to understand the 
impact of differences in habitual sleep patterns and circadian 
phenotype on the brain and behavior. Future work will need to 
make use of these protocols and to study individuals who are 
acutely misaligned in order to explore the longer term effect on 
the brain of chronic misalignment.

Conclusions

In summary, we find that there are fundamental differences in 
the intrinsic FC of the DMN between ECPs and LCPs during a 
typical “societally constrained” working day. rs-FC of the DMN 
can predict attentional performance measures and subjective 
sleepiness differences, which are also modulated by time of day. 
These findings could contribute to the neural basis underlying 
performance and health differences between ECPs and LCPs in 
the real world and have implications for future research. Firstly, 
an individual’s circadian phenotype should be a factor that is 
taken into account when using fMRI for research and clinical 
applications, as should habitual sleep status and duration [22]. 
Secondly, we provide a deeper understanding of the biological 
basis of individual differences in the DMN that may be associated 
with negative outcomes in LCPs. Finally, LCPs are impaired 
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during typical socially constrained days, which could result in 
lower FC and lead to their diminished morning performance and 
increased daytime sleepiness. This suggests a need to be more 
conscious about how to manage time on an individual basis in 
order to maximize productivity and minimize health risks.
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