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E C O L O G Y

Global pattern of phytoplankton diversity driven by 
temperature and environmental variability
Damiano Righetti1*, Meike Vogt1, Nicolas Gruber1, Achilleas Psomas2, Niklaus E. Zimmermann2,3

Despite their importance to ocean productivity, global patterns of marine phytoplankton diversity remain poorly 
characterized. Although temperature is considered a key driver of general marine biodiversity, its specific role 
in phytoplankton diversity has remained unclear. We determined monthly phytoplankton species richness by 
using niche modeling and >540,000 global phytoplankton observations to predict biogeographic patterns of 
536 phytoplankton species. Consistent with metabolic theory, phytoplankton richness in the tropics is about 
three times that in higher latitudes, with temperature being the most important driver. However, below 19°C, 
richness is lower than expected, with ~8°– 14°C waters (~35° to 60° latitude) showing the greatest divergence 
from theoretical predictions. Regions of reduced richness are characterized by maximal species turnover and 
environmental variability, suggesting that the latter reduces species richness directly, or through enhancing com-
petitive exclusion. The nonmonotonic relationship between phytoplankton richness and temperature suggests 
unanticipated complexity in responses of marine biodiversity to ocean warming.

INTRODUCTION
Marine phytoplankton dominate primary production across ~70% of 
Earth’s surface (1), play a pivotal role in channeling energy and 
matter up the food chain, and control ocean carbon sequestration (2). 
The diversity of phytoplankton species in open waters has intrigued 
ecologists for at least half a century (3), but the global pattern of this 
diversity and its underlying drivers have been unclear (4, 5). This is a 
critical gap in our understanding of the oceans since the richness of 
phytoplankton species, a key element of their diversity, may enhance 
resource use efficiency (6), and thus primary production, as often 
seen in terrestrial systems (7). For those oceanic taxa that have been 
investigated, including foraminifera, fish, and invertebrates, species 
richness tends to peak at low to mid-latitudes and to decline sharply 
toward the poles (8–11). This decline is consistent with the metabolic 
theory of ecology (12, 13); i.e., the hypothesis that temperature 
exerts a key control on metabolic rates and thus promotes speciation 
and increased species richness in warm tropical areas through time 
(14). However, a recent large-scale study on marine phytoplankton 
richness is at odds with the prediction by metabolic theory (4), and 
latitudinal richness gradients identified for individual phytoplankton 
groups have taken various shapes (5, 15–17). Observed discrepancies 
may originate from other factors such as resource competition (17, 18), 
differences in body size (15, 19), or undersampling of richness (20). 
Empirical tests of the competing theories explaining global diversity 
patterns have so far been impeded by the paucity of in situ observa-
tions and the lack of systematic sampling schemes for open-ocean 
phytoplankton (21).

Here, we overcome these limitations and provide the first analysis 
of marine phytoplankton species richness and its ecological drivers 
at the global scale, using 1,056,363 presence observations of 1300 

species compiled from multiple sources as the basis for our analysis. 
These data span all major taxa, ocean basins, latitudes, and most 
seasons (fig. S1). To address the strong spatial and seasonal bias in 
sampling effort, we analyze the subset of data of species with at least 
24 presences (553 species and 699,387 observations) using species 
distribution models (SDMs), which have been set up specifically to 
account for uneven sampling and fit each species’ ecological niche 
as a function of multiple environmental predictors. Our statistical 
approach thus aims at filtering out spurious patterns in the raw 
data while integrating all observational evidence. We successfully 
build probabilistic SDMs (fig. S2) for 536 species using generalized 
additive models (GAM) and use generalized linear models (GLM) 
and random forest models (RF) to assess the robustness of our find-
ings. We project the species’ niches to the global ocean at a 1° reso-
lution and at monthly scales and diagnose richness from the overlap 
of species’ presence-absence projections. Since the diversity of 
short-lived phytoplankton may change over the course of each year, 
we project species richness for each month and map its annual 
mean state, as well as monthly species turnover (see Materials and 
Methods).

RESULTS AND DISCUSSION
Our diagnosed annual mean of monthly phytoplankton richness 
varies strongly with latitude, while longitudinal differences are 
comparably small (Fig. 1A). Phytoplankton richness is highest and 
least variable throughout the year in the inner tropics (<5°N and S; 
Fig. 3A), reaching more than 240 species on average. Richness hot
spots, where roughly half of the total species analyzed occur simul-
taneously, are found in the central Indian, the equatorial and west 
Pacific, and the Indo-Australian Archipelago (Fig. 1A). Thus, hot
spots of phytoplankton richness tend to be more tropical than those 
of foraminifera and other oceanic taxa (8, 9). Analyzed by latitude, 
richness declines steeply poleward of 30° (Fig. 1C), reaches its mini-
ma (~50 species) and associated inflexion points at mid-latitudes 
(~45° to 65°N and ~45°S), and increases slightly toward the poles. This 
latitudinal pattern is composed of species with notable wide thermal 
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ranges (15.8° ± 6.8°C, mean ± SD; Fig. 2B) and broad geographic 
distributions (Fig. 2C), with more than 60% of high-latitude species 
(>70°N and S) recorded close to the equator as well (table S1). 
The latitudinal ranges of most species (n > 400) tend to be aggregated 
between 30°N and 30°S, with relatively few specialist species populating 
the extratropics (Fig. 2C).

The raw observations corroborate the global latitudinal richness 
gradient at monthly resolution (fig. S4). The global richness pattern 
(Fig. 1A), which is diagnosed from these observations by our models, 
shows seasonal variation that is strongest from subtropical to tem-
perate latitudes (Fig. 3A). Yet, its general form and, in particular, 
inflexion points (Fig. 1C) are persistent throughout the year and 
robust to corrections applied to balance the representation of major 
taxa in our model analysis (i.e., the proportion of species of a specific 

taxon captured in our SDMs; fig. S3A). Moreover, the diagnosed 
richness pattern is decoupled from the spatial density of phyto-
plankton raw observations (R2 = 0.015, P < 0.001, n = 536 species), 
robust against the model algorithm used (GAM versus GLM, R2 = 0.99, 
P < 0.001; GAM versus RF, R2 = 0.99, P < 0.001), and largely shared 
between major taxa (diatom versus dinoflagellate richness, R2 = 0.75, 
P < 0.001; diatom versus haptophyte richness, R2 = 0.53, P < 0.001; 
haptophyte versus dinoflagellate richness, R2 = 0.83, P < 0.001). 
Last, the diagnosed latitudinal richness gradient does not depend 
on the particular predictor set used in SDMs (Fig. 1C; red shading) 
and is also robust to choices with respect to the sampling of 
environmental data for SDMs, here referred to as environmental 
background (fig. S3B). While we consider the overall gradient as 
robust, the slopes poleward of ~50° latitude are prone to larger 

Fig. 1. Global patterns of monthly phytoplankton species richness and species turnover. (A) Annual mean of monthly species richness and (B) month-to-month 
species turnover projected by SDMs. Latitudinal gradients of (C) richness and (D) turnover. Colored lines (regressions with local polynomial fitting) indicate the means per 
degree latitude from three different SDM algorithms used (red shading denotes ±1 SD from 1000 Monte Carlo runs that used varying predictors for GAM). Poleward of 
the thin horizontal lines shown in (C) and (D), the model results cover only <12 or <9 months, respectively.
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uncertainty, as winter months lack predictor data in these areas 
(Fig. 1C).

Sea surface temperature is the most important driver for phyto-
plankton richness in our data. It explains more than two-thirds of 
the global variation in diagnosed richness (R2 = 0.76, P < 0.001) and 
is the most powerful predictor for species richness in the underlying 
raw observations (table S2). Temperature is also the single most 
important environmental predictor for habitat suitability at the species 
level (table S2).

The strong role of temperature is consistent with the metabolic 
theory of ecology (12), but while this theory implies a single negative 
and linear relationship with a slope of −0.32 between logarithmic 
species richness and inverse thermal energy (22, 23), we find three 
distinctly different regimes across the global ocean (Fig. 2A). 
Results match metabolic theory best for the ~60% of the ocean surface 
with annual mean temperatures above 19°C, with a linear regression 
slope of −0.37 (R2 = 0.65, P < 0.001). Between ~19° and 11°C, the 
slope steepens to −1.14 (R2 = 0.69, P < 0.001), and it reverses below 
~11°C, with a value of 0.48 (R2 = 0.56, P < 0.001). Thus, monthly 

phytoplankton richness forms a V-shaped pattern at intermediate 
to low temperatures. This nonmonotonic relationship is similarly 
evident in the raw observations (fig. S5, A to E) and consistent with 
results based on independent in situ data (fig. S5F).

The globally nonmonotonic relationship between phytoplankton 
richness and temperature (Fig. 2A) suggests that temperature and 
the metabolic theory of ecology (12) provide incomplete explanations 
for the global-scale variation in phytoplankton richness. We next 
test whether such variation can be explained by the “physiological 
tolerance hypothesis” (24), which posits that variation in richness is a 
function of the number of overlapping ecological niches of species. If 
species had strong affinities for either warm or cold, rather than inter-
mediate temperatures, then a nonmonotonic richness response to tem-
perature may emerge because fewer species tolerate mid-temperatures. 
On the basis of direct analysis of the thermal ranges of all species in 
the raw observations, we reject this hypothesis, as the richness obtained 
by overlapping and summing up these ranges declines monotonically 
below ~19°C (Fig. 2B). Alternatively, changes in the magnitude of 
the richness-temperature slope may be in line with metabolic theory 

Fig. 2. Relationships between species richness and temperature or latitude. (A) The natural logarithm of the annual mean of monthly phytoplankton richness is 
shown as a function of sea temperature (k, Boltzmann’s constant; T, temperature in kelvin). Filled and open circles indicate areas where the model results cover 12 or less 
than 12 months, respectively. Trend lines are shown separately for each hemisphere (regressions with local polynomial fitting). The solid black line represents the linear 
fit to richness, and the dashed black line indicates the slope expected from metabolic theory (−0.32). The map inset visualizes richness deviations from the linear fit. The 
relative area of three different thermal regimes (separated by thin vertical lines) is given at the bottom of the figure. Observed thermal (B) and latitudinal (C) ranges of 
individual species are displayed by gray horizontal bars (minimum to maximum, dots for median) and ordered from wide-ranging (bottom) to narrow-ranging (top). The 
x axis in (C) is reversed for comparison with (B). Red lines show the expected richness based on the overlapping ranges, and blue lines depict the species’ average range 
size (±1 SD, blue shading) at any particular x value. Lines are shown for areas with higher confidence.
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but reflect distinct species pools with differing activation energies 
(12, 13). For example, linear slopes shallower than those predicted 
by metabolic theory have been reported for both marine phyto-
plankton (4) and zooplankton (10) richness. We reject this second 
alternative because the sorting of the thermal ranges within global 
temperatures (Fig. 2B) does not indicate a thermal separation of 
species pools, and the ranges of numerous tropical species reach 
latitudes with temperatures below 19°C (Fig. 2C), suggesting rather 
smooth shifts in species composition. Thus, we interpret the low 
richness between ~8° and 14°C (Fig. 2A) as an intermittent, non–
temperature-driven suppression of richness, relative to the linear 
slope predicted by metabolic theory (12). This interpretation is 
favored by the fact that the global linear fit to the modeled richness 
(slope, −0.37, R2 = 0.66, P < 0.001; Fig. 2A) and linear fits to richness 
in the underlying raw data (fig. S5, A to C) closely match the slope 
of −0.32 predicted by metabolic theory (22, 23). The reversed richness 
slope at lowest temperatures may signal a relaxation of intensity in 
the factors driving this suppression.

What could lead to suppressed phytoplankton species richness 
at temperate latitudes? The most notable feature associated with the 
global pattern of phytoplankton species richness is its strong and 
negative correlation with month-to-month species turnover (R2 = 0.62, 
P < 0.001; Fig. 1B). This turnover quantifies the monthly change in 
species composition in each 1° cell, as projected by our SDMs. 
While turnover is lowest in the tropics with only ~15% in species 
being replaced on average between months, it strongly increases 
poleward of 20° and it peaks at ~40° latitude with monthly turnover 
rates approaching 50% (Fig. 1D). These areas of maximum turnover 
are congruent with areas characterized by low richness [Figs. 2A 
(map) and 3B]. In our analysis, maxima in turnover denote partic-

ularly strong month-to-month variability of those environmental 
factors that represent statistically determined key dimensions of 
species’ ecological niches. This suggests that temporal variability of 
the environment is a critical determinant of richness.

Seasonal and short-term environmental variability may reduce 
richness through abiotic factors, including strong turbulence in 
the water column, which may select for few species (25). This is 
supported by the negative relationship between richness and sea 
surface wind stress (R2 = 0.63, P < 0.001) or mixed-layer depth 
(MLD; R2 = 0.35, P < 0.001), two proxies for turbulence and light 
limitation in the water column with strong seasonality at mid-latitudes 
(Fig. 3C). Furthermore, we find progressively wider tolerance ranges 
of species in the observational data to increasing wind stress, deeper 
mixing, and higher nitrate levels (fig. S6, A, B, and F), suggesting 
a preferential selection for generalist species with broad niches in 
regions of strong environmental variability and elevated nutrient 
supply.

Competitive exclusion among species mediated by high temporal 
environmental variability (26) is an additional mechanism that may 
reduce richness at temperate latitudes. Strong seasonality in upper 
ocean stratification and associated variations in nutrients and light 
induce strong seasonality in productivity at mid- to high latitudes 
(Fig. 3C), with phytoplankton blooms dominated by relatively 
few species that monopolize local resources (18, 27, 28). While our 
presence-only raw data cannot reveal the dominance hierarchy of 
species in terms of abundance, our analysis suggests that low monthly 
richness at mid-latitudes is linked to rapid species turnover. These 
results provide the first confirmatory evidence to global mechanistic 
model results that proposed a negative influence of high temporal 
variability of the environment on phytoplankton richness, mediated 

Fig. 3. Latitudinal trends in phytoplankton richness and selected environmental variables. (A) Annual mean of monthly species richness (black line) and sea 
temperature (red line). Shadings indicate the annual amplitude of monthly richness (gray) and temperature (red). (B) Departure of richness (black line) from the linear fit 
(see Fig. 2A) versus species turnover (blue line) by latitude. Shadings denote ±1 SD from Monte Carlo runs. (C) Net primary production (NPP; green), sea surface wind stress 
(orange), and mixed-layer depth (slate blue). Shadings indicate the annual amplitude (minimum to maximum of monthly patterns) for each variable.
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via competitive exclusion (26) and transient blooms of opportunists 
(29). However, unlike our results, mechanistic simulations proposed 
lowest phytoplankton richness at highest (26) or subtropical (29) 
latitudes, with the exact location of diversity minima depending on 
the parameterization of trophic interactions.

Our modeling approach cannot disentangle the relative impor-
tance of different mechanisms in generating the latitudinal richness 
gradient identified. However, our results suggest that environmental 
variability strongly modifies global gradients in phytoplankton 
diversity (Fig. 1, C and D), in line with recent findings related to 
marine bacteria (30). Rapoport’s rule predicts an increase of species 
range size with increasing latitude (31) and has been used to explain 
a monotonically decreasing species richness from the equator to 
poles by an increase in seasonal environmental variability, selecting 
for wide-ranging species. We confirm a weak trend of increasing 
range size with increasing latitude (Fig. 2C) and a negative relationship 
between intra-annual variability and richness. Yet, the variability 
relevant for short-lived phytoplankton shows distinct mid-latitude 
peaks (Figs. 1D and 3C), which may explain the emergence of a 
latitudinal richness gradient that does not conform with the pattern 
expected by Rapoport’s rule.

We do not exclude the possibility that factors besides temperature 
(table S2) and environmental variability affect richness. Spatial trends 
in body size and abundance may lead to departures of richness from 
the slope predicted by metabolic theory (12) as recently discussed 
for a similar nonlinear pattern in freshwater phytoplankton (32). 
Furthermore, richness responses to temperature may level off in the 
nutrient-poor tropical sea due to a slowdown of metabolic rates 
under nutrient scarcity, despite high temperatures (33). However, 
tropical richness gradients emerge in our analysis in the absence of 
clear nutrient gradients (34), and continuously increasing nutrient 
concentrations below ~17°C (34) cannot explain the marked change 
in the richness trend at ~11°C (Fig. 2A). While the effect of environ-
mental variability thus remains a valid hypothesis for this change, 
finer-scale data are needed to assess the relative roles of nutrients, 
variability, and temperature in structuring global phytoplankton 
richness.

In conclusion, synthesizing results across key taxa reveals a first 
global pattern of phytoplankton species richness in line with a strong 
role of temperature on the evolutionary outcome of species’ habitats 
and large-scale biodiversity (12, 13, 22). In addition, we demonstrate 
the critical role of environmental variability (26, 27) for species 
turnover and diversity through time. Together, these mechanisms 
shape a nonmonotonic latitudinal gradient in monthly phytoplankton 
species richness that is distinctly different from its terrestrial autotrophic 
counterpart (35) and also from most other marine taxa (8–11). Climate 
change is expected to modify both the variability and annual averages in 
environmental conditions, including temperature and ocean stratification. 
Our study proposes a link of phytoplankton richness with both 
temperature and ocean variability; therefore, responses of global 
patterns in marine phytoplankton diversity to climate change may 
be more complex than hitherto anticipated, with possible impacts 
on higher trophic organisms, productivity, and ecosystem function.

MATERIALS AND METHODS
To explore how phytoplankton diversity varies along environmental 
and spatial gradients, we compiled global phytoplankton presence 
data and oceanographic predictors. Phytoplankton presence data 

were used to calibrate SDMs, designed to compensate for data bias 
and sample scarceness. Direct analyses of these raw data served as a 
robustness test for the model results. Furthermore, we used inde-
pendent phytoplankton data for validation of our results. All analyses 
were conducted using R language.

Phytoplankton field data
We compiled phytoplankton data from the Global Biodiversity 
Information Facility (GBIF; https://www.gbif.org, retrieved on 7 
December 2015), the Ocean Biogeographic Information System 
(OBIS; https://www.obis.org, retrieved on 5 December 2015), Villar et al. 
(36), and the MAREDAT initiative (table S3) (37). The final dataset 
contained 1,056,363 presence observations from 1298 species and 
two genera (collectively termed “species”), which were recorded at 
an average depth of 5.41 ± 6.95 m (mean ± SD) at 182,392 locations 
in space and time. Observation densities were spatially biased, with 
49% of total observations originating from the north Atlantic and 
only 0.9% originating from the south Atlantic. Methods involved 
in original data collection included filters (38), microscopy (36, 39), 
and flow cytometers (37), among others. We retrieved all species 
observations for seven phyla: Cyanobacteria, Chlorophyta (exclud-
ing macroalgae), Cryptophyta, Myzozoa, Haptophyta, Ochrophyta, 
and Euglenozoa. More specifically, among the Ochrophyta, we 
included the classes Bacillariophyceae, Chrysophyceae, Pelagophyceae, 
and Raphidophyceae. Among the Myzozoa, we considered the class 
Dinophyceae. Among the Euglenozoa, we considered the class 
Euglenoidea. In addition, we compiled observations of Prochlorococcus 
and Synechococcus from the data sources. These genera are globally 
abundant but rarely identified to a species level. We excluded 
records (i) if they were listed as “fossil specimen” or “preserved 
specimen,” (ii) if they were associated with year of collection >2015 
or <1800, (iii) if they were associated with negative depths, or (iv) if 
they were associated with nonsensible coordinates. We removed 
data below the monthly climatological mixed layer based on the 
temperature criterion (40), as data at depth were insufficient to 
develop species models. However, for “mixed-layer species” (i.e., 
species recorded in the mixed layer), we assumed that data without 
depth indication stem from the mixed layer as well. Species names 
in the original data were harmonized following expert opinion (see 
Supplementary Materials and Methods). The dataset spanned all 
major phytoplankton taxa of the marine realm (41) and reflected, 
within the bounds of uncertainty, roughly similar factions of the 
total species known among key taxa (table S4).

Independent data (<2.9% of the observations overlap with the above 
dataset) (39), primarily based on Atlantic transect cruises, served for 
validation of results obtained from the main dataset. These independent 
data were collected on the basis of a consistent methodology by the 
same taxonomist, containing 4217 presence observations from 
303 phytoplankton species within the mixed layer (39).

Open-ocean definition
To reduce confounding influences of more complex and fertile 
coastal environments on our open ocean phytoplankton analyses, 
we excluded data from seas shallower than 200 m (42) and from 
seas with surface salinities below 20 (43).

Environmental data
We compiled data on 10 environmental variables that represent key 
dimensions of phytoplankton ecological niches (44–46), which 

https://www.gbif.org
https://www.obis.org
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shape species’ distributions via effects on physiology, growth, and 
species competition (17, 25, 47). These variables served as candidate 
predictors for SDMs and as single predictors in species richness 
models. Variables were aggregated at a monthly (n = 12) climatological 
and globally gridded resolution (1° latitude × 1° longitude), as this 
was the best available resolution shared among datasets. Sea surface 
temperature (T; °C), salinity (S), nitrate (NO3−; M), phosphate 
(PO4

3−; M), and silicic acid [Si(OH)4; M] were obtained from 
World Ocean Atlas 2013 (1955–2012) fields (34, 43, 48). MLD (m) 
was included using the temperature criterion (40). Photosynthetically 
active radiation (PAR; mol m−2 s−1) and chlorophyll (Chl; g liter−1) 
were derived from the Sea-viewing Wide Field-of-view Sensor, using 
data from 1997 to 2007 (https://oceancolor.gsfc.nasa.gov). Sea surface 
wind stress (m s−1) was derived from the Cross-Calibrated Multi-
Platform (49) using data from 1987 to 2011 (https://podaac.jpl.nasa.
gov). Data on carbon dioxide partial pressure in the surface sea 
(pCO2; atm) stem from (50).

We derived further predictors from these 10 variables: Photo-
synthetically available radiation over the MLD (MLPAR; mol m−2 s−1) 
was computed from T, MLD, and Chl (44). We also used the excess 
concentration of NO3

−, relative to the Redfield ratio of 16:1 (M; 
N-star), computed as [NO3

−] − 16[PO4
3−]. The use of N-star, rather 

than NO3
−, avoids strong global correlations between NO3

− and T 
(Spearman’s  = −0.71). Si-star, the ratio of [Si(OH)4] to [NO3

−], was 
included as a predictor particularly relevant for the Bacillariophyceae 
(45). We also considered the temporal trends of T (dT/dt), NO3

− 
(dNO3

−/dt), PO4
3− (dPO4

3−/dt), Si(OH)4 [dSi(OH)4/dt], and MLD 
(dMLD/dt), calculated as the centered mean difference of the data 
of each month with its neighboring months. Logarithmic MLD, 
Chl, and nutrient levels to the base of 10 were used in addition to 
their original forms. Sea level height anomaly (m) (https://www.aviso.
altimetry.fr/es/data/products/sea-surface-height-products/global/
index.html) and nutricline depth (m), defined as the first depth at 
which nutrient levels exceeded a certain threshold (0.05 M 
for NO3

− and 0.05:16 M for PO4
3−), were also tested, yet these two 

variables were discarded due to poor skill in single-predictor model 
tests. Net primary production (NPP; mg C m−2 day−1) was used for 
correlative analyses only, using data from 1998 to 2007 from the 
standard vertically generalized production model (http://www.science.
oregonstate.edu/ocean.productivity).

Species distribution models
SDMs fit statistical associations between species’ observed presences 
and environmental variables; i.e., they estimate a species’ realized 
ecological niche (44). SDMs provide a useful framework to explore 
large-scale distributions of phytoplankton species, based on two 
major assumptions: (i) Species are not dispersal limited in the open 
ocean (51, 52) [but see (53)], a trait consistent with the generally 
wide geographic ranges of the species in our data; (ii) species are 
primarily controlled by environmental factors in their global distri-
bution (36, 47, 52) and rapidly proliferate when conditions become 
suitable (18, 27). Applying SDMs to study marine phytoplankton 
distributions has emerged relatively recently (45). Since distribution 
patterns of phytoplankton species might change seasonally (30), 
reflecting the generally short generational cycles of phytoplankton 
owing to their largely microbial nature, we used a monthly matchup 
between species’ presences and environmental variables to calibrate 
the niches. We then projected niches onto global environmental 
data fields at 1° and monthly resolution to obtain maps of species’ 

presence. We developed SDMs that address three principal sources 
of uncertainty: (i) biases in sampling effort, (ii) predictor selection, 
and (iii) algorithm choice. All steps used to build SDMs are 
described herein.
Data binning
We used phytoplankton presence data, rather than abundance data, 
as the former are less sensitive to differences in sampling methods 
and are more widely available. We binned species’ presence obser-
vations into monthly 1° latitude × 1° longitude resolution to match 
the resolution of environmental predictors. Multiple observations per 
species and 1° cell that stemmed from the same month, but potentially 
from different years, thus counted as a single presence, resulting in 
a total of 245,322 species presences. The monthly data binning may 
have removed signals of temporal changes in species’ distributions 
throughout the years. However, since data originated predominantly 
from a few decades between 1950 and 2000 (1984 ± 17; mean ± SD) 
and since climatic changes during this period were much smaller 
relative to current global amplitudes of environmental factors (for 
example, sea surface temperature spans ~ −1.8 to ~32°C) (48), we 
expect such changes to have only a minor impact on global SDM 
projections.
Environmental background data
Since absence data for phytoplankton are unreliable on the basis of 
traditional sampling methods (20) but required by our presence-
absence SDMs, we selected background data (also termed pseudo-
absences) for each species, using a so-called target-group approach 
(54). This approach addresses spatial and temporal sampling biases 
in field-based presence data of species via the selection of the number 
and location of pseudoabsences. We defined large groups of species 
as target groups, assuming that variation in sampling effort applied 
to the entire target group reflected variation in sampling applied to 
each species within the target group (54). The sampling of species’ 
background data from the target group served two purposes: (i) 
Background sampling followed a sampling scheme similar to that of 
the species’ presence data (and thus received similar bias), thereby 
balancing presence data bias when fitting SDMs; (ii) extensive 
ocean areas, which lacked sampling, were not misclassified as areas 
of species’ absences. We used the Bacillariophyceae, Dinoflagellata, 
and Haptophyta separately to define “group-specific target groups” for 
their constituent species, as these taxa had different global sampling 
schemes. For the remaining taxa, the number of species was insufficient 
to build group-specific target groups. For these taxa, we used the 
total species as the target group, excluding Bacillariophyceae, as 
presence data of the latter were strongly north-south imbalanced.

In parallel, we used the total species as target group to sample the 
background for each species, which we refer to as “total target group” 
approach. We found that richness results were robust to the use of 
total versus group-specific target groups (fig. S3B).

We sampled background data in a stratified manner from the 
target group, dividing both the T and MLD gradient (spanned by 
the target group) into nine equally spaced intervals, yielding 81 
strata (T × MLD combinations). Sampling data from each stratum 
separately assured that the breadth of these two key environmental 
factors was reflected in the backgrounds of species. The target 
group’s presence data were gridded at monthly 1° resolution, before 
sampling backgrounds from it. We tested whether the density of 
these monthly 1° cells of the target group reflected original sampling 
efforts (approximated by the number of samples in the raw data) 
and found that the two measures were highly correlated (Spearman’s 

https://oceancolor.gsfc.nasa.gov
https://podaac.jpl.nasa.gov
https://podaac.jpl.nasa.gov
https://www.aviso.altimetry.fr/es/data/products/sea-surface-height-products/global/index.html
https://www.aviso.altimetry.fr/es/data/products/sea-surface-height-products/global/index.html
https://www.aviso.altimetry.fr/es/data/products/sea-surface-height-products/global/index.html
http://www.science.oregonstate.edu/ocean.productivity
http://www.science.oregonstate.edu/ocean.productivity
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 = 0.94 for latitude; Spearman’s  = 0.99 for longitude; binning data 
at 1° latitude or 1° longitude, respectively). For each species, we sampled 
10 times more background data than the species had presences (55). 
Within each of the 81 strata, background data were randomly sampled. 
The amount of background data sampled from a specific stratum was 
proportional to the number of monthly 1° cells provided by the target 
group in this stratum, thereby reflecting original sampling efforts.
Statistical complexity
Statistical algorithm choice represents a key source of uncertainty 
in SDMs (56). We constructed SDMs based on either GLM (using 
the R package stats), GAM (R package mgcv), or RF (R package 
randomForest), as three algorithms of increasing statistical response 
shape complexity (57). We considered the GAM as our standard 
algorithm because of its intermediate complexity. We used comparably 
few predictors (n = 4) in models and fitted simple response shapes 
to account for the relatively few presences of most phytoplankton 
species (57). GLM included linear and quadratic terms and a 
stepwise bidirectional predictor selection procedure. GAM used 
smoothing terms with five basis dimensions, estimated by penalized 
regression splines without penalization to zero for single variables. 
To equalize the overall weight of presences versus background data 
per species, background data in GAM and GLM were weighted 
by the ratio of species’ presence to background data points. RFs 
included 4000 trees, simple terms, and single end node size. The 
weighting of data in individual RF trees was balanced by randomly 
subsampling same amounts of background data as the species had 
presences.
Single predictor skill tests
In addition to algorithm choice, predictor choice represents a major 
source of uncertainty in phytoplankton SDMs, as these organisms 
are not well studied regarding their most important niche factors. 
To select powerful predictors for SDMs, we assessed the individual 
skill of an extensive number of candidate predictors (n = 25) in 
discriminating species’ presences versus background data. The 
results of this test also served to identify the key environmental 
drivers of species’ distributions independently of the SDM analysis. 
We fitted single-factor GLM, GAM, and RF models to the presences 
versus background data of each species, for each candidate predictor. 
The species (n = 567) considered for predictor analyses generally 
contained a minimum of 24 presences as was used as a lower threshold 
for species in SDMs. Model explanatory skill was evaluated using 
the adjusted D2 (for GLM and GAM) and the out-of-bag error (for 
RF) statistic. For each species, predictors were ranked according 
to these statistics, and the mean variable ranks obtained across 
GLM, GAM, and RF served as a basis for predictor selection. We 
performed several sensitivity tests to evaluate the robustness of the 
predictor ranking. We compared rarely versus more frequently 
sampled species (i.e., ≥15, ≥24, and ≥50 presences), used different 
variables for the stratification of background sampling, and applied 
spatial thinning of species’ presences to a distance ≥300 or ≥600 km 
(using the R package spThin), which reduces potentially confounding 
effects of autocorrelation. None of these modifications changed 
the result that temperature was the top-ranked predictor across total 
species. However, the rank of predictors other than temperature 
tended to vary between setups.
Predictor choice for models
To capture predictor-based uncertainties, we fitted five member 
models, each using a different set of four predictors, for building an 
SDM ensemble. The species (n = 567) considered for modeling contained 

≥24 presences, which corresponds to a presence-to-predictor ratio ≥6 
per species. We used a randomization approach to select the four pre-
dictors per member model, using the test-based predictor ranking 
(see above) of each species as a basis. For the first member model, 
we selected four predictors at random, without replacement from those 
predictors that ranked among the 10 most powerful predictors per 
species. We omitted Spearman’s rank correlations between predictors 
greater than |0.7| in each predictor set (computed from the predictor 
data at global monthly 1° resolution). Predictors of the four other 
members were composed by the same criterion. Yet, we allowed each 
predictor to be selected only up to twice among the five members 
to omit biases due to overrepresentation of individual predictors in 
SDMs. If sampling among the top 10 predictors did not provide a 
sufficient number of predictors for the 5 sets × 4 predictors (given the 
correlation criterion), candidate predictors that ranked >10 were 
selected. Predictors were equally used in GAM, GLM, and RF.
Monte Carlo simulation
We used a Monte Carlo simulation to quantify uncertainty in our 
results emerging from the choice of different predictor sets. For 
each species modeled, we randomly selected one of the five predictor 
sets prepared (see above) to fit the SDM of the species and then 
calculated richness and turnover of total species. This procedure 
was repeated (n = 1000 runs) and we present the SD across the runs 
(Figs. 1, C and D, and 3B).
Evaluation of model members and ensemble construction
For each species, we evaluated the predictive skill of each member 
model based on a repeated (4×) split-sample cross-validation test. 
In this test, the species’ presences and background data are randomly 
split into four parts. The SDM member model is iteratively trained 
on the basis of three parts (75%) of the data and used to predict the 
remaining one-fourth (25%) of the data. The predicted values are 
then compared against the true values. We calculated the true skill 
statistic (TSS) (58) of this test. TSS ranges from −1 to +1 with values 
greater than zero indicating models performing better than at 
random. We retained member models with a TSS score of at least 
0.35 for the construction of our SDM ensembles. Successful member 
models were then projected globally onto monthly (n = 12 months) 
environmental data fields, yielding probabilistic maps of species’ 
presence. Presence probabilities were generally higher for high-
latitude species than for lower-latitude species, as ecological niches 
at high latitudes were readily captured by SDMs. To avoid spatial 
biases in multispecies analyses, we therefore binarized the projected 
probabilities to presence-absence from thresholds maximizing the 
TSS (package presenceAbsence). For each month, we averaged the 
successful member models of each particular species to obtain 
monthly ensemble mean projections. Each species thus obtained 
a value between zero and one per monthly 1° cell. We did not further 
binarize the ensemble projections to presence-absence, as binariza-
tion tends to overestimate the species’ presence toward the edges of 
the projected presence area, relative to its center. We hence argue 
that our ensemble mean projections characterize species’ distribu-
tion patterns at a higher level of detail compared to 0/1 projections 
and are better suited for multispecies analyses, in line with previous 
work showing that the sum of overlapping 0/1 projections tended to 
overestimate species richness (59).

Global species richness map
We used the summation of monthly SDM ensemble projections of 
the successfully modeled species (536 species for GAM, 529 species 
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for GLM, and 538 species for RF) to obtain 12 monthly estimates of 
phytoplankton species richness (data file S1). The global species 
richness map (Fig. 1A) represents the average of these monthly 
estimates. We examined the robustness of the global species richness 
pattern with respect to balancing the relative representation of major 
taxa in our model analysis (fig. S3A). For each major taxon (table S4), 
we divided the number of species included in SDMs by the number 
of its totally known species, and we weighted the individual species 
inversely to this ratio in the corrected global richness pattern (fig. S3A).

Global species turnover map
Species turnover is a measure of the difference in species composition 
between two ecological communities. We assessed species turnover 
through time, analyzing the fraction of species whose identities 
changed between months (“species replacement”). We derived 
species communities at monthly 1° resolution from the species’ 
monthly ensemble mean projections (for each monthly 1° cell, species 
with values larger than 0.5 counted as present). We calculated species 
turnover at 1° resolution between consecutive months (n = 12 
monthly pairs) and averaged the results of the monthly pairs over 
the full year to obtain the species turnover map (Fig. 1B). We used 
the turnover component of the Jaccard dissimilarity as implemented 
in R’s betapart package.

Explanatory power of single variables for global richness 
patterns
We tested whether richness itself could be modeled successfully 
using environmental variables. We fitted species richness using 
GLMs with a single predictor, thus assessing their univariate predic-
tive skill (table S2). We fitted GLMs both to the species richness 
obtained from SDMs (aggregated from GAM, at monthly 1° resolution) 
and to the species richness observed at a sample level in the raw data 
(table S2). Each local sample was defined by a unique combination 
of latitude, longitude, depth, year, month, and day of collection in 
the phytoplankton raw data. Environmental variables were matched 
with richness values at 1° resolution, using monthly climatological 
data. The quality of linear model fits between single variables and 
GAM-based richness (at monthly 1° resolution) presented in the 
text is indicated by the R2 statistic.

Global richness patterns in aggregate observational data
The number of detected species varied strongly between samples 
(fig. S1, B and C). To infer robust species richness patterns directly 
from raw observations (figs. S4 and S5), we split raw data into coarse 
environmental or geographic strata and repeatedly selected a certain 
number of samples at random, from each stratum. Determining the 
integral richness from the pooled samples, per stratum, served to 
depict richness patterns in the observational data. This approach, in 
part, ameliorates the problem of severe undersampling of richness 
by traditionally small sampling volumes (20).

Sensitivity of richness patterns to species detection
Our analysis included an extensive number of phytoplankton species 
and spanned all major phytoplankton taxa (table S4). However, 
results are limited to species for which in situ data were available. 
Patterns thus reflect the subset of detectable, and likely common, 
species, while potentially overlooking an unknown number of 
low-abundance species. We tested whether richness patterns in our 
data were robust to the omission of species that were relatively more 

rarely observed (figs. S4 and S5). We found that patterns were largely 
robust to their exclusion, in line with previous findings showing 
that global richness patterns are best approximated by subsets of 
common (rather than by rare) species (60).

Species range analysis
Species’ observed ranges for key environmental factors were defined 
by the maximum and minimum value obtained from matching up 
the species’ raw observations with sea surface temperature (48), sea 
surface wind stress (49), MLD (40), and additional factors, at monthly 
1° resolution (Fig. 2B and fig. S6). Species’ latitudinal ranges corre-
sponded to the maximum and minimum latitude of raw observa-
tions (Fig. 2C). We assessed the expected maximum species richness 
over the full range of each environmental variable in the ocean 
based on species’ observed presence ranges. At each environmental 
value (Fig. 2, B and C, and fig. S6), maximum richness is defined as 
the sum of the species’ ranges that overlapped, and range size is 
defined as the species’ mean range size.

To denote parts of the environmental gradients where edge 
effects likely distorted species’ observed range patterns, we created 
a null model of the environmental response in expected maximum 
richness and average range size. To this end, we randomized the 
species’ presences in the observational data (n = 100 runs) and 
derived species’ range limits and expected richness/mean range size 
based on these randomized data. Thus, our null model represents 
the expected maximum richness/mean range size in absence of any 
environmental sorting of species’ ranges. We identified areas with 
likely edge effects as those areas where the null model values deviated 
significantly (using the 95% confidence interval range) from the 
null model value obtained in the center (i.e., not affected by edge 
effects) of the environmental gradient studied. In Fig. 2 (B and C) 
and fig. S6, we only show estimates of maximum richness (red line) 
and range size (blue line) for areas unaffected by edge effects.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/5/5/eaau6253/DC1
Supplementary Materials and Methods
Fig. S1. Distribution of phytoplankton presence observations in space and time.
Fig. S2. SDM performance for the three statistical algorithms used.
Fig. S3. Sensitivity of global species richness patterns to methodological choices.
Fig. S4. Latitudinal species richness gradients derived from the observational raw data.
Fig. S5. Species richness–temperature relationships derived from the observational raw data.
Fig. S6. Species ranges for key environmental factors.
Table S1. Fraction of equatorial species recorded at higher latitudes.
Table S2. Single variable model skill for predicting species distributions and global richness.
Table S3. Contribution of sources to the phytoplankton dataset.
Table S4. Statistics on data collected and species modeled within major taxon groups.
Data file S1. Monthly species richness diagnosed at global scale, 1° spatial resolution.
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