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Abstract

Genetic correlations estimated from GWAS reveal pervasive pleiotropy across a wide variety of 

phenotypes. We introduce genomic structural equation modeling (Genomic SEM), a multivariate 
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method for analyzing the joint genetic architecture of complex traits. Genomic SEM synthesizes 

genetic correlations and SNP-heritabilities inferred from GWAS summary statistics of individual 

traits from samples with varying and unknown degrees of overlap. Genomic SEM can be used to 

model multivariate genetic associations among phenotypes, identify variants with effects on 

general dimensions of cross-trait liability, calculate more predictive polygenic scores, and identify 

loci that cause divergence between traits. We demonstrate several applications of Genomic SEM, 

including a joint analysis of summary statistics from five psychiatric traits. We identify 27 

independent SNPs not previously identified in the contributing univariate GWASs. Polygenic 

scores from Genomic SEM consistently outperform those from univariate GWAS. Genomic SEM 

is flexible, open ended, and allows for continuous innovation in multivariate genetic analysis.

Genomic Structural Equation Modeling

Genome-wide association studies (GWASs) are rapidly identifying loci affecting multiple 

social, behavioral, and psychiatric phenotypes.1,2 Moreover, using cross-trait versions of 

methods such as genomic-relatedness-based restricted maximum-likelihood (GREML)3 and 

LD-score regression (LDSC)4 researchers have identified genetic correlations between 

diverse traits, e.g., age of first birth and risk of smoking,5 insomnia and psychiatric traits 

(e.g., schizophrenia),6 major depressive disorder and number of children,7 and educational 

attainment and cognitive performance.8 Widespread statistical pleiotropy appears to be the 

rule rather than the exception across complex traits. Although these findings are currently 

suggestive of constellations of phenotypes affected by shared sources of genetic liability, 

existing methods do not permit the causes of the observed genetic correlations to be 

investigated systematically. Here we introduce Genomic Structural Equation Modeling 

(Genomic SEM), a new method for modeling the multivariate genetic architecture of 

constellations of traits and incorporating genetic covariance structure into multivariate 

GWAS discovery. Genomic SEM is a flexible framework for formally modeling the genetic 

covariance structure of complex traits using GWAS summary statistics from samples of 

varying and potentially unknown degrees of overlap, in contrast to existing methods that 

model phenotypic covariance structure,9 with specific applications,10 using raw data. 

Moreover, Genomic SEM allows for the specification and comparison of a range of 

proposed multivariate genetic architectures, which improves upon existing approaches for 

combining information across genetically correlated traits to aid in discovery.11

One powerful feature of Genomic SEM is the capability to model shared genetic architecture 

across phenotypes with factors representing broad genetic liabilities, and compare the fit of 

different factor structures to the empirical data. When an appropriate model has been 

identified at the level of the genome-wide covariance structure, the researcher may 

incorporate individual SNPs into the model in order to identify variants with effects on 

general dimensions of cross-trait liability, boost power for discovery, and calculate more 

valid and predictive polygenic scores. Genomic SEM can also evaluate whether the 

multivariate genetic architecture implied by a specific model is applicable at the level of 

individual variants using developed estimates of heterogeneity. When certain SNPs only 

influence a subset of genetically correlated traits, a key assumption of other multivariate 

approaches is violated.11 SNPs with high heterogeneity estimates can be flagged as likely to 
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confer disproportionate liability toward individual traits, be removed when constructing 

polygenic risk scores, or be studied specifically to understand the nature of heterogeneity.

We validate key properties of Genomic SEM with a series of simulations and illustrate the 

flexibility and utility of Genomic SEM with analyses of real data. These include a joint 

analysis of GWAS summary statistics from five genetically correlated psychiatric case-

control traits: schizophrenia, bipolar disorder, major depressive disorder (MDD), post-

traumatic stress disorder (PTSD), and anxiety. We model their joint genetic architecture 

using a general factor of psychopathology (p), for which we identify 27 independent SNPs 

not previously identified in the univariate GWASs, 5 of which can be validated based on 

separate GWASs. Polygenic scores derived using this p-factor consistently outperform 

polygenic scores derived from GWASs of the individual traits in out-of-sample prediction of 

psychiatric symptoms. Other demonstrations include a multivariate GWAS of neuroticism 

items, an exploratory factor analysis of anthropometric traits, and a simultaneous analysis of 

the unique genetic associations between schizophrenia, bipolar disorder, and educational 

attainment.

Results

Genomic SEM is a Two-Stage Structural Equation Modeling approach.12–14 In Stage 1, the 

empirical genetic covariance matrix and its associated sampling covariance matrix are 

estimated. The diagonal elements of the sampling covariance matrix are squared standard 

errors (SEs). The off-diagonal elements index the extent to which sampling errors of the 

estimates are associated, as may be the case when there is sample overlap across GWASs. In 

Stage 2, a SEM is specified and parameters are estimated by minimizing the discrepancy 

between the model-implied genetic covariance matrix and the empirical covariance matrix 

obtained in the previous stage. We evaluate fit with the standardized root mean square 

residual (SRMR), model χ2, Akaike Information Criteria (AIC), and Comparative Fit Index 

(CFI; Method).13,15 In a set of simulations we verify key properties of Genomic SEM 

(Method). We find that Genomic SEM produces unbiased parameter estimates when the 

correct structural model is specified, and that model fit indices consistently favor the correct 

model over alternative models. In a second set of simulations, we demonstrate that the 

inclusion of data from overlapping samples does not bias Genomic SEM parameter 

estimates or their standard errors.

Genomic SEM can be employed as a tool for multivariate GWAS based on univariate 

summary statistics. First, the genetic covariance matrix and its associated sampling 

covariance matrix are expanded to include SNP effects. A Genomic SEM is then specified in 

which SNP effects occur at the level of a latent genetic factor defined by several phenotypes, 

at the level of the genetic components of each of several (potentially genetically correlated) 

phenotypes, or some combination of the two. The Genomic SEM is then run once per SNP 

(or each set of SNPs, should the user incorporate multiple SNPs into a model) to obtain its 

effects within the multivariate system.

We provide an index that quantifies the extent to which an observed vector of univariate 

regression effects of a given SNP on each of the phenotypes can be explained by a common 
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pathway model that assumes that the effects are entirely mediated by the common genetic 

factor(s). In other words, the index enables the identification of loci that do and do not 

plausibly operate on the individual phenotypes exclusively by way of their associations with 

the common factor(s). Because of its intuitive and mathematical similarity to the meta-

analytic Q-statistic used in standard meta-analyses to index heterogeneity of effect sizes16 

we label this heterogeneity statistic, QSNP. QSNP is a χ2-distributed test statistic with larger 

values indexing a violation of the null hypothesis that the SNP acts entirely through the 

common factor(s).

Confirmatory Factor Analysis of Genetic Covariance Matrices

We provide two examples of confirmatory factor analysis (CFA) using Genomic SEM. In 

our first example, we fit a genetic factor model to psychiatric case-control traits. Recent 

findings indicate that the comorbidity across psychiatric disorders is captured by a general 

psychopathology factor (i.e., the p-factor) and is widely supported based on previous results.
17–21 We tested for the presence of a single common genetic p-factor using Genomic SEM 

with European-only summary statistics for schizophrenia, bipolar disorder, major depressive 

disorder (MDD), post-traumatic stress disorder (PTSD), and anxiety (Table S1 for 

phenotypes and sample sizes). Model fit was adequate (χ2[5] = 89.55, AIC = 109.50, CFI 

= .848, SRMR = .212). Results indicated that schizophrenia and bipolar disorder loaded the 

strongest onto the genetic p-factor (Supplementary Figure 1), a pattern of findings that 

closely replicates prior findings from twin/family studies.19

In a second example, we tested for the presence of a single common genetic factor of 

neuroticism using summary statistics from 12 item-level indicators from UK Biobank 

(UKB; Supplementary Table 1) as estimated using the Hail software.22 Model fit was good 

(χ2[54] = 4884.10, AIC =4932.11, CFI = .893, SRMR = .109). Results indicated strong 

positive loadings for all indicators (Supplementary Figure 2). We used this single common 

factor model for both neuroticism and the p-factor when estimating SNP effects for 

discovery under the section SNP Effects, below.

Exploratory Factor Analysis of a Genetic Covariance Matrix

We provide two examples of how one might use exploratory methods to guide the 

specification of more nuanced factor models. In the first example, we submitted the LDSC-

derived genetic correlation matrix of the 12 neuroticism items in UKB to exploratory factor 

analysis (EFA; see Supplementary Results). Based on these initial EFA results, follow-up 

CFAs (Supplementary Figure 3) were specified using Genomic SEM (standardized loadings 

> .4 were retained; Supplementary Table 2). The two-factor solution (χ2[53] = 2758.18, AIC 

= 2808.18, CFI = .940, SRMR = .077) and three-factor solution (χ2[51] = 1879.31, AIC = 

1933.31, CFI = .959, SRMR = .057) both provided excellent fit to the data and exceeded the 

fit of the single, common factor model. Consistent with the superior model fit indices for the 

two- and three-factor solutions, only 28 and 20 of the 69 QSNP hits from the single common 

factor model (described in further detail, under the SNP Effects section, below) continued to 

surpass genome-wide significance for the two- and three-factor models, respectively 

(Supplementary Figure 4; Supplementary Table 3). In addition, a GWAS of all HapMap3 

SNPs for the two- and three-factor models revealed the average size of QSNP across all SNPs 
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was largest for the common factor (χ2[1] = 1.68), followed by the two-factor (χ2[1] = 1.64), 

and three-factor model (χ2[1] = 1.51). Thus, heterogeneity indices of individual SNP effects 

in the GWAS data agree with model fit indices, with both favoring the three-factor model of 

neuroticism.

In the second example, EFA was applied to the LDSC-derived genetic correlation matrix for 

nine anthropometric traits from the EGG and GIANT consortia (Supplementary Table 4). 

EFA results indicated that two factors explained 61% of the total genetic variance. 

Moreover, a heatmap of the genetic correlation matrix suggests two primary factors that 

index overweight and early life-growth phenotypes (Supplementary Figure 5). A follow-up 

CFA (Supplementary Figure 6) within Genomic SEM was specified based on the EFA 

parameter estimates (standardized loadings > .25 were retained). The CFA showed good fit 

to the data (χ2[25] = 12994.71, AIC = 13034.71, CFI = .962, SRMR = .092). Results 

indicated highly significant loadings, and a small correlation between the two factors (rg = .

10, SE = .03, p < .001). This indicates that early life physical growth is modestly associated 

with later life obesity traits via genetic pathways.

Genetic Multivariable Regression (Replicating GWIS)

Nieuwboer et al. (2016)23 use summary statistics for educational achievement (EA)24 and 

both schizophrenia and bipolar disorder25 to determine if genetic correlations with EA are 

driven by variation specific to either disorder. EA is genetically correlated with 

schizophrenia (rg = .148, SE = .050, p = .003) and bipolar disorder (rg = .273, SE = .067, p 
< .001). Using a method called genome-wide inferred statistics (GWIS), they find that the 

correlation of EA with schizophrenia unique of bipolar is small (rg = .040, SE = .082, p = .

627), whereas the genetic correlation between bipolar unique of schizophrenia and EA is far 

less attenuated (rg = .218, SE = .102, p = .032). We use Genomic SEM with the aim of 

replicating these results using a conceptually similar, but statistically distinct, framework. 

We present this example to demonstrate that Genomic SEM is not limited to factor analytic 

models, but can be used to construct and test an array of hypotheses using a general SEM 

approach.

Using the same univariate GWAS summary statistics employed in the original application of 

GWIS, we used Genomic SEM to fit a structural multivariable regression model in which 

the genetic component of EA was simultaneously regressed onto the genetic components of 

schizophrenia and bipolar disorder. Results confirmed the findings by Nieuwboer et al. 

(2016);23 the conditional standardized association between schizophrenia and EA was small 

(bg = −.016, SE = .096, p = .867), whereas there was a strong conditional standardized 

association between bipolar disorder and EA (bg = .283, SE = .113, p = .012; Supplementary 

Figure 7).

SNP Effects

Common Factor Models.—A powerful application of Genomic SEM is to include 

individual SNP effects in both the genetic covariance matrix and the sampling covariance 

matrix, in order to estimate the effect of a given SNP on the latent genetic factor(s). If the 

summary statistics are composed of M different SNPs, then M models are estimated to 
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obtain genome-wide summary statistics for the latent factor. As an example of Genomic 

SEM used for multivariate GWAS, we incorporated SNP effects into the p-factor and 

neuroticism models presented above. LD-independent hits are defined below as r2 < .1 in a 

500Kb window, with the exception of a 1Mb window for chromosomes 6 and 8. 128 

independent loci were genome-wide significant for the p-factor (p < 5 × 10−8; 

Supplementary Figures 8–10; Figure 1a, Figure 2a). Of the 128 loci, 27 independent loci 

were not previously identified in any of the contributing univariate GWASs (Table 1, 

Supplementary Table 5). Of these 27 loci, five loci were identified as either genome-wide 

significant or suggestive of significance (p < 1 × 10−5) in a separate, previously published 

GWAS of one of the five traits. 118 loci were genome-wide significant for neuroticism, with 

38 loci not identified in the univariate item-level GWASs (Supplementary Table 6; Figure 

1b, Figure 2b). Plots of item-level effects for individual SNPs revealed high consistency in 

magnitude and direction for SNPs identified as genome-wide significant for the common 

factors (Supplementary Figure 11). Although there is early lift-off in the QQ-plots for both 

common factors, LDSC analyses of the summary statistics produced by Genomic SEM 

indicated that results were not due to uncontrolled inflation for either the p-factor (intercept 

= .987, SE = .014) or neuroticism (intercept = .997, SE = .001).

General Trends.—Mean χ2 statistics were higher for the Genomic SEM-derived 

summary statistics of common factors relative to univariate indicators (Table 1). It is 

important to note here that, whereas Genomic SEM may boost power in many cases, this is 

not the primary purpose of the method. Rather, it is to identify the relationship between 

SNPs and observed phenotypes as meditated through a user-specified model and to 

concurrently evaluate the construct validity of said model. Inspecting the distribution of 

univariate p-values for the newly identified SNPs for the general factors indicated that these 

SNPs were generally characterized by relatively low p-values, albeit not low enough to cross 

the genome-wide significance threshold for any individual phenotype (Supplementary 

Figures 12–13).

QSNP Results.—Results revealed 1 and 69 independent QSNP loci for the p-factor and 

neuroticism, respectively (Figure 2c and Figure 2d; Supplementary Figure 14). For 

neuroticism, significant QSNP estimates were obtained for SNPs that were highly significant 

for some traits but not others (Supplementary Table 7; Supplementary Figure 15). The 

association between p-values for SNP effects and QSNP estimates were minimal 

(Supplementary Figure 16). Comparing the QSNP estimates for SNPs identified as 

significant for only the p-factor or neuroticism relative to SNPs identified as significant for 

one of the indicators, but not the common factor, indicated that the latter group of SNPs 

were characterized, as would be expected, by larger QSNP estimates (i.e., greater 

heterogeneity in individual effects; Supplementary Figure 17). Intercepts from LDSC 

analyses of the QSNP statistics also indicated that results for the heterogeneity index were 

not attributable to inflation (p-factor: intercept = .978, SE = .009; neuroticism: intercept = .

963, SE = .009). Slopes from the same LDSC analyses further indicated genetic signal in 

heterogeneity (p-factor: Z = 13.65, p-value = 6.68E-42; neuroticism: Z = 30.23, p-value = 

9.98E-201).
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Comparison to MTAG.—Existing multivariate methods use summary statistics of 

genetically correlated phenotypes to boost power for discovery and prediction for a 

particular trait.11,26,27 Boosting power is only one application of Genomic SEM. That said, a 

Genomic SEM common factor GWAS approach has already been shown by an independent 

research group to perform comparably to existing multivariate approaches for out-of-sample 

prediction.28 Moreover, as a flexible modeling framework, Genomic SEM may encompass 

other multivariate approaches. For example, we show mathematically that Genomic SEM 

can be specified to satisfy the same moment conditions as multi-trait analysis of GWAS 

(MTAG11; see Supplementary Methods). Simulation results also revealed near perfect 

correspondence from a linear regression in which Z statistics from MTAG were used to 

predict those from a Genomic SEM specified to satisfy the MTAG moment conditions 

(Supplementary Figure 18; unstandardized slope = .999, intercept = 2.65E-4).

Performance in Empirical Data under Controlled Missingness.—We contrast 

estimates obtained from the common factor model of neuroticism described above with 

estimates for a GWAS with an imposed missing structure. We first transformed the binary 

scale neuroticism items into a smaller number of quantitative scores. To do so, we created 

three parcels of neuroticism items consisting of 4 items each with scores ranging from 0 to 

4, at which point it is appropriate to treat the parcel as continuous.29 Parcels were 

constructed based on the same EFA results described above and mirrored the composition of 

the three-factor model, with the exception that the irritability item was included with parcel 

2 so as to have an equal distribution of 4 items per parcel. Of the 300,000 participants, 

100,000 non-overlapping participants were removed from two of the three parcels for 

missing data models. The best powered results (indexed by mean χ2 values) were for 

Genomic SEM of the individual neuroticism items presented above, indicating that 

construction of composite indices via averaging, though convenient, removes multivariate 

information that can otherwise be retained with Genomic SEM (Supplementary Table 8). 

Genomic SEM analyses that incorporated supplemental information from parcels containing 

imposed missing data consistently outperformed GWAS of individual parcels with complete 

data, and performed nearly as well as analyses of complete data across all three parcels. 

Thus, inclusion of summary data from genetically correlated, phenotypes in Genomic SEM 

may boost power relative GWAS of the individual phenotypes, even when there is high 

sample overlap and sample sizes are uneven across phenotypes.

Parcel Comparison of QSNP.—Using the three constructed parcels without any missing 

data, the distribution of p-values was compared across SNPs with high (p < 5e-8) and low (p 
> 5e-3) QSNP estimates from the item-level Genomic SEM analysis of neuroticism for SNPs 

that were genome-wide significant in at least one of the parcels. These results indicated that, 

for SNPs with a higher QSNP for the common factor, there was more discordance of effect 

sizes among three lower-order factors relative to SNPs that produced lower heterogeneity 

estimates (Supplementary Figure 19). The average difference between the highest and lowest 

–log10 p-values was 10.56 and 4.96 for high and low QSNP, respectively. This suggests that 

QSNP is appropriately indexing discordance in SNP level effects across genetically 

correlated indicators.
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Polygenic Prediction.—We re-estimated the p-factor model using the summary statistics 

from the SCZ and MDD GWASs that did not overlap with the UKB dataset, in order to 

predict psychiatric symptoms in UKB (Supplementary Figure 20 for phenotypic model). In 

order to produce a reliable set of targets for polygenic prediction, and to focus our analyses 

on construct validation, latent factors of psychiatric symptoms were specified as the out-of-

sample targets. We compared the magnitude of out-of-sample-prediction for the p-factor 

PGSs predicting the phenotypic p-factor and factors of individual psychiatric domains 

relative to the prediction using PGSs derived from univariate summary statistics (Figure 3, 

Supplementary Table 9). The PGSs for the genetic p-factor predicted more variance in 

symptoms of depression, psychotic experiences, mania, anxiety, PTSD and a phenotypic p-

factor than any univariate PGS.

For neuroticism, univariate PGSs were constructed in data from the Generation Scotland 

study using summary statistics for the 12 neuroticism items, the Genomic SEM factor of 

items, the three neuroticism parcels, the Genomic SEM factor of parcels, and the 

neuroticism sum score. We used PGSs to predict a sum score composed of the same 

neuroticism items administered in UKB. We also calculated mean χ2 values for each of 

these summary statistics, which we used to infer their relative power. Of all the summary 

statistics considered, summary statistics derived from a Genomic SEM analysis of a 

common factor of the neuroticism items produced both the largest mean χ2 in the summary 

statistics and predicted the greatest variance in the out-of-sample phenotype (Supplementary 

Figure 21). In both cases, the superior performance of Genomic SEM analysis of the 

common factor of items relative to the sum score of the items is likely, in part, a reflection of 

the fact that the sum score in UKB was created using listwise deletion, resulting in a reduced 

sample size of 274,008. Conversely, Genomic SEM uses all available information from 

neuroticism items, with sample sizes of ~325,000 each. In more severe cases of sample non-

overlap, we would expect even larger power benefits of Genomic SEM-derived summary 

statistics relative to individual items or sum scores. Indeed, in instances of minimal sample 

overlap, it is not possible to compute sum scores, but Genomic SEM can still be used to 

integrate data across phenotypes.

Biological Annotation.—The biological function of the SNPs related to the p-factor and 

neuroticism was examined using DEPICT.30 Table 1 presents the number of enriched gene 

sets, prioritized genes, and enriched tissues and cell types across the univariate statistics and 

common factors (Supplementary Tables 10–18 for detailed output). Common factors 

produced more informative results than the individual indicators. As expected, all of the 

tissue enrichment for the common factors was identified in the nervous system 

(Supplementary Figure 22). Neuroticism prioritized genes indicated a central role of 

synaptic activity (e.g., STX1B, NR4A2, PCLO), including glutamatergic neurotransmission 

(GRM3). The p-factor gene sets were largely characterized by communication between 

neurons (e.g., “dendrite development”, “dendritic spine”, “abnormal excitatory postsynaptic 

potential”). Biological annotation of QSNP statistics for neuroticism indicated that genes 

within the 69 loci related to neuroticism, but not through a single factor, include: GRIA1, a 

glutamate receptor subunit (i.e. involved in signaling is excitatory neurons) which has 
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previously been related to schizophrenia,31 chronotype,32 and autism;33 and PCDH17, a 

gene involved in cellular connections in the brain that has been related to intelligence.34

General Guidelines

When implementing Genomic SEM, users should be aware of the limitations and 

assumptions of the method. First, because Genomic SEM is a method for modeling genetic 

covariance matrices, it relies on the same assumptions as the method used to estimate 

genetic covariances, and best practices for implementing such method should be followed. 

For example, when LDSC is used to construct the genetic covariance matrix, SNPs should 

not first be pruned for linkage disequilibrium, and summary statistics for different 

phenotypes should be obtained from ethnically homogeneous samples of similar ancestral 

backgrounds.4 With respect to selecting between competing models, users should take into 

account a variety of both absolute fit (e.g. SRMR and model χ2) and relative fit indices (e.g. 

AIC and χ2 difference). We provide general standards for absolute model fit in the Method 

section. Finally, a formal power analysis should take into account specific characteristics of 

the summary data, the genetic architecture of the phenotypes, and the model to be specified. 

This can typically be achieved with simulation. Generally speaking, we would expect power 

to detect SNP effects on a common genetic factor to be high when the phenotypes 

composing the factor have high heritabilities, and high genetic correlations, sample sizes are 

larger and sample overlap is lower. That said, we still expect some power benefits relative to 

univariate GWAS when the constituent phenotypes are only moderately heritable and/or 

moderately genetically correlated and/or sample overlap is high. The choice of included 

summary statistics, phenotypes, and model(s) will of course depend on the researcher’s 

objectives and the model(s) to be specified.

Discussion

Applications of genome-wide methods to data from large scale population-based samples 

have uncovered clear evidence of pervasive statistical pleiotropy. Genomic SEM is a method 

for modeling the multivariate genetic architecture of constellations of genetically correlated 

traits and incorporating genetic covariance structure into multivariate GWAS discovery. In 

contrast to methods9 that model phenotypic, rather than genetic covariance structure, and 

rely on raw data, Genomic SEM employs summary GWAS data to model genetic covariance 

structure. Genomic SEM is computationally efficient, accounts for potentially unknown 

degrees of sample overlap, and allows for flexible specification of covariance structure, such 

that several broad classes of structured covariance models can be applied. The Genomic 

SEM approach shares benefits of some existing approaches11 for boosting power by 

combining information across genetically correlated phenotypes. However, Genomic SEM 

uniquely allows one to compare different hypothesized genetic covariance architectures and 

to incorporate such architectures into multivariate discovery. Importantly, shared genetic 

liabilities across phenotypes can be explicitly modeled as factors that may be treated as 

broad genetic risk factors with equally broad downstream consequences. Multivariate 

genetic methods have existed for decades in the twin literature, with Martin and Eaves 

(1977)35 providing a framework for fitting structural equation models of genetic and 

environmental variance components to multivariate twin data. Using GWAS summary data 
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from unrelated individuals, Genomic SEM can be used to estimate multivariate genetic 

models similar to those from the existing twin literature. Moreover, Genomic SEM offers 

new promise as a method that allows for modeling genetic covariance even among 

phenotypes for which phenotypic covariance cannot be estimated.

Genomic SEM is not the first method for multivariate GWAS. Other methods, such as 

MTAG,11 SHom/SHet,36 metaUSTAT,37 min-P,38 and TATES27 allow researchers to perform 

multivariate meta-analyses based solely on summary data. The methods can generally be 

divided into 2 distinct classes: methods that aggregate test statistics or effect sizes based on a 

model (Genomic SEM, SHom and MTAG) and those that select from the univariate p-values 

while taking care not to inflate Type-I error (min-P, TATES, and SHet). As we show with 

respect to MTAG, models on which existing methods are based may can be fit within the 

Genomic SEM framework. We also anticipate that the approaches for selecting the p-values 

from a set of analyses while maintaining proper Type-I error control could be integrated into 

the Genomic SEM framework. For instance, whereas TATES is currently applied to select p-

values from a series of univariate analyses of correlated traits, the same analysis could be 

used to select p-values from a series of Genomic SEM models. The multivariate methods 

available need not be mutually exclusive. With respect to other multivariate analyses of 

genome-wide data that go beyond multivariate GWAS discovery, the major alternatives to 

Genomic SEM that we are aware of are GWIS23 and GW-SEM.9 When considering linear 

relationships between traits, Genomic SEM is more flexible and user friendly than GWIS, 

and GW-SEM requires access to phenotypic data, which is a substantial limitation for many 

applications.

Unlike approaches that assume homogeneity of effects across SNPs,11 Genomic SEM 

includes diagnostic indices for its key assumptions, including a test for heterogeneity, QSNP, 

that can be applied at the level of the individual SNPs. This offers the unique ability to 

identify SNPs that confer specific risk to individual phenotypes. This question may be of 

particular interest as the large degrees of genetic overlap identified across phenotypes (e.g., 

bipolar disorder and schizophrenia) beg the question: what are the genetic causes of 

phenotypic divergence? Whereas previous GWASs have combined items tapping 

genetically-related phenotypes into a single score, or even combined cases with different 

diagnoses to obtain a shared genetic effect, Genomic SEM allows researchers to interrogate 

shared genetic effects between diagnoses or indicators, while concurrently testing for causes 

of divergence (i.e., loci that are related only to a specific phenotype, or subset of phenotypes, 

but not the more general liability). In the context of neuroticism, for example, we identified 

69 loci that were significantly involved in one manifestation of neuroticism but whose 

effects were not shared through a common factor, offering novel evidence of biological 

heterogeneity in the etiology of a construct long thought to be unidimensional. Because 

Genomic SEM relies only on GWAS summary data, it can be applied to a broad spectrum of 

traits, including social, economic, cognitive, and psychiatric outcomes.
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Method

Overview of Genomic SEM

Genomic SEM is a Two-Stage Structural Equation Modeling approach.12–14 In the first 

stage, the empirical genetic covariance matrix and it sampling covariance matrix are 

estimated. In principle, these matrices may be obtained using a variety of methods for 

estimating SNP heritabilities, genetic covariances, and their joint estimation errors. Here we 

use a novel version of LDSC that accounts for potentially unknown degrees of sample 

overlap by populating the off-diagonal elements of the sampling covariance matrix. The 

same strengths, as well as assumptions and limitations, that are known to apply to 

LDSC39,40 apply to its extension used here and to Genomic SEM. In Stage 2, the user 

specifies a multivariate system of regression and covariance associations involving the 

genetic components of phenotypes with one another and/or more general latent factors. 

These associations are represented by parameters that may be fixed or freely estimated, so 

long as the model is statistically identified (e.g., the number of freely estimated parameters 

does not exceed the number of nonredundant elements in the genetic covariance matrix 

being modeled). A set of parameters (θ) is estimated such that the fit function indexing the 

discrepancy between the model-implied covariance matrix, ∑(θ), and the empirical 

covariance matrix, S, estimated in Stage 1 is minimized. Model fit is considered good when 

∑(θ) closely approximates S. In the main text of the article, we highlight results from 

weighted least squares (WLS) estimation that weights the discrepancy function using the 

inverse of the diagonal elements of the sampling covariance matrix, and produces model SEs 

using the full sampling covariance matrix. In the Supplementary Results, we additionally 

report results from an alternative normal theory maximum likelihood (ML) estimation 

method.

Form of Structured Covariance Models

Genomic SEM provides substantial user flexibility with respect to the particular SEM that is 

specified to produce the model-implied covariance matrix ∑(θ) that approximates the 

empirical covariance matrix, S. SEMs can be partitioned into two sets of equations, one 

describing the measurement model, and the other describing the structural model. In the 

measurement model, the genetic components of k “indicator” phenotypes are described as 

linear functions of a smaller set of m (continuous) latent variables, y=Λη+ε. In this 

equation, y is a k×1 vector of indicators, ε is a k×1 vector of residuals, η is an m×1 vector of 

latent variables, and Λ is a k×m matrix of factor loadings, i.e. regressions relating the latent 

variables to the set of indicators. In a typical application of Genomic SEM, each indicator is 

a function of exactly one of the latent variables (though this so-called “simple structure” 

restriction may be relaxed). In a confirmatory factor analysis (CFA) model, only the 

measurement model is specified, and the set of latent variables are allowed to freely covary. 

Thus, the model-implied covariance matrix of a CFA is Σ(θ) = ΛΨΛ′+Θ, where Ψ is an m 
× m latent variable covariance matrix and Θ is a k × k matrix of covariances among the 

residuals, ε. Typically, Θ is diagonal, which implies that indicators are mutually independent 

conditional on the set of latent variables. That constraint may be relaxed such that select 

pairs of indicators are allowed to covary over and above their associations via the latent 

variable structure (i.e., residual covariances are allowed). CFA models are typically used to 
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assess the strength of relations between sets of indicators and their respective underlying 

latent variables, as well as to assess the fit of a measurement model to data. A well-fitting 

CFA model implies that the latent variable structure is able to account for the observed 

covariances among a set of indicator variables.

When a theory aims to explain associations among latent variables, a structural model can be 

added to the measurement model to produce a full SEM. The structural model of a SEM 

relates latent variables to each other via directed regression coefficients. It can be written in 

matrix notation as η=Bη+ζ, where B is an m × m matrix of regression coefficients that 

relate latent variables to each other and ζ is an m × 1 vector of latent variable residuals. The 

model implied covariance matrix of observed variables is Σ(θ)=Λ(I-B)−1 Ψ(I-B′)−1 Λ′+Θ, 

where I is an k × k identity matrix.41 Thus, in a full SEM, the empirical matrix is 

represented by a set of parameters that relate observed variables to latent variables, and 

relate latent variables to each other in a series of linear equations.

Path Diagrams

SEMs can be represented graphically as path diagrams representing regression and 

covariance relations among variables.42 In path diagrams, observed variables are represented 

as squares and unobserved (i.e., latent) variables are represented as circles. Regressions 

relationships between variables are represented as one-headed arrows pointing from the 

independent variable to the dependent variable. Covariance relationships between variables 

are represented as two-headed arrows linking the two variables. The variance of a variable 

(i.e., the covariance between a variable and itself), is represented as a two-headed arrow 

connecting the variable to itself. In Genomic SEM, we represent the genetic component of 

each phenotype with a circle, as the genetic component is a latent variable that is not directly 

measured, but is inferred from LDSC (it is the phenotype itself that is observed in the raw 

data that is used to produce the summary statistics). SNPs are directly measured, and are 

therefore represented as squares. When all elements in a SEM are represented in a path 

diagram, the diagram contains the full system of algebraic equations needed to estimate the 

full set of SEM parameters, θ, and produce the model-implied covariance matrix, ∑(θ).

Stage 1 Estimation

In Stage 1, the empirical genetic covariance matrix (SLDSC) and its associated sampling 

covariance matrix (VSLDSC) are estimated using our multivariable extension of LDSC. 

SLDSC is a k × k symmetric matrix with SNP heritabilities on the diagonal and genetic 

covariances (σgi,gj) between phenotypes i and j off the diagonal. The genetic covariance 

between phenotypes i and j can be computed as the genetic correlation scaled relative to the 

total genetic variance of each of the two contributing phenotypes (themselves scaled to unit 

variances), σgi, gj = rgi, gj ⋅ hi
2 ⋅ h j

2. Thus, the genetic covariance matrix of order k has k* = 

k(k+1)/2 nonredundant elements. It can be written as:
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SLDSC =

h1
2

σg1, g2 h2
2

⋮ ⋱

σg1, gk σg2, gk ⋯ hk
2

To produce unbiased SE estimates and test statistics, we require the sampling covariance 

matrix, VSLDSC, of the LDSC estimates that is composed of all nonredundant elements in 

the SLDSC matrix. Thus, it is a symmetric matrix of order k*, with k*(k* +1)/2 nonredundant 

elements. The diagonal elements of VSLDSC are sampling variances, that is, squared SEs of 

the elements in SLDSC. The off-diagonal elements of VSLDSC are sampling covariances that 

indicate the extent to which the sampling distributions of the variance and covariance 

estimates in SLDSC covary with one another, as would be expected when there is overlap 

among the samples from which the terms are estimated. This VSLDSC matrix can be written 

as:

V
S

LDSC
=

SE(h1
2)2

cov(h1
2, σg1, g2) SE(σg1, g2)2

⋮ ⋮ ⋱

cov(h1
2, σg1, gk) cov(σg1, g2, σg1, gk) SE(σg1, gk)2

⋱

cov(h1
2, h j

2) cov(σg1, g2, h j
2) cov(σg1, gk, h j

2) SE(h j
2)2

⋱

cov(h1
2, σg j, gk) cov(σg1, g2, σg j, gk) cov(σg1, gk, σg j, gk) cov(h j

2, σg j, gk) SE(σg j, gk)2

cov(h1
2, hk

2) cov(σg1, g2, hk
2) cov(σg1, gk, hk

2) cov(h j
2, hk

2) cov(σg j, gk, hk
2) SE(hk

2)2

The diagonal elements of VSLDSC can be estimated using the jackknife resampling 

procedure in the bivariate version of LDSC that is currently available by its original 

developers.4,43 The LDSC function introduced in the GenomicSEM software package 

expands the jackknife procedure to the multivariable context in order to additionally produce 
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sampling covariances (which index dependencies among estimation errors) among the 

elements of SLDSC, needed to populate the off-diagonal elements of VSLDSC.

Incorporating Individual SNP Effects—Several steps are needed to incorporate 

individual SNP effects into Genomic SEM. The first step requires that the inputted genetic 

covariance matrix be expanded to include covariances between the SNP and each of the 

phenotypes, g1 through gk, by appending a vector of SNP-phenotype covariances (SSNP) to 

SLDSC:

S
Full

=

σ
SNP
2

σ
SNP, g1 h1

2

σ
SNP, g2 σ

g1, g2 h2
2

σ
SNP, g3 σ

g1, g3 σ
g2, g3 h3

2

⋮ ⋮ ⋱

σ
SNP, gk

σ
g1, gk

σ
g2, gk

σ
g3, gk

⋯ hk
2

The sampling covariance matrix, VSFull, associated with this expanded SFull covariance 

matrix includes a number of components. One block of this VSFull matrix, VSLDSC, contains 

the sampling variances and sampling covariances of the latent genetic variances (SNP 

heritabilities) and genetic covariances, which are obtained from the multivariable LDSC 

approach introduced above. A second block of the VSFull matrix, VSSNP, is composed of the 

sampling covariance matrix of the SNP effects on the phenotypes. The SNP variance 

(derived from reference panel data) is treated as fixed, and its sampling variance and 

sampling covariance with all other terms are fixed to 0 (or to a very small value to facilitate 

computational tractability). The sampling covariances of the SNP-genotype covariances with 

one another are obtained using cross-trait LDSC intercepts (which represent sampling 

correlations weighted by sample overlap) after being rescaled relative to the sampling 

variances of the respective SNP-genotype covariances.11,44 A final block of the VSFull 

matrix represents the sampling covariance of the SNP-genotype covariances with the genetic 

variances and genetic covariances. These are fixed to 0, as sampling variation of the SNP-

genotype covariance is expected to be independent of the test statistics of all LD blocks 

except the one it occupies. Because the sampling variance of the heritabilities and genetic 

correlations derive from sampling variability in the test statistics within all of the LD blocks, 

their sampling covariances with a single SNP effect is expected to approach 0. In sum, the 

VSFull matrix can be written in compact form as:

V
S

Full
=

V
S

SNP
0 V

S
LDSC
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Stage 2 Estimation

In Stage 2, the genetic covariance matrix obtained in the previous stage, S, is used to 

estimate the parameters in a SEM. In this stage, we allow for both weighted least squares 

(WLS) and normal theory maximum likelihood (ML) estimators. WLS does not strictly 

require positive definite S and VS matrices, but may still benefit from positive definiteness 

during optimization. ML estimation requires both S and VS to be positive definite. The 

GenomicSEM software package therefore smooths S and VS to the nearest positive definite 

matrices prior to Stage 2 estimation using the R function nearPD.45

The fit function minimized in the diagonally weighted version of WLS estimation that is 

standard in the GenomicSEM software package is the following:

F
WLS

(θ) = s − σ(θ) ′Ds
−1 s − σ(θ) ,

where S and Σ(θ) have been half-vectorized to produce s and σ(θ) respectively, and DS is VS 

with its off-diagonal elements set to 0. We choose the diagonally weighted version of WLS 

because it is more tractable to implement for large (highly multivariate) matrices and is more 

stable than fully weighted WLS in finite samples.46,47

ML estimation proceeds by minimizing the following fit function:

F
ML

(θ) = log Σ(θ) − log S + tr S Σ−1(θ) − k

where Σ(θ) is the covariance matrix implied by the set of parameter estimates. Note that, 

while the formulation of the ML fit function does not explicitly include a weight matrix, it is 

asymptotically equivalent to a more general formulation that is identical to the WLS fit 

function, with .5Dk′ Σ−1 θ ⊗ Σ−1 θ Dk, where Dk is the duplication matrix of order k, in 

place of DS . Thus, the difference between ML and WLS estimation can be construed as a 

difference in weight matrices only. A comparison between ML and WLS results can be 

found in the Supplementary Results (see also Supplementary Figures 23–27, Supplementary 

Table 19).

WLS estimation more heavily prioritizes reducing misfit in those cells in the S matrix that 

are estimated with greater precision. This has the desirable property of potentially 

decreasing sampling variance of the Genomic SEM parameter estimates, which may boost 

power for SNP discovery and increase polygenic prediction. However, because the precision 

of cells in the S matrix is contingent upon the sample sizes for the contributing univariate 

GWASs, WLS may produce a solution that is dominated by the patterns of association 

involving the most well powered GWASs, and contain substantial local misfit in cells of S 
that are informed by lower powered GWASs. In other words, WLS relative to ML may more 

heavily prioritize minimizing sampling variance of the parameter estimates in the so-called 

variance bias tradeoff.48 We expect that this will only occur when the model is overidentified 

(i.e., df > 0), such that exact fit cannot be obtained, and that divergence in WLS and ML 

estimates will be most pronounced when there is lower sample overlap and the contributing 
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univariate GWASs differ substantially in power. ML estimation may be preferred when the 

goal is to most evenly weight the contribution of the univariate sample statistics.

Both WLS and ML fit functions will produce consistent estimates of the model parameters 

when the model is true.47 However, the “naïve” SEs and fit statistic produced in Stage 2 

estimation will be incorrect, because neither estimator uses the full VS matrix in estimation. 

Thus, robust corrections must be applied to produce consistent estimates of SEs and test 

statistics. The correct sampling covariance matrix of the Stage Two, Genomic SEM 

parameter estimates (i.e., Vθ) can be obtained using a sandwich correction:13,47

V
θ

= Δ′Γ−1Δ −1 Δ′Γ−1V
s

Γ−1Δ Δ′Γ−1Δ −1

where Δ = ∂LD(θ)
∂θ′ θ = θ

 is the matrix of model derivatives evaluated at the parameter 

estimates , Γ is the naïve Stage 2 weight matrix that takes its form depending on the 

estimation method used (WLS or ML), and VS is the sampling covariance matrix of S 
obtained using multivariable LDSC.

It may not always be possible to obtain the full sampling covariance matrix, VS. For 

example, for highly sensitive data only the matrix S and the SEs of its elements may be 

available (i.e., the diagonal of VS). However, we note that when there is low sample overlap 

across the GWASs for each phenotype, off-diagonal elements of the sampling covariance 

matrix are small and pragmatically ignorable. Moreover, in other contexts with complete 

sample overlap, SE inflation of the SEM parameters estimated using diagonally-weighted 

versions of WLS has been estimated to be less than 8%9 without robustness corrections, and 

nil with robustness corrections.47

Standardization and Scaling of Summary Statistics for Multivariate GWAS

Typically, GWAS summary statistics for quantitative phenotypes are not reported in terms of 

covariances, but are reported as ordinary least squared (OLS) unstandardized regression 

coefficients, with the phenotypes standardized prior to analyses (i.e., the coefficients are 

standardized with respect to the outcome, but not the predictor). In order to transform these 

partially standardized regression coefficient (bSNP,P) of a SNP effect on phenotype P to a 

covariance, we multiply by the variance of scores on the SNP. The variance (σSNP
2 ) of scores 

(0, 1, 2) of a biallelic autosomal SNP is estimated as 2pq, assuming Hardy-Weinberg-

Equilibrium, where p = the minor allele frequency (MAF) and q = 1-MAF, with the MAF 

typically obtained from a reference sample. As the latent genetic factors estimated in LDSC 

are scaled relative to unit-variance scaled phenotypes (by virtue of the SNP heritability 

estimates being placed on the diagonal of S), no further scaling is needed to transform this 

SNP-phenotype covariance into a SNP-genotype covariance.

When OLS regression coefficients and standard errors are provided from an analysis in 

which the phenotype has not been standardized prior to analyses, or only Z statistics or p-

values (for which Z statistics can be readily obtained) are provided, the partially 

standardized regression coefficients and their standard errors can be obtained as 
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Z =
bSNP, P
∗

SE
bSNP, P
∗

, bSNP, P = Z

NσSNP
2 , and SEbSNP, P

=
bSNP, P

Z , where bSNP, P
∗  is equal to the 

regression coefficient for the OLS GWAS of the unstandardized phenotype. These derived 

partially standardized coefficients are then transformed into covariances by multiplying by 

the variance of scores on the SNP, as per above.

When the GWAS summary statistics are reported for logistic regressions of liabilities for 

categorical outcomes (e.g. case/control status) on the SNP, the logistic regression 

coefficients can be transformed into covariances as above, by multiplying by the SNP 

variances. However, it is appropriate to further transform the coefficients and their SEs such 

that they are scaled relative to unit-variance scaled liability. This can be achieved by dividing 

by σSNP
2 × blogitSNP, P

2 + π2
3 , as a logistic regression model implies a residual variance of π2

3 . 

If GWAS summary statistics are reported for odds ratios (ORs), they can be transformed to 

logistic regression coefficients by taking their natural logarithm. Standard errors for the 

logistic regression coefficient are obtained as SEOR/OR. The derived logistic coefficients 

and their SEs should further be transformed such that they are scaled relative to unit-

variance scaled phenotypes, as per above. Note that when the outcomes are categorical, the 

liability scale heritabilities and genetic covariances from multivariable LDSC (and not what 

are referred to as the “observed scale” heritabilities and genetic covariances) should be used 

to populate the S matrix. This has the desirable property of both modeling the continuous 

scale of risk in the population and providing estimates that are independent of the observed 

prevalence of the categorical outcomes.

On occasion, summary statistics will be provided from OLS GWASs of categorical 

outcomes (e.g., case/control status). Such an analysis is sometimes referred to as a linear 

probability model, as it (incorrectly) assumes that the association between the predictor and 

the probability of being in the comparison (e.g. case) group relative to the reference (e.g. 

control) group is linear. Parameters from the linear probability model are dependent not only 

on the strength of the association between the SNP and the continuous underlying liability, 

but also on the MAF and the proportion of comparison group members (cases) in the 

sample. Thus, parameters from the linear probability model cannot be used directly in 

Genomic SEM. However, particularly in the case of complex traits, for which the effect sizes 

for individual SNPs are small, results from the linear probability model can be used to very 

closely approximate logistic regression coefficients and SEs that are amenable for use in 

Genomic SEM.49 This approximation can be obtained as Z =
bSNP, P

∗ ∗

SE
bSNP, P

∗ ∗
, 

blogitSNP, P
∗ = Z

ν(1 − ν)NσSNP
2 , and SEbSNP, P

=
blogitSNP, P

∗

Z , where bSNP, P
∗ ∗  is equal to the 

regression coefficient from the linear probability model, blogitSNP, P
∗  is the expected logistic 

regression coefficient that is derived from the linear probability model results, v is equal to 

the proportion of cases in the sample, and σSNP
2  is the variance of the SNP, computed from its 
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MAF obtained from a reference sample, as per above. To scale the derived logistic 

coefficient such that it is scaled relative to unit-variance scaled liability, the coefficient 

should be divided by σSNP
2 × (blogitSNP, P

∗ )2 + π2
3 . Lloyd-Jones et al. (2018)49 report that in a 

real data analysis of UKB data, the exponentiated regression coefficient (i.e., the odds ratio) 

obtained directly from a logistic regression-based GWAS and that derived from the linear 

probability model-based GWAS was nearly perfect (R2 > 98%, slope ≈ 1). We have verified 

this nearly perfect correspondence in our own simulations (Supplemental Figure 28).

Even within samples of the same ethnicity, there is likely to be discrepancies between the 

MAFs of a reference sample and the sample that GWAS summary statistics were generated 

from. However, some summary statistics may not include allele frequencies, and using the 

same reference panel for standardization across phenotypes has the desirable property of 

maintaining consistency across summary statistics. To examine the effect of this decision, 

the betas for 30,000 randomly selected SNPs for the mood phenotype from UKB were 

standardized using either sample or reference panel MAF. The correlation between the betas 

was .982, and a linear regression of betas standardized using reference panel MAF 

predicting standardization using sample MAF revealed near perfect correspondence (slope = 

1.044, intercept = −6.54e-6; Supplemental Figure 29).

Model Fit Statistics

Model χ2 is an index of exact fit of a SEM. It indexes whether the model-implied genetic 

covariance matrix, Σ(θ), differs from the empirical genetic covariance matrix, S. Model χ2 

can also be used as a relative fit index for comparing nested models. Conventional SEM 

approaches to indexing model χ2 are based on formulas that directly incorporate N. Because 

there is not an N that directly corresponds to the genetic covariance matrix that is modelled 

by Genomic SEM in the same way that N typically corresponds to an observed covariance 

matrix, we derived a formula for estimating model χ2 that does not require N, but instead 

incorporates the sampling covariance matrix of the model residuals. This is done in two 

steps. In Step 1, the proposed model (e.g., a common factor model) is estimated. In Step 2, 

all of the Step 1 estimates are fixed, and the residual covariances and residual variances of 

the indicators are freely estimated. Residual variances are estimated in Step 2 by estimating 

the variances of k residual factors defined by the indicators. This provides an estimate of the 

discrepancy between the model implied and observed covariance matrices, R = S – Σ(θ), 

along with the sampling covariance matrix (VR) of R. While the discrepancy between model 

implied and observed covariance matrices can be computed simply by deriving covariance 

expectations from the Step 1 model and subtracting the observed covariance matrix, such an 

approach would not provide the corresponding VR matrix necessary for the calculations 

below. The VR matrix is expected to be positive semidefinite and, consequently, have no 

negative eigenvalues. Therefore, the VR matrix has the following eigendecomposition:

V
R

= (P1P0) E 0
0 0

P1′

Po′
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where P1 is a matrix of principal components (eigenvectors) of VR, and E is a corresponding 

diagonal matrix consisting of non-zero eigenvalues. P0 reflects the null space of VR. 

Projecting Ri—a vector of residual covariances estimated from the Step 2 Model—onto P1 

and adjusting for corresponding eigenvalues, we have that:

E

−1
2 P1′RiN(0, Ir)

Therefore,

Ri′P1E−1P1′Ri ∼ χ2(r)

This equation produces a test statistic that is χ2 distributed with degrees of freedom (r) equal 

to the difference between the number of nonredundant elements (k*) in the empirical 

covariance matrix (S) and the number of freely estimated parameters in the proposed model.

The Comparative Fit Index (CFI) is a test of approximate model fit. CFI indexes the extent 

to which the proposed model fits better than a model that allows all phenotypes to be 

heritable, but assumes that they are genetically uncorrelated. The χ2 statistic can be used to 

calculate CFI by calculating a second χ2 statistic for a so-called independence model, i.e. a 

model that estimates genetic variances of all phenotypes but assumes all genetic covariances 

to be zero, such that ∑(θ) is diagonal. CFI is calculated using the formula below,50 with f = 

χ2 – degrees of freedom:

f (Independence Model) − f (Proposed Model)
f (Independence Model)

For the χ2 of the independence model, a model is estimated in Step 1 that includes only the 

variance of the indicators and no common factor. In Step 2, these variances are fixed and the 

covariances among the indicators and variances of k residual factors defined by the 

indicators are estimated and used to populate the same equation above used to calculate the 

proposed model χ2. CFI values theoretically range from 0 to 1, with higher values indicating 

good fit. CFI values of .90 and above are typically considered acceptable fit, and values of .

95 and above are typically considered good model fit.51 When the empirical covariance 

matrix contains a large number of cells that are very close to 0, CFI values may be low, even 

when such cells are approximated well by the model.

Akaike Information Criterion (AIC) is a relative fit index that balances fit with parsimony, 

and can be used to compare models regardless of whether they are nested. AIC is calculated 

as:

AIC = χ2 + 2 × fp,

where fp is the number of free parameters in the model.52 Lower AIC values are considered 

superior.
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Standardized Room Mean Square Residual (SRMR) is an index of approximate model fit 

that is calculated as the standardized root mean squared difference between the model-

implied and observed correlations in Σ(θ) and S, respectively.53 Higher SRMR values 

indicate a larger discrepancy between Σ(θ) and S. It is positively-biased, with larger bias 

resulting when the contributing univariate GWAS samples are lower powered. SRMR values 

below .10 indicate acceptable fit, values less than .05 indicate good fit, and a value of 0 

indicates perfect fit.54

We recommend that model fit indices be considered concurrently, as individual indices each 

have their own strengths and limitations. Model χ2 is an index of exact fit, with lower values 

indicating better fit. Model χ2 may oftentimes be statistically significant, indicating that the 

model-implied genetic covariance matrix significantly differs from the empirical 

(unrestricted) genetic covariance matrix, even when the model-implied covariance matrix 

very closely approximates the empirical genetic covariance matrix. Oftentimes, models that 

closely, albeit imperfectly approximate the empirical genetic covariance matrix may be 

scientifically and inferentially useful. We thus recommend considering CFI and SRMR 

indices of absolute fit, even when model χ2 is significant. We also recommend using indices 

of relative fit to compare competing models of the same data (i.e. different models fit to 

genetic covariance matrices derived from the exact same summary data for the exact same 

phenotypes). When models are nested, their respective χ2 values can be subtracted from one 

another to calculate a χ2 difference test, with df equal to the difference in df between the 

two models. This χ2 difference test, indexes the extent to which the less complex model (i.e. 

the model with more df) approximates the empirical genetic covariance matrix significantly 

worse than the more complex model (i.e. the model with fewer df). If the χ2 difference test 

is significant, the more complex model should be chosen. If the χ2 difference test is not 

significant, the less complex model should be chosen, as it is more parsimonious and 

approximates the empirical genetic covariance matrix no worse than the more complex 

model. Two models are nested when the set of possible model implied covariance matrices 

from one model is a subset of the set of possible model implied covariance matrices of the 

second model.55 Nesting can typically be confirmed if the less restrictive model can be 

derived from the more restrictive model by dropping or fixing parameters. Regardless of 

whether models are nested, they can be compared on CFI, SRMR, and AIC, so long as the 

same data are being modeled.

QSNP Test of Heterogeneity

As with the computation of model χ2 outlined above, QSNP is calculated using a two-step 

procedure. In Step 1, a common pathway model is fit in which both factor loadings, the SNP 

effect on the common factor(s), and the residual variances of the common and unique factors 

are freely estimated (with one factor loading fixed to unity for factor identification and 

scaling). No paths representing direct effects of the SNP on the genetic components of the 

individual phenotypes are estimated. In Step 2, a common plus independent pathways model 
is specified, in which the factor loadings and the SNP effect on the common factor are fixed 

to the values estimated in Step 1, and direct effects of the SNP on individual indicators and 

the residual variances of each indicator are freely estimated. Supplementary Figure 30 
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depicts this model, as applied to a single common factor model, with parameters that are 

fixed in Step 2 depicted in red and those that are freely estimated in Step 2 depicted in black.

Genomic SEM Simulations

Validation of Summary-Based Model Fit Statistics via Simulation.—A generating 

population with a common factor model defined by four, five, or six indicators was used to 

examine the null distribution of the newly derived χ2 test statistic using a set of 1,000 

simulations per model. These simulations did not include individual genotypes, and were 

simulated solely based on a generating factor structure. For the six indicator models the 

standardized factor loadings in the generating population were .42, .64, .22, .59, .19, and .64. 

The four and five indicator models specified the same factor loadings, excluding the last, or 

last two loadings, respectively. Results indicated that the two-step procedure described above 

produced a test statistic equivalent to the χ2 statistic calculated by lavaan from the raw data 

(Supplementary Figure 31 and Supplementary Table 20). For a χ2 distributed test-statistic, 

the mean of the null sampling distribution should match the df of the test. As expected, the 

distribution of the test-statistic conformed to a χ2 distribution with an average approaching 

the df (Supplementary Figure 32). Calculated CFI values were also highly consistent with 

those observed using the CFI statistic provided by lavaan when using raw data 

(Supplementary Figure 33, Supplementary Table 20). Calculated AIC values were not 

contrasted with those obtained using the lavaan package in R in the simulations below as the 

software uses a formula that includes a log-likelihood estimate contingent on the provided 

sample size.

Null Distribution of QSNP.—To verify that the null distribution for QSNP is χ2 

distributed, a set of simulations specified a generating population in which the direct effects 

of the SNP on the indicators were entirely mediated through the common factor. Each 

simulation included 1,000 datasets, with N = 100,000 completely overlapping participants 

per dataset. All simulated datasets were analyzed using both WLS and ML. We examined 

three models with F = 1 factor, and k = 4, 5, or 6 phenotypes. Supplementary Table 21 

presents descriptive statistics for QSNP. Using a genome-wide significance threshold, in all 

cases the false discovery rate for QSNP was 0, and the power to detect a SNP effect on the 

common factor was 1. Both WLS and ML estimation produced mean estimates of QSNP that 

were approximately equal to the df of the corresponding model. Supplementary Figure 34 

depicts the null sampling distributions of QSNP estimated using WLS or ML. Supplementary 

Figure 35 plots QSNP from these two estimation methods against χ2 distributions and 

against one another. These results indicate that both estimation methods produce results that 

are approximately χ2 distributed.

Simulation of Factor Structure.—In order to evaluate the ability of Genomic SEM to 

capture the genetic factor structure in the generating population, the GCTA package3 was 

used to generate 100 sets of 6 independent, 100% heritable phenotypes (“orthogonal 

genotypes”) to pair with genotypic data for 39,909 randomly selected, unrelated individuals 

of European descent from UKB data for the 1,209,498 SNPs present in HapMap3. The 

generating list of causal SNPs was set to 10,000 for all 600 genotypes, with the specific list 

of causal variants sampled with replacement from the 1,209,498 SNPs. One of the six 
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orthogonal genotypes per set was designated an index of the general genetic factor and the 

remaining five were designated indices of domain-specific genetic factors. All of these 

orthogonal genotypes were scaled to M=0, SD=1. Five new correlated genotypes were then 

constructed, each as the weighted linear combination of the general genetic factor and one 

domain-specific genetic factor. Weights for contribution of the general genetic factor were 

λFg,k =.70, .60, .50, .40, and .30, for correlated genotypes 1–5, respectively. Weights for the 

domain-specific factors were (1 − λFg, k
2 ). Phenotypes were then each constructed as the 

weighted linear combination of one of the correlated genotypes and domain-specific 

environmental factors (randomly sampled from a normal distribution with M=0, SD=1). 

Heritabilities for phenotypes 1-5 were set to hk
2=35%, 40%, 50%, 60%, and 70%, 

respectively, such that the weights for the genotypes were hk
2 and the weights for the 

environmental factors were (1 − hk
2). We chose these figures to stabilize the properties of the 

distributions across simulations at 100 replications with N~39K each. We expect that with 

lower SNP h2’s, the same patterns would hold, albeit at larger sample sizes. Each of the 500 

phenotypes (100 sets of 5 phenotypes) was then analyzed as a univariate GWAS in PLINK56 

to produce univariate GWAS summary statistics. Our multivariable LDSC function was then 

used to construct 100 sets of 5×5 genetic covariance matrices (S) and associated sampling 

covariance matrices (VS), and Genomic SEM was used to fit a one factor model to each set.

Using this procedure, we performed 100 runs of Genomic SEM on raw individual-level 

genotype data for which we simulated multivariate phenotypic data to conform to a single 

genetic factor model (a latent trait that partially causes 5 observed outcomes). Across the 

100 simulations, Genomic SEM estimates closely matched the parameters specified in the 

generating population (Supplementary Figure 36). Model SEs also closely matched the 

standard deviations of parameter estimates. We also compared fit statistics (CFI, AIC, and 

model χ2) for the correctly specified common factor model and two deliberately 

misspecified models: (i) a model in which all indicators were constrained to have the same 

factor loading, and (ii) a model for which the loading of the third indicator was set to 0. As 

expected, results indicated that the common factor model matching the generating 

population was favored ≥ 99% of the time across model fit indices (Supplementary Figure 

37).

Simulation of Partial Sample Overlap.—In order to examine the effect of sample 

overlap on estimates obtained from Genomic SEM, the GCTA package package3 was used 

to generate a 50% heritable, quantitative phenotype with 30,000 causal SNPs. The 

phenotype was paired with genetic data from 100,000 randomly selected, unrelated 

individuals of European descent from UKB data for 1,209,498 HapMap3 SNPs. Three sets 

of 60,000 participants each were created using this same phenotype, with 40,000 participants 

overlapping across all three identical phenotypes and 20,000 participants unique to each 

phenotype (i.e., 100,000 total participants). These three subsamples were individually 

analyzed in PLINK56 to produce univariate GWAS summary statistics. The multivariable 

LDSC function was then used to construct the genetic covariance and sampling covariance 

matrix using the three sets of summary statistics, and Genomic SEM was used to fit a one 
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factor model with the SNP predicting the common factor. Two key results were verified at 

this stage. First, we confirmed that the standardized factor loadings on the common factor 

were 1 for the identical phenotypes. Second, we verified that the bivariate ld-score intercepts 

that are used to account for sample overlap in the sampling covariance matrix were as 

expected. The equation for the ld-score bivariate intercept is:4 Nsρ/√(N1N2), where Ns = 

sample overlap, ρ = the phenotypic correlation, N1 = sample size of trait 1, and N2 = sample 

size of trait 2. In this simulation, we observed bivariate intercepts of .67, which is as 

expected given sample overlap of 40,000, a phenotypic correlation of 1, and sample sizes of 

60,000 (i.e., 40,000*1/√(60,000*60,000) = .67). Finally, estimates from this multivariate 

GWAS were compared to estimates from the univariate GWAS in PLINK for the full set of 

100,000 participants. If sample overlap is not appropriately accounted for in this example, 

such that data are incorrectly treated as deriving from 180,000 participants (as opposed to 

100,000 total participants), we would expect the Z statistics for the SNP effects from 

Genomic SEM to be upwardly biased relative to those from a univariate GWAS applied 

directly to the single phenotype in the 100,000 participants. We observed no such bias. A 

linear regression of Z statistics from Genomic SEM (from the three overlapping samples of 

60,000 participants each) predicting univariate GWAS Z statistics in the complete sample (of 

100,000 participants) revealed near perfect correspondence (unstandardized slope = 1.003, 

intercept = −.003).

MTAG Simulation.—In order to evaluate the relationship between estimates from MTAG 

and those from a Genomic SEM formulation of the MTAG model, we specified a bivariate 

system of heritable phenotypes, A and u. Phenotype A was constructed using the GCTA 

package3, and specified to be 60% heritable, and affected by a random selection 30,000 

HapMap3 SNPs. Phenotype u was constructed separately using the GCTA package, and also 

specified to be 60% heritable, and affected by a different random selection of 30,000 

HapMap3 SNPs. Both A and u were standardized (M=0, SD=1). Phenotype B was 

constructed from phenotypes A and u according to the equation B = .7A + .7u. This 

procedure resulted in 60% heritabilities for both traits A and B, with a genetic correlation 

of .7 between them. Sample sizes for phenotypes A and B were 25,000 each, with 10,000 

participants contributing data for both phenotypes A and B (i.e. 40% sample overlap), such 

that the analytic dataset was composed of 40,000 unique individuals in total. Both MTAG11 

and a Genomic SEM model specified to satisfy the same moment conditions as MTAG (see 

Supplementary Methods) were then each run with Trait A as the supporting phenotype used 

to boost power for target Trait B and estimates from MTAG and from Genomic SEM 

specified to satisfy the MTAG moment conditions were compared. Results indicated near 

perfect correspondence from a linear regression in which Z statistics from MTAG were used 

to predict those from a Genomic SEM specified to satisfy the MTAG moment conditions 

(Supplementary Fig. 20; unstandardized slope = .999, intercept = 2.65E-4).

Quality Control Procedures

LD-Score Regression.—For the p-factor, neuroticism, and anthropometric traits, quality 

control (QC) procedures for producing the S and VS matrix followed the defaults in LDSC. 

We recommend using these defaults for multivariable LDSC, including removing SNPs with 

an MAF < 1%, information scores < .9, SNPs from the MHC region, and filtering SNPs to 
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HapMap3. Quality control procedures for the multivariable regression example mirrored 

those used by Nieuwboer et al. (2016)23 for comparative purposes. More specifically, SNPs 

were excluded with MAFs < .05 as determined by the HapMap Consortium,57 and with 

information values less than 0.9 or greater than 1.1. SNPs were also filtered to HapMap3. 

The LD scores used for the analyses presented were estimated from 1000 Genomes Phase 3, 

but restricted to HapMap3 SNPs.

Multivariate GWAS.—Summary statistics are only restricted to HapMap3 SNPs for the 

estimation of the genetic covariance and sampling covariance matrix in LD-Score 

regression, whereas all SNPs passing QC filters are included for multivariate GWAS. To 

obtain summary statistics for multivariate GWAS, we recommend using QC procedures of 

removing SNPs with an MAF < .01 in the reference panel, and those SNPs with an INFO 

score < 0.6. MAFs were obtained for the current analyses using the 1000 Genomes Phase 3 

reference panel. Using these QC steps, 1,979,881 SNPs were present across schizophrenia, 

bipolar disorder, MDD, PTSD, and anxiety. For neuroticism, there were 7,265,104 SNPs that 

were present across all phenotypes. These QC procedures are the defaults for the processing 

function within the GenomicSEM package. The regression effects for the univariate 

indicators of the p-factor were standardized using the procedure for logistic coefficients 

outlined above. Regression effects for neuroticism indicators were converted from linear 

probability to logistic coefficients and then standardized with respect to the variance in the 

outcome.

Out-of-Sample Prediction

p-factor.—Genomic SEM analyses that were used to produce the summary statistics for 

construction of polygenic scores for out-of-sample prediction omit the PGHC MDD 2018 

GWAS and SCZ 2018 GWAS and replace them with the PGC MDD 201358 and PGC SCZ 

201459 GWAS to prevent overlap between discovery and target samples. This resulted in a 

Genomic SEM-based multivariate GWAS using 930,581 SNPs. Analyses used to construct a 

phenotypic p-factor for polygenic prediction in the UKB dataset were restricted to data on 

up to N=332,050 European participants. The Genomic SEM of the p-factor employed case-

control GWAS statistics to construct summary statistics for a general factor of liability for 

clinically-severe levels of psychopathology as the discovery phenotype. For out-of-sample 

prediction, we selected a set of psychiatric symptoms (rather than diagnoses) to construct 

liability for general and domain-specific factors of psychiatric symptomology across the 

subclinical-to-clinical ranges as the target phenotypes. From the UKB dataset, we chose 

symptoms falling within the following domains: psychosis, mania, depression, post-

traumatic stress, and anxiety. We fit a confirmatory factor model (diagram shown in 

Supplementary Fig. 29) to the phenotypic symptom endorsements, treating them as ordered 

categorical variables. Analyses were run in Mplus,60 with the target phenotypes—the p-

factor and each of the individual domains—specified as latent variables. PGS variables were 

specified to directly predict the latent phenotypes within the model (i.e., factor score 

estimates were not used). To construct PGSs, we removed from both the p-factor and 

univariate summary statistics the 5 SNPs that were identified as having genome-wide 

significant QSNP estimates for ML, along with SNPs that were in LD with these SNPs using 

an r2 threshold of 0.1 and 500-kb window. PGSs were constructed using PRSice,61 with LD 
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clumping set to r2 > 0.25 over 250kb sliding windows. PGSs for the p-factor were based on 

the WLS summary statistics produced using Genomic SEM. We ran PGS analyses using a p-

value threshold of 1.0 (i.e., we used all available SNPs apart from those removed due to 

QSNP analyses). In order to maintain comparability, PGSs for the univariate summary 

statistics were constructed based on the same SNPs with which the PGSs for the p-factor 

were constructed. In the confirmatory factor models, we included controls for age, sex, 

genotyping array, and 40 principal components of ancestry in conjunction with the PGS 

predictor.

Neuroticism.—The raw total on the 12-item neuroticism subtest of the Eysenck 

Personality Questionnaire-Revised62 (maximum score = 12) was used as the target 

phenotype for out-of-sample prediction. Both genetic and neuroticism target data was 

available on 19,876 European participants in the Generation Scotland cohort63. Neuroticism 

scores were residualized for age, sex, and 20 principal components of ancestry prior to 

examining out-of-sample prediction. PGSs were constructed using PRSice,61 with LD 

clumping set to r2 > 0.25 over 250kb sliding windows and using a p-value threshold of 1.0. 

PGSs for neuroticism were based on the WLS summary statistics produced using Genomic 

SEM. Regression analyses were run using the lmekin function within the coxme package in 

R with a random intercept to account for nesting of individuals within families.

Clumping and Biological Annotation

Lead SNPs for univariate indicators and the common factors were identified using the 

clumping algorithm in PLINK.56 We defined LD-independent SNPs using an r2 threshold of 

0.1 and a 500-kb window using the same 1000 Genomes Phase 3 reference panel used for 

obtaining MAF. For chromosomes 6 and 8 an additional pruning filter was used of 1Mb and 

r2 > 0.1 to account for long-range LD due to the MHC region and pericentric inversion, 

respectively. Increasing the pruning window further to 4Mb did not influence our findings on 

chromosome 6 or 8. The lead SNPs identified using PLINK were entered into DEPICT. 

Prioritized genes, enriched gene sets, and enriched tissues were identified using the standard 

false discovery rate of 5%.

Description of GenomicSEM Software

The Genomic SEM software package, GenomicSEM, is written as an R package and is 

available through GitHub at https://github.com/MichelNivard/GenomicSEM. GenomicSEM 

contains several functions, including procedures for QCing and standardizing summary 

statistics, a function for producing genetic covariance matrices (SLDSC) and their associated 

sampling covariance matrices (VSLDSC) using a multivariable extension of LD Score 

regression, functions for fitting Genomic Structural Equation Models to SLDSC and VSLDSC, 

and functions for adding SNP level data to the SLDSC and VSLDSC matrices (referred to as 

SFull and VSFull) that are used for implementing Genomic SEM for multivariate GWAS 

discovery. Functions include both pre-specified models (e.g., a single common factor model) 

and user-specified models. Output includes both unstandardized and standardized solutions, 

along with the fit indices described above. WLS estimation is the default in the 

GenomicSEM package. GenomicSEM uses the lavaan Structural Equation Modeling 

package64 as the primary workhorse for model specification and numerical optimization. We 
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also provide limited support for OpenMx.65 To run the multivariable LDSC function on five 

phenotypes takes ~15 minutes, a step in the analyses that only needs to be performed once. 

For models of multivariate genetic architecture that do not incorporate individual SNP 

effects, the typical run time observed for 3–15 traits is <1 second on a standard personal 

computer. Using parallel processing implemented in the GenomicSEM package on a 4-

core/8-thread laptop, a multivariate Genomic SEM GWAS with five indicators and ~1 

million SNPs took ~8 hours. With the time needed to run the models will increase with 

increasing model complexity, and with increasing numbers of variables or SNPs. In these 

cases, computing time can be greatly reduced by using a computing cluster to distribute SNP 

models across nodes/cores.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Genomic SEM solutions for p-factor and neuroticism factor models with SNP effect.
Standardized results from using Genomic SEM (with WLS estimation) to construct a 

genetically defined p-factor of psychopathology (panel a) and a genetic neuroticism factor 

(panel b) with a lead independent SNP predicting the factors. SEs are shown in parentheses. 

For a model that was standardized with respect to the outcomes only, the effect of the SNP 

was −.093 (SE = .017; SNP variance = .252) for the p-factor, and for neuroticism the SNP 

effect was −.042 (SE = .007, SNP variance = .432); this can be interpreted as the expected 

standard deviation unit difference in the latent factor per effect allele. SCZ = schizophrenia; 

BIP = bipolar disorder; DEP = major depressive disorder; PTSD = post-traumatic stress 

disorder; ANX = anxiety. Irr = irritability; Feel = sensitivity/hurt feelings; fed-up = fed-up 

feelings; emb = worry too long after embarrassment.
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Figure 2. Manhattan plots of unique, independent hits from Genomic SEM.
Genomic SEM (with WLS estimation) was used to conduct multivariate GWASs of the p-
factor (panels a and c) and neuroticism (panels b and d). Manhattan plots are shown for SNP 

effects (top panels) and for QSNP (bottom panels). The gray dashed line marks the threshold 

for genome-wide significance (p < 5 × 10−8). In all four panels, black triangles denote 

independent hits for SNP effects from the GWAS of the general factor that were not in LD 

with independent hits for the univariate GWAS or hits for QSNP. In all four panels, purple 

diamonds denote independent hits for the SNP effects from univariate GWASs that were not 

in LD with independent hits from the GWAS of the general factor. Grey stars denote 

independent hits for QSNP.
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Figure 3. Out-of-sample prediction using Genomic SEM based and univariate based polygenic 
scores for psychiatric traits.
Polygenic scores (PGSs) were constructed using the same set of SNPs for all predictors. R2 

(%) on the y-axis indicates the percentage of variance (possible range: 0-100) explained in 

the outcome unique of covariates. The summary statistics for Genomic SEM were estimated 

using WLS. The Genomic SEM-based PGS was derived from a model estimating SNP 

effects on a common “p”-factor, constructed from SCZ, BIP, MDD, PTSD, and ANX (as in 

Fig. 1a.). In order to prevent bias, the Genomic SEM summary statistics were produced 

using SCZ and MDD GWAS summary statistics that did not include UKB participants. Error 

bars indicate 95% confidence intervals estimated using the delta method. Phenotypes were 

constructed for European participants in the UKB for five symptom domains and for a 

general p factor spanning all five symptom domains.
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Table 1.

Summary of multivariate (Genomic SEM) and univariate GWAS results.

Lead SNPs
(p < 5 × 10−8)

QSNP hits Unique
Hits

No. of
gene sets

No.
prioritized

genes

No.
tissues

and cells

Mean
χ2

P-Factor

Genomic SEM (WLS) 128 1 (1) 27 71 37 24 1.88

Schizophrenia 127 - 34 (0) 2 25 21 1.82

Bipolar 4 - 4 (0) 0 0 0 1.15

MDD 5 - 5 (0) 0 0 0 1.31

PTSD 0 - 0 (0) 0 0 0 1.01

Anxiety 1 - 1 (0) 0 0 0 1.03

Neuroticism

Genomic SEM (WLS) 118 69 (5) 38 1 19 20 1.64

Mood 43 - 19 (5) 0 0 15 1.37

Misery 31 - 6 (4) 0 0 0 1.32

Irritability 36 - 17 (4) 0 0 0 1.37

Hurt Feelings 24 - 11 (0) 0 0 0 1.33

Fed-up 38 - 21 (6) 0 0 0 1.36

Nervous 41 - 25 (12) 0 0 0 1.36

Worry 56 - 26 (6) 0 13 0 1.46

Tense 19 - 10 (3) 0 0 0 1.32

Embarrass 17 - 6 (2) 0 0 0 1.33

Nerves 12 - 7 (3) 0 0 0 1.26

Lonely 6 - 4 (3) 0 0 0 1.19

Guilt 21 - 8 (1) 0 0 0 1.28

Note. In parentheses for QSNP reports how many QSNP hits were in LD with hits identified as significant for the common factor. Unique hits for 

the common factor refers to lead SNPs that were not in LD with hits for the individual indicators. Unique hits for the individual indicators refers to 
hits for the respective indicator that were not in LD with hits for the common factor. Unique hits for the common factor excluded hits in LD with 
QSNP hits. For unique hits for indicators, values in parentheses indicate whether any of these hits were identified as significant for QSNP. For 

unique hits for the common factor, hits were excluded that were in LD with previously reported indicator hits that were removed due to missing 
values across the other phenotypes. The single QSNP hit for WLS estimation of the p-factor was significant for both the common factor and 

schizophrenia. For the common factor and the indicators, independent hits were defined using a pruning window of 500Kb and r2 > 0.1. For 

chromosomes 6 and 8, an additional pruning filter was used of 1Mb and r2 > 0.1 to account for long-range LD due to the MHC region and 
pericentric inversion, respectively. For univariate statistics, we used only the SNPs present across all indicators in order to facilitate a direct 
comparison to Genomic SEM results.
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