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Speaker-independent auditory attention decoding
without access to clean speech sources
Cong Han1,2*, James O’Sullivan1,2*, Yi Luo1,2, Jose Herrero3,
Ashesh D. Mehta3, Nima Mesgarani1,2†

Speech perception in crowded environments is challenging for hearing-impaired listeners. Assistive hearing
devices cannot lower interfering speakers without knowing which speaker the listener is focusing on. One possible
solution is auditory attention decoding in which the brainwaves of listeners are compared with sound sources to
determine the attended source, which can then be amplified to facilitate hearing. In realistic situations, however,
only mixed audio is available. We utilize a novel speech separation algorithm to automatically separate speakers in
mixed audio, with no need for the speakers to have prior training. Our results show that auditory attention decoding
with automatically separated speakers is as accurate and fast as using clean speech sounds. The proposed method
significantly improves the subjective and objective quality of the attended speaker. Our study addresses a major
obstacle in actualization of auditory attention decoding that can assist hearing-impaired listeners and reduce
listening effort for normal-hearing subjects.
INTRODUCTION
Speech communication in acoustic environments with more than one
speaker can be extremely challenging for hearing-impaired listeners (1).
Assistive hearing devices have seen substantial progress in suppressing
background noises that are acoustically different from speech (2, 3), but
they cannot enhance a target speaker without knowing which speaker
the listener is conversingwith (4). Recent discoveries of the properties of
speech representation in the human auditory cortex have shown an en-
hanced representation of the attended speaker relative to unattended
sources (5). These findings have motivated the prospect of a brain-
controlled assistive hearing device to constantlymonitor the brainwaves
of a listener and compare them with sound sources in the environment
to determine themost likely talker that a subject is attending to (6). Then,
this device can amplify the attended speaker relative to others to facilitate
hearing that speaker in a crowd. This process is termed auditory at-
tention decoding (AAD), a research area that has seen considerable
growth in recent years.

Multiple challenging problems, including nonintrusive methods
for neural data acquisition and optimal decoding methods for accurate
and rapid detection of attentional focus, must be resolved to realize a
brain-controlled assistive hearing device. In addition, we have only a
mixture of sound sources in realistic situations that can be recordedwith
one ormoremicrophones. Because the attentional focus of the subject is
determined by comparing the brainwaves of the listener with each
sound source, a practical AAD system needs to automatically separate
the sound sources in the environment to detect the attended source and
subsequently amplify it. One solution that has been proposed to address
this problem is beamforming (7); in this process, neural signals are used
to steer a beamformer to amplify the sounds arriving from the location
of the target speaker (8, 9). However, this approach requires multiple
microphones and can be beneficial only when ample spatial separation
exists between the target and interfering speakers. An alternative and
possibly complementary method is to leverage the recent success in
automatic speech separation algorithms that use deep neural network
models (10, 11). In one such approach, neural networks were trained to
separate a pretrained, closed set of speakers from mixed audio (12).
Next, separated speakers were compared with neural responses to de-
termine the attended speaker, who was then amplified and added to the
mixture. Although this method can help a subject interact with known
speakers, such as family members, this approach is limited in general-
ization to new, unseen speakers, making it ineffective if the subject
converses with a new person, in addition to the difficulty of scaling
up to a large number of speakers.

To alleviate this limitation, we propose a causal, speaker-independent
automatic speech separation algorithm that can generalize to unseen
speakers, meaning that the separation of speakers can be performed
without any prior training on target speakers. Speaker-independent
speech separation has been one of the most difficult speech proces-
sing problems to solve (13). In recent years, several solutions have
been proposed to address this problem (11, 14, 15). One such ap-
proach is the deep attractor network [DAN; (10, 11)]. DAN performs
source separation by projecting the time-frequency (T-F) (spectro-
gram) representation of a mixed audio signal into a high-dimensional
space in which the representation of the speakers becomes more sepa-
rable. Compared with the alternative speaker-independent approaches
(14), DAN is advantageous in that it performs an end-to-end separa-
tion,meaning the entire process of speaker separation is learned together.
However, DAN (10, 11) was proposed for noncausal speech separation,
meaning that the algorithm required an entire utterance to perform the
separation. In real-time applications, such as in a hearing device, a causal,
low-latency algorithm is required to prevent perceivable distortion of the
signal (16).

In this study, we address the problem of speaker-independent
AAD without clean sources using a novel online implementation of
DAN [onlineDAN (ODAN)] to automatically separate unseen sources.
Because this system can generalize to new speakers, it overcomes a
major limitation of the previous AAD approach that required training
on the target speakers (14). The proposed AAD framework enhances
the subjective and objective quality of perceiving the attended speaker
in a multi-talker (M-T) mixture. By combining recent advances in
automatic speech processing and brain-computer interfaces, this study
represents a major advancement toward solving one of the most
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difficult barriers in actualizing AAD. This solution can help people
with hearing impairment communicate more easily.
RESULTS
Figure 1 shows a schematic of the proposed speaker-independent
AAD framework. A speaker separation algorithm first separates the
speakers in M-T mixed audio. Next, the spectrograms of the separated
speakers are compared with the spectrogram that is reconstructed from
the evoked neural responses in the auditory cortex of the listener to
determine the attended speaker. Then, the attended speaker is am-
plified relative to other speakers in the mixture before it is delivered
to the listener. We describe each of these processing stages in detail
below.

Speaker-independent speech separation using the ODAN
Defining the problem of source separation
Theproblemof speech separation is formulated as estimatingC sources,
s1(t),… , sc(t) ∈ R1 × T from the mixture waveform x(t) ∈ R1 × T

xðtÞ ¼ ∑
C

i¼1
siðtÞ ð1Þ

Taking the short-time Fourier transform (STFT) of both sides for-
mulates the source separation problem in the T-F domain where
the complex mixture spectrogram is the sum of the complex source
spectrograms

Xðf ; tÞ ¼ ∑
C

i¼1
Siðf ; tÞ ð2Þ

whereX( f, t) and Si( f, t)∈ℂ
F × T. One common approach for recovering

the individual sources, Si , is to estimate a real-valued T-Fmask for each
source, Mi ∈ RF × T, such that

∣Ŝiðf ; tÞ∣ ¼ ∣Xðf ; tÞ∣ Miðf ; tÞ ð3Þ
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The waveforms of the separated sources are then approximated using
the inverse STFT of ∣Ŝið f ; tÞ∣ using the phase of the mixture audio

ŝiðtÞ ¼ IFFTð∣Ŝiðf ; tÞ∣∠ Xð f ; tÞÞ ð4Þ

The mask for each source needs to be estimated directly from the mix-
ture spectrogram

Mi ¼ Hð∣Xð f ; tÞ∣; qÞ ð5Þ

where H( ∙ ) is the mask estimation model defined by parameter q.
Speaker-independent speech separation
In real-world scenarios, the identity of speakers in a mixture is usually
unknown in advance. Therefore, training separation models using
data from target speakers is not possible (12). Several recent deep-
learning approaches for speaker-independent separation have made
significant progress with satisfactory results (10, 11, 14, 15). In partic-
ular, the DAN aims to directly maximize the reconstruction accuracy
of the sources, therefore allowing for end-to-end training of the model
(10, 11). However, the DAN method was designed for noncausal
speech separation, which means the separation of the speakers at each
segment of an incoming audio stream relied on information from the
entire mixture utterance. Speech separation in AAD, however, re-
quires real-time implementation, which necessitates a causal algorithm
that can separate speakers at each segment using only the current
and past inputs. To overcome this challenge, we introduce an online
extension of DAN in this study, ODAN. Figure 2A shows the flow-
chart of the ODAN algorithm. In this novel extension of DAN,
source separation is performed by first projecting the mixture spec-
trogram onto a high-dimensional space where T-F bins belonging to
the same source are placed closer together to facilitate their assignment
to the corresponding sources. This procedure is performed in multiple
steps. First, the mixture magnitude spectrogram, ∣X(f, t)∣, is projected
onto a tensor, V(f, t, k), where each T-F bin is represented by a vector
of length K (Fig. 2B)

V ¼ fð∣X∣; qÞ ð6Þ
≠
≈

≠

Voices Speaker-independent

speech separation

Neural signalDetection and 

amplification

Fig. 1. Schematic of the proposed brain-controlled assistive hearing device. A brain-controlled assistive hearing device can automatically amplify one speaker
among many. A deep neural network automatically separates each of the speakers from the mixture and compares each speaker with the neural data from the user’s
brain to accomplish this goal. Then, the speaker that best matches the neural data is amplified to assist the user.
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where the separation model, f( ∙ ), is implemented using a deep neural
network with parameter q. We refer to this representation as the embed-
ding space. The neural network that embeds the spectrogramconsists of
a four-layer long short-term memory (LSTM) network, followed by a
fully connected layer (FC) (see Materials andMethods for the details of
the network architecture). To assign each embedded T-F bin to one of
the speakers in the mixture, we track the centroid of the speakers in the
embedding space along time. We refer to the centroids of the source i
and at time step t as the attractor points, At,i(k), because they pull
together and attract all the embedded T-F bins that belong to the same
source. Therefore, the distance [defined as the dot product (17)] be-
tween the embedded T-F bins to each of the attractor points determines
the source assignment for that T-F bin, which is then used to construct a
Han et al., Sci. Adv. 2019;5 : eaav6134 15 May 2019
mask to recover that source (Fig. 2C)

Mt;ið f Þ ¼ Softmax ∑kAt;iðkÞ Vtð f ; kÞ
� � ð7Þ

where the Softmax function is defined as

SoftmaxðxiÞ ¼ exi

∑C
i¼1e

xi

The masks subsequently multiply by the mixture magnitude spectro-
gram to estimate the magnitude spectrograms of each source (Fig. 2C
andEq. 3). All the parameters of theODANare found jointly during the
D  Speaker assignment for each frequency at time step τ E  Updating the location of attractors at time step τ 

C  Estimating the time-frequency masks and separating speakersB  High-dimensional embedding of the time-frequency bins
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Fig. 2. Speaker-independent speech separation with ODAN. (A) The flowchart of the ODAN for speech separation. (B) The T-F representation of the mixture sound is
projected into a high-dimensional space in which the T-F points that belong to the same speaker are clustered together. (C) The center of each speaker representation in
the embedding space is referred to as the attractors. The distance between the embedded T-F points and the attractors defines amask for each speaker that multiplies the
T-F representation to extract the speakers. (D) The location of the attractors is updated at each time step. First, the previous location of the attractors is used to determine
the speaker assignment for the current frame. (E) Then, the attractors are updated based on a weighted average of the previous attractors and the center of the current
frame defined by the speaker assignments.
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training phase byminimizing the source reconstruction error of the en-
tire utterance,

ℓ ¼ ∑
f ;t;i

‖∣Sið f ; tÞ∣� ∣Xð f ; tÞ∣ Mið f ; tÞ‖22 ð8Þ

Online tracking of the attractor points
While DAN uses the embedding of the entire mixture utterance to cal-
culate the attractor points (10, 11), ODAN estimates the attractor loca-
tions at each time step using only the current and past inputs. The initial
location of the attractor points in the embedding space (at t = 0) is
chosen from a fixed, pretrained set of points in the embedding space
(see “Initializing attractor points” section in Material and Methods).
Updating the attractor points in each time step is performed using a
one-step generalized expectation maximization (EM) algorithm (18).
At time step t, we first calculate the source assignment vectors for each
speaker,Yt, i( f), from the embedded frequency channelsVt( f, k) by com-
paring the distance of each embedded T-F bin to each attractor from the
previous time step, At − 1, i(k) (Fig. 2D)

Yt; iðf Þ ¼ Softmax ∑kAt�1;iðkÞ Vtð f ; kÞ
� � ð9Þ

ASoftmax function is applied to enhance the source assignment contrast.
Next, we update the location of the attractors based on the centroid of the
current frame, the previous location of the attractors, and the current
input (Fig. 2E)

At;iðkÞ ¼ ð1� at;iðkÞÞAt�1;iðkÞ þ at;iðkÞCt;iðkÞ

Ct;iðkÞ ¼
∑f Vtðf ; kÞYt;ið f Þ

∑f Yt;ið f Þ
ð10Þ

where Ct,i(k) is the centroid of the embeddings of source i at time step t,
andparametera determines the rate of the update at time t by controlling
the trade-off between the previous location of the attractors and the cen-
troid of the sources in the current frame

at;iðkÞ ¼
∑f Yt;ið f Þ

Qt;iðkÞ∑t�1
t¼0∑f Yt;ið f Þ þ∑f Yt;ið f Þ

where Qt,i(k) determines the contribution of attractor history and the
current attractor estimates at time step t. Parameter Qt,i(k) at each
time frame is calculated by a neural network from the current frequen-
cy vector (∣X( f, t)∣, the output of the LSTM layer in the last time step,
and the previous location of attractors (green lines in Fig. 2A; see
“Calculating the updated rate of attractors” section in Materials and
Methods). Once the attractors for the current frame are updated, the
masks for separating the current frame are calculated using the simi-
larity of the T-F embeddings and each attractor (Fig. 2C).
Evaluating speech separation accuracy
As shown in Eq. 6, ODAN projects T-F bins into a high-dimensional
embedding space that is optimal for source separation (Eq. 8), meaning
that T-F bins belonging to the same source should be placed closer to
each other in the embedding space. To confirm that this situation is the
Han et al., Sci. Adv. 2019;5 : eaav6134 15 May 2019
case, we projected the representation of the two speakers in both the
spectrogram domain and embedding domain onto a two-dimensional
space using principal components analysis (19) to allow visualization.
This improved separability of the speakers is shown in Fig. 3A, where
the representations are visualized using the first two principal compo-
nents of the spectrogram and embedding space. Accordingly, T-F bins
with more power for each speaker are shown in red and blue, and the
improved separation in the embedding space is evident from the de-
creased overlap between red and blue dots in the embedding space
(Fig. 3A).

We evaluated the ODAN model on single-channel, two-speaker
and three-speaker separation tasks. We used the WSJ0-2mix and
WSJ0-3mix datasets generated from the Wall Street Journal (WSJ0)
because it is commonly used for comparison with state-of-the-art
speaker separation systems. This dataset contains 30 hours of training
data, 10 hours of validation data, and 5 hours of test data. The mixed
sounds are generated by randomly selecting utterances from different
speakers in the WSJ0 training set and mixing them at various signal-
to-noise ratios (SNRs), randomly chosen between −2.5 and 2.5 dB.
Table 1 shows the comparison of the ODANmethod with other state-
of-the-art speaker-independent speech separation methods on two-
speaker and three-speaker mixtures. The evaluation is conducted using
the signal-to-distortion ratio (SDR), scale-invariant SNR (SI-SNR) (11),
perceptual evaluation of speech quality (PESQ) score (20), and extended
short-term objective intelligibility (ESTOI) score (21) (Materials and
Methods). As seen in Table 1, the ODAN method performs well in
separating speakers in the mixture and even performs on par with
the noncausal DAN method, which computes the separation from
the entire utterance using a global clustering of the embeddings.We also
tested the ability of the ODAN in dealing with an unknown number of
speakers in the mixture. This was done by assuming the maximum
number of speakers to be three and training the algorithm on both
two-speaker (WSJ0-2mix) and three-speaker (WSJ0-3mix) datasets.
During the test phase, no information about the number of speakers
was provided, and the outputs that have low power (less than 20 dB
relative to the other outputs) were discarded. As seen in Table 2, the
same ODAN network can successfully separate one-, two-, or three-
speaker mixtures without any prior information on the number of
sources in the mixture during the test phase. In addition, we tested
whether ODAN can adapt and perform separation even when speakers
in the mixture change over time, which frequently occurs in real-world
situations. We concatenated mixtures of different speakers where the
speakers in the mixture change every 4 s. Figure 3B shows the mean
squared error (MSE) between the separated speech and actual speaker
spectrograms over time, where the line at 4 s indicates the time of speak-
er change. Figure 3B shows that ODAN converges to new mixtures in
less than 1.2 s (t test, P < 0.05) by adapting to new speakers to correctly
separate them. This ability to track the speakers is important and
enables it to work in real-world acoustic scenarios.

Behavioral AAD experiment and neural measurements
Neural recordings
To test the feasibility of using theODANspeech separation network in
a brain-controlled hearing device, we used invasive electrophysiology
tomeasure neural activity from three neurosurgical patients undergoing
treatment for epilepsy. Two subjects (subjects 1 and 2) were implanted
with high-density subdural electrocorticography (ECoG) arrays over
their language dominant temporal lobe, providing coverage of the su-
perior temporal gyrus (STG), which selectively represents attended
4 of 11
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speech (5). The third subject was implanted with bilateral stereoelec-
troencephalography (sEEG), with depth electrodes in Heschl’s gyrus
(containing primary auditory cortex) and STG. This implantation re-
sulted in varying amounts of coverage over the left and right auditory
cortices of each subject (fig. S1). All subjects had self-reported normal
hearing and consented to participate in the experiment.

Each subject participated in the following experiments for this study:
single-talker (S-T) and M-T experiments. In the S-T experiment, each
subject listened to four continuous speech stories (each story was 3min
long), for a total of 12 min of speech material. The stories were uttered
once by a female and once by a male speaker (hereafter referred to as
Spk1 and Spk2, respectively). For theM-T experiment, the subjectswere
presented with a mixture of the same speech stories as those in the S-T
experiment, where both speakers were combined at a 0-dB target-
to-masker ratio. The M-T experiment was divided into four behavioral
blocks, each containing a mixture of two different stories spoken by
Spk1 and Spk2. Before each experimental block, the subjects were
instructed to focus their attention on one speaker and to ignore the
other. All the subjects began the experiment by attending to the male
Han et al., Sci. Adv. 2019;5 : eaav6134 15 May 2019
speaker and switched their attention to the alternate speaker on each
subsequent block. To ensure that the subjects were engaged in the task,
we intermittently paused the stories and asked the subjects to repeat
the last sentence of the attended speaker before the pause. All the
subjects performed the task with high behavioral accuracy and were
able to report the sentence before the pause with an average accuracy
of 90.5% (S1, 94%; S2, 87.%; and S3, 90%). Speech sounds were
presented using a single loudspeaker placed in front of the subject at a
comfortable hearing level, with no spatial separation between the
competing speakers.
Reconstruction of the attended speaker from evoked
neural activity
The reconstructed spectrogram from the auditory cortical responses of
a listener in an M-T speech perception task is more similar to the
spectrogram of the attended speaker than that of the unattended
speaker (5). Therefore, the comparison of the neurally reconstructed
spectrogram with the spectrograms of individual speakers in a mixture
can determine the attentional focus of the listener (6). We used a
linear reconstruction method (22) to convert neural responses back
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to the spectrogram of the sound. This method calculates a linear map-
ping between the response of a population of neurons to the T-F repre-
sentation of the stimulus (22). Thismapping is performedby assigning a
spatiotemporal filter to the set of electrodes, which is estimated bymini-
mizing the MSE between the original and the reconstructed spectro-
grams. We estimated the reconstruction filters using only the neural
responses to speech in the S-T experiment. Then, we fixed the filters
and used them to reconstruct the spectrogram in the M-T experiments
under different attention focuses.

To examine the similarity of the reconstructed spectrograms from
the neural responses to the spectrograms of the attended and un-
attended speakers, we measured the correlation coefficient (Pearson’s r)
between the reconstructed spectrograms with both ODAN and the
actual clean spectrograms of the two speakers. The correlation values
were estimated over the entire duration of the M-T experiment. As
shown in Fig. 3C, the correlation between the reconstructed and clean
spectrograms was significantly higher for the attended speaker than for
the unattended speaker (paired t test, P < 0.001; Cohen’sD = 0.8). This
observation shows the expected attentional modulation of the auditory
cortical responses (5). The comparison of the correlation values of
ODAN and the actual clean spectrograms (Fig. 3C) shows a similar
difference value between the attended and unattended spectrograms
(average correlation difference for clean = 0.125 and for ODAN =
0.128), suggesting that ODAN spectrograms can be equally effective
for attention decoding. Figure 3C also shows a small but significant
decrease in the correlation values of the reconstructed spectrograms
with ODAN compared with those of the actual clean spectrograms.
This decrease is caused by the imperfect speech separation performed
by the ODAN algorithm. Nevertheless, this difference is small and
equally present for both attended and unattended speakers. Therefore,
this difference did not significantly affect the decoding accuracy as
shown below.
Decoding the attentional focus of the listener
To study how the observed reconstruction accuracy with attended and
unattended speakers (Fig. 3C) translates into attention decoding accu-
Han et al., Sci. Adv. 2019;5 : eaav6134 15 May 2019
racy, we used a simple classification scheme in which we computed the
correlation between the reconstructed spectrograms with both clean
attended and unattended speaker spectrograms over a specified dura-
tion. Next, the attended speaker is determined as the speaker with a
higher correlation value. The duration of the signal used for the calcu-
lation of the correlation is an important parameter and affects both the
decoding accuracy and speed. Longer durations increase the reliability
of the correlation values, hence improving the decoding accuracy. This
phenomenon is shown in Fig. 3D, where the varying duration of the
temporal window was used to determine the attended speaker. The ac-
curacy in Fig. 3D indicates the percentage of segments for which the
attended speaker was correctly decoded. The accuracy was calculated
for the following cases: when using ODAN spectrograms and when
using the actual clean spectrograms.We found no significant difference
in decoding accuracy with ODAN or the clean spectrograms when dif-
ferent time windows were used (Wilcoxon rank sum test, P = 0.9). This
finding confirms that automatically separated sources by the ODAN
algorithm result in the same attention decoding accuracy as that with
the actual clean spectrograms. As expected, increasing the correlation
window resulted in improved decoding accuracy for both ODAN and
actual clean sources (Fig. 3D).

Next, we examined the temporal properties of attention decoding
when ODAN and the actual clean spectrograms were used. We simu-
lated a dynamic switching of attention where the neural responses were
concatenated from different attention experiment blocks such that the
neural data alternated between attending to the two speakers. To ac-
complish this, we first divided the neural data in each experiment block
into 60-s segments (total of 12 segments) and interleaved segments
from the two attention conditions (see Materials and Methods). We
compared the correlation values between the reconstructed spectro-
grams with both ODAN and the actual clean spectrograms using a
sliding window of 4 s. Then, we averaged the correlation values over
the segments by aligning them according to the time of the attention
switch. Figure 3E shows the average correlation for one example subject
over all the segments where the subject was attending to Spk1 in the first
60 s and switched to Spk2 afterward. The overlap between the correla-
tion plots calculated from ODAN and the actual clean spectrograms
shows that the temporal properties of attention decoding are the same
in both cases; hence, ODANoutputs can replace the clean spectrograms
without any significant decrease in decoding speed. We quantified the
decoding speed using the transition time, which is the time it takes to
detect a switch in the listener’s attention. Transition times were
calculated as the time at which the average correlation crossed the zero
line. Figure 3F shows the average transition times for the three subjects
Table 1. Comparison of speech separation accuracy of ODAN with
two other methods for separating two-speaker mixtures
(WSJ0-mix2 dataset) and three-speaker mixtures (WSJ0-mix3
dataset). The separation accuracy of ODAN, which is the causal system,
is slightly worse but comparable to the other noncausal methods.
Number of
Speakers
Model
 Causal
 SI-SNRi
(dB)
SDRi
(dB)
PESQ
 ESTOI
Two speakers
 Original mixture
 –
 0
 0
 2.02
 0.56
DAN-LSTM (11)
 No
 9.1
 9.5
 2.73
 0.77
uPIT-LSTM (15)
 Yes
 –
 7.0
 –
 –
ODAN
 Yes
 9.0
 9.4
 2.70
 0.77
Three speakers
 Original mixture
 –
 0
 0
 1.66
 0.39
DAN-LSTM (11)
 No
 7.0
 7.4
 2.13
 0.56
uPIT-BLSTM (15)
 No
 –
 7.4
 –
 –
DPCL++ (50)
 No
 7.1
 –
 –
 –
ODAN
 Yes
 6.7
 7.2
 2.03
 0.55
Table 2. Speech separation accuracy of ODAN in separating one-,
two-, and three-speaker mixtures (WSJ0-mix2 and WSJ0-mix3 data-
sets). The ODAN was trained on both the WSJ0-mix2 and WSJ0-mix3
datasets and used in all cases.
Number of
speakers
Causal
 SI-SNRi (dB)
 SDRi (dB)
 PESQ
 ESTOI
3
 Yes
 7.0
 7.5
 2.08
 0.56
2
 Yes
 8.9
 9.3
 2.63
 0.76
1
 Yes
 SI-SNR (dB)
24.4
SDR (dB)
25.0
4.14
 0.98
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for five different sliding window durations. As expected, the transition
times increase for longer window lengths, but there were no significant
differences between ODAN and the clean spectrograms (paired t test,
P > 0.7; Fig. 3F).
Increased subjective and objective perceived quality of the
attended speaker
To test if the difficulty of attending to the target speaker is reduced using
the ODAN-AAD system, we performed a psychoacoustic experiment
comparing the originalmixture and sounds in which the decoded target
speaker was amplified by 12 dB (Materials andMethods) (see movie S1
and online at naplab.ee.columbia.edu/NNAAD for a demo of the end-
to-end ODAN-AAD system). This particular amplification level has
been shown to significantly increase the intelligibility of the attended
speaker while keeping the unattended speakers audible enough to enable
attention switching (23). Subjects were asked to rate the difficulty of
attending to the target speaker in three conditions when listening to
the following: (i) the raw mixture, (ii) the enhanced target speech using
the output of theODAN-AAD, and (iii) the enhanced target speech using
the output of the clean-AAD system. Twenty listeners with normal
hearing participated in the psychoacoustic experiment, where they each
heard 20 sentences in each of the three experimental conditions in ran-
dom order. Subjects were instructed to attend to one of the speakers and
report the difficulty of focusing on that speaker. Subjects were asked to
rate the difficulty on a scale of 1 to 5 using themean opinion score [MOS;
(24)]. The bar plots in Fig. 4A show the median MOS ± standard error
(SE) for each of the three conditions. The average subjective score for the
ODAN-AAD shows a significant improvement over the mixture (56%
improvement; paired t test, P < 0.001), demonstrating that the listeners
had a stronger preference for the modified audio than for the original
mixture. Figure 4A also shows a small but significant difference between
the averageMOSscorewith the actual clean sources and thatwithODAN
separated sources (78% versus 56% improvement over the mixture). The
MOS values using the clean sources show the upper bound of AAD im-
provement if the speaker separation algorithmwasperfect. Therefore, this
analysis illustrates the maximum extra gain that can be achieved by
improving the accuracy of the speech separation algorithm (14% over
the current system). Figure 4B shows a similar analysis when an objective
perceptual speech quality measure is used [PESQ; (20)], showing a result
similar to what we observed in the subjective tests. Together, Fig. 4 dem-
onstrates the benefit of using the ODAN-AAD system in improving the
perceived quality of the target speaker.
DISCUSSION
We present a framework for AAD that addresses the lack of access to
clean speech sources in real-world applications.Ourmethod uses a nov-
el, real-time, speaker-independent speech separation algorithm that
uses deep-learning methods to separate the speakers from a single
channel of audio. Then, the separated sources are compared with the
reconstructed spectrogram from the auditory cortical responses of the
listener to determine and amplify the attended source. The integration
of speaker-independent speech separation in the AAD framework is al-
so a novel contribution.We tested a system on two unseen speakers and
showed improved subjective and objective perception of the attended
speaker when using the ODAN-AAD framework.

Amajor advantage of our system over previous work (12) is the abil-
ity to generalize to unseen speakers, which enables a user to communi-
cate more easily with new people. Because ECoG electrodes reflect the
summed activity of thousands of neurons in the proximity of the elec-
Han et al., Sci. Adv. 2019;5 : eaav6134 15 May 2019
trodes (25), the spectral tuning resolution of the electrodes is relatively
low (26). As a result, the reconstruction filters that map the neural re-
sponses to the stimulus spectrogram do not have to be trained on spe-
cific speakers and can generalize to novel speakers, as we have shown
previously (5, 27). Nonetheless, generalization to various noisy, rever-
berant acoustic conditions is still a challenging problem and requires
training on a large amount of data recorded from asmany noisy environ-
ments as possible (3). Recent studies have shown the feasibility of
using neural network models in joint speech separation and denoising
(28), which will be needed in a real-world implementation of AAD.
Moreover, similar speech processing approaches, such as automatic
speech recognition, have seen great benefit from large-scale training
whenever possible (29, 30). Therefore, speech separation is also expected
to obtain a similar benefit in robustness to adverse acoustic conditions.
In addition to increasing the amount of training data and training
conditions, separation accuracy can be significantly improved when
more than one microphone can be used to record mixed audio. The
advantage of enhancing speech with multiple microphones has been
previously demonstrated (31, 32), particularly in severely noisy environ-
ments or when the number of competing speakers is large (e.g., more
than three).

Onemajor limitation in advanced signal processing approaches for
hearing technologies is the limited computation and power resources
that are available in wearable devices. Nevertheless, designing spe-
cialized hardware that can efficiently implement deep neural network
models is an active research area that has recently seen substantial
progress (33–35). Specialized hardware also significantly reduces the
power consumption needed for computation. In addition, hearing
aid devices can already perform off-board computation by inter-
facing with a remote device, such as a mobile phone, which provides
another possibility for extending the computational power of these
devices (2).

Althoughwe used invasive neural recordings to test our system, pre-
vious researchhas already shown that attentiondecoding is also possible
with noninvasive neural recordings, including scalp EEG with different
or the same gender mixtures (6), around the ear EEG electrodes (36),
and in-ear EEG recordings (37). The SNR of these recordings is not as
high as that of invasive methods, but they can provide enough infor-
mation needed to decode the attentional focus (6, 36, 37), although this
may come at the expense of reducing the decoding speed of the AAD.
Alternatively, several recent studies have examined the efficacy of min-
imally invasive neural recording techniques where the electrodes are
placed under the skin without penetrating the bone (38). Further
advances in noninvasive neural recording from the human brain can
further increase the fidelity of the neural recording to improve both
the accuracy and speed of attention decoding.

The accuracy of AAD also critically depends on the decoding
algorithm being used (39, 40). For example, the accuracy and speed
of decoding can be improved when stochastic models are used to
estimate the attention focus using a state-space model (41) instead of
the moving average that we used in this paper. In addition, while we
used fixed reconstruction filters derived from the S-T responses, this
experimental condition may not always be available. In these scenarios,
it is possible to circumvent the need for S-T responses by online estima-
tion of the encoding/decoding coefficients from the responses to the
mixture (41, 42), whichmay lead tomore flexible and robust estimation
of the decoding filters. Last, decoding methods that factor in the head-
related filtering of the sound can also improve the attention decoding
accuracy (43).
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In summary, our proposed speaker-independent AAD system
represents a feasible solution for a major obstacle in creating a
brain-controlled hearing device, therefore bringing this technology a
step closer to reality. Such a device can help hearing-impaired listeners
more easily communicate in crowded environments and reduce the
listening effort for normal-hearing subjects, therefore reducing
listening fatigue.
MATERIALS AND METHODS
Participants
Three subjects who were undergoing clinical treatment for epilepsy at
North Shore University Hospital participated in this study. All patients
provided informed consent as monitored by the local institutional re-
view board and in accordance with the ethical standards of the Dec-
laration of Helsinki. The decision to implant the electrode targets and
the duration of implantation were made entirely on clinical grounds
without reference to this investigation. Patients were informed that
participation in this study would not alter their clinical treatment
and that they could withdraw at any time without jeopardizing their
clinical care. Two subjects (subjects 1 and 2) were implanted with
high-density subdural electrode arrays over their left (language dom-
inant) temporal lobe with coverage over the STG. The remaining sub-
ject partook in sEEG, in which he or she was implanted bilaterally
with depth electrodes. The coverage over the left and right auditory
cortices for each subject is shown in fig. S1.

Stimuli and experimental design
Each subject participated in the following experiments for this study:
S-T andM-T experiments. Each subject listened to four stories read by a
female and male speaker (denoted by Spk1 and Spk2). Both Spk1 and
Spk2 were native American English speakers and were recorded in-
house. For theM-T experiment, subjects were presented with amixture
of the same female and male speakers (Spk1 and Spk2), with no spatial
separation between them. The acoustic waveform of each speaker was
matched to obtain the same root mean squared intensity. All stimuli
Han et al., Sci. Adv. 2019;5 : eaav6134 15 May 2019
were presented using a single Bose SoundLink Mini 2 speaker situated
directly in front of the subject. The M-T experiment was divided into
four blocks by mixing different stories of Spk1 and Spk2. In total, there
were 11min and 37 s of audio presented to each subject during theM-T
experiment. The S-T experiment lasted twice as long as each subject was
required to listen to each story once read by Spk1 and once by Spk2.

Data preprocessing and hardware
Data were recorded using Tucker Davis Technologies hardware and
sampled at 2441 Hz. The data were resampled to 500 Hz. A first-order
Butterworth high-pass filter with a cutoff frequency at 1 Hz was used to
remove DC drift. Data were subsequently re-referenced using a local
scheme, whereby the average voltage from the nearest neighbors was
subtracted from each electrode. Line noise at 60 Hz and its harmonics
(up to 240 Hz) were removed using second-order infinite impulse re-
sponse (IIR) notch filters with a bandwidth of 1 Hz. A period of silence
was recorded before each experiment, and the corresponding data were
normalized by subtracting themean and dividing by the SDof this pres-
timulus period.

Next, data were filtered into the high-gamma band (70 to 150 Hz);
the power of this band is modulated by auditory stimuli (5, 44, 45). To
obtain the power of this broad band, we first filtered the data into eight
frequency bands between 70 and 150 Hz with increasing bandwidth
using Chebyshev type 2 filters. Then, the power (analytic amplitude) of
each band was obtained using a Hilbert transform. We took the average
of all eight frequency bands as the total power of the high-gamma band.

Transformation of electrode locations onto an average brain
The electrodes were first mapped onto the brain of each subject using
coregistration, followed by their identification on the postimplantation
computed tomography scan using BioImage Suite. To get the anatom-
ical location labels of these electrodes, we used the Freesurfer’s auto-
mated cortical parcellation by Destrieux brain atlas (46). These labels
were closely inspected by the neurosurgeons using the subject’s core-
gistered postimplant magnetic resonance imaging. We plotted the
electrodes on the average Freesurfer brain template.
****

****

Mixture ODAN Clean
1

2

3

4

5
M

ea
n 

op
in

io
n 

sc
or

e 
(M

O
S 

1–
5)

1

2

3

PE
SQ

 (1
–4

.5
)

Mixture ODAN Clean

****

****

A  Subjective quality B  Objective quality

0.5

0.6

0.7

0.8

0.9

1

E
S

T
O

I (
0–

1)

Mixture ODAN Clean

C  Objective intelligibility

****

****

Fig. 4. Improved subjective quality and objective quality and intelligibility of the ODAN-AAD system. (A) Subjective listening test to determine the ease of
attending to the target speaker. Twenty healthy subjects were asked to rate the difficulty of attending to the target speaker when listening to (i) the raw mixture, (ii) the
ODAN-AAD amplified target speaker, and (iii) the clean-AAD amplified target speaker. The detected target speakers in (ii) and (iii) were amplified by 12 dB relative to the
interfering speakers. Subjects were asked to rate the difficulty on a scale of 1 to 5 (MOS). The bar plots show the median MOS ± SE for each condition. The enhancement
of the target speaker for the ODAN-AAD and clean-AAD systems was 100 and 118%, respectively (P < 0.001). (B and C) Objective quality (PESQ) and intelligibility (ESTOI)
improvement of the target speech in the same three conditions as in (A). ****P < 0.0001, t test.
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Stimulus reconstruction
To determine the attended speaker, we used a method known as stim-
ulus reconstruction (22, 47). Thismethod applies a spatiotemporal filter
(decoder) to neural recordings to reconstruct an estimate of the spec-
trogram that a user is listening to. The decoder is trained by performing
linear regression to find a mapping between the neural recordings and
spectrogram. Training on single-speaker data was performed to mini-
mize any potential bias that may result from training the decoders on
the M-T data. Electrodes were chosen if they were significantly more
responsive to speech than to silence. To perform these statistical anal-
yses, we segmented the neural data into 500-ms chunks and divided them
into the following categories: speech and silence. Significance was deter-
mined using unpaired t test (false discovery rate corrected, q < 0.05). This
electrode selection resulted in varyingnumbers of electrodes for each sub-
ject (see fig. S1). The decoders were trained using all electrodes simulta-
neously and with time lags from −400 to 0 ms. See (22) for further
information on the stimulus reconstruction algorithm.

Decoding accuracy
As previously stated, we trained the decoders using single-speaker data.
These same decoders could then be used to reconstruct spectrograms
from the M-T experiment (5). Determining to whom the subject is
attending requires correlation analysis, commonly using Pearson’s r
value (6, 36). Typically, the spectrogram that has the largest correla-
tion with the reconstructed spectrogram is considered the attended
speaker. We used window sizes ranging from 2 to 32 s to calculate cor-
relations (in logarithmically increasing sizes). We defined decoding ac-
curacy as the percentage of the segments in which the reconstructions
had a larger correlation with the attended spectrogram than with the
unattended spectrogram.

Dynamic switching of attention
To simulate a dynamic scenario in which a subject was switching atten-
tion between two speakers, we divided and concatenated the neural data
into consecutive segments in which subjects were attending to either
speaker. Specifically, we divided the data into 10 segments, each lasting
60 s. Subjects attended to the male speaker for the first segment. To
assess our ability to track the attentional focus of each subject, we used
a sliding window approach whereby we obtained correlation values ev-
ery second over a specified window. We used window sizes ranging
from 2 to 32 s (in logarithmically increasing sizes). Larger windows
should lead to more consistent (less noisy) correlation values, thus
providing a better estimate of the attended speaker. However, this ap-
proach should also be slower at detecting a switch in attention, therefore
leading to a reduction in decoding speed.

Psychoacoustic experiment
We tested the perceived quality of the modified speech by performing a
psychoacoustic experiment on 20 healthy controls using Amazon
Mechanical Turk (www.MTurk.com). The stimuli used for this exper-
iment were the same as those used for the neural experiment, i.e.,
subjects were always presented with a mixture of Spk1 and Spk2. How-
ever, we altered the presentation of the stimuli to obtain as much
information as possible about the subjects’ perception. The experiment
was divided into six blocks, each containing nine trials. Each trial con-
sisted of a single sentence. One-third of the trials consisted of the raw
mixture, another third contained modified audio using the ODAN-
AAD framework, and the remaining third contained modified audio
using the original clean sources with the AAD framework. The trial
Han et al., Sci. Adv. 2019;5 : eaav6134 15 May 2019
order was randomized. Before each block, the subjects were instructed
to pay attention to one of the speakers. To test the difficulty of attending
to the target speaker, after each trial (sentence), we asked the subjects to
indicate the difficulty they had in understanding the attended speaker
on a scale of 1 to 5 as follows: very difficult (1), difficult, not difficult,
easy, and very easy (5). From these responses, we calculated the MOS
(24). In total, the experiment lasted approximately 15 min.

Initializing attractor points
The initial position of the attractor points at t = 0 in the embedding space
was chosen from a set of N predetermined points, which we refer to as
anchor points (11). During the training phase, we created N randomly
initialized, trainable anchor points in the embedding space V, which
are denoted by Bj = 1, … , N. During the training of the network, the
position of the anchor points was jointly optimized to maximize the sep-
arability of the mixture sounds. After the training was performed, the
anchor points were fixed. To separate a mixture that containsC speakers
during the test phase, we first chose all possible C combinations of the N
anchor points, resulting in N

C

� �
subsets of the N anchors. Next, we found

the distance of the embedded T-F bins at t = 0 from the anchor points in
each of the N

C

� �
subsets. The C initial attractors for a particular mixture are

the ones in the subset that minimize in-set similarity between the attractors
(i.e., maximizing the in-set distance between the chosen attractor points).

Calculating the updated rate of attractors
The location of the attractors at each time step was updated on the
basis of their previous position, the centroid of the embeddings for
the current frame, and the current input frame

At,i(k) = (1 − at,i(k))At−1,i(k) + at,i(k)Ct,i(k)

Ct;iðkÞ ¼
∑f Vtðf ; kÞYt;ið f Þ

∑f Yt;ið f Þ

whereCt, i(k) is the centroid of the embeddings of source i at time step t,
and parameter a determines the rate of the update at time t by control-
ling the trade-off between the previous location of the attractors and the
centroid of the sources in the current frame. If a is too small, the attrac-
tor changes position too quickly from one frame to the next, whichmay
result in a noisy estimate and unstable separation. If a is too large, the
attractor will be too slow to track the changes in the mixture condition,
which could be problematic if the speakers in the mixture change over
time. To optimally estimate a, we calculated a dynamic weighting
function to control the relative weight of previous and current estimates
using a parameter, Q, for each source i at time step t

Qt;iðkÞ ¼ s ht�1W þ XtU þ At�1;iðkÞJ þ b
� �

where s( ∙ ) is the sigmoid activation function, ht−1 is the previous
output of the last LSTM layer, Xt is the current mixture feature, and
W,U, J, and b are parameters that are jointly learned during the training
of the network. Given parameter Qt,i(k), the update parameter a is es-
timated using the following equation

at;iðkÞ ¼
∑f Yt;ið f Þ

Qt;iðkÞ∑t�1
t¼0∑f Yt;ið f Þ þ ∑f Yt;ið f Þ
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whereQt,i(k) adjusts the contribution of previous and current attractor
estimates at time step t. We found that parameter Q correctly tracks a
change in the speakers in the mixture because the change creates a dis-
crepancy between the previous output of the LSTM network and the
current input, as shown in fig. S2.

ODAN network architecture
The network consisted of four unidirectional LSTM layers with 600
units in each layer. The embedding dimension was set to 20 based on
the observations reported in (11), which resulted in a fully connected
layer of 2580 hidden units (20 embedding dimensions times 129 fre-
quency channels) after the LSTM layers. The number of anchors was
set to 6 (11). We trained the models using curriculum training (11), in
which we first trained the models on 100-frame-long input segments
(0.8 s) and continued training thereafter on 400-frame input segments
(3.2 s). The batch size was set to 128. Adam (48) was used as the opti-
mizer with an initial learning rate of 1e−4, which was halved if validation
error does not decrease after three epochs. The total number of epochs
was set to 150, and early stopping was applied if validation error is not
decreased after 10 consecutive epochs. All models were initialized using
a pretrained LSTMDANmodel. A gradient clipwith amaximumnorm
of 0.5 was applied to accelerate training.

ODAN training data
The neural network models were trained by mixing speech utterances
from theWall Street Journal corpus (49). We used the WSJ0-2mix and
WSJ0-3mix datasets, which contain 30 hours of training, 10 hours of
validation, and 5 hours of test data. The test set contained 3000mixtures
generated by combining utterances from 16 unseen speakers from the
si_dt_05 and si_et_05 subsets. All sounds were resampled to 8 kHz to
simplify the models and to reduce computational costs. The input fea-
ture is the log magnitude spectrogram computed using a STFT, with
32-ms window length (256 samples) and 8-ms hop size (64 samples),
andweighted by the square root of a hammingwindow.Wiener filter–
like masks (14) were used as the training objective.

Evaluation metrics
We evaluated and compared the separation performance on the test set
using the followingmetrics: SDR, SI-SNR, (11), and PESQ score (20), as
well as ESTOI (21) for the evaluation of speech quality and intelligibility.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/5/5/eaav6134/DC1
Fig. S1. Electrode coverage and speech responsiveness for each subject.
Fig. S2. The change in the update parameter of attractors (parameter q in methods) when the
speakers in the mixture switch.
Movie S1. The full demo of the proposed ODAN-AAD system.
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