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SUMMARY

Background: Cutaneous viral infections and immune suppression are risk factors for some 

forms of non-melanoma skin cancer (NMSC), however, their interrelationship is poorly 

understood.

Objective: To examine cross-sectional associations between cutaneous viral infections and 

circulating forkhead-box P3 (FOXP3) expressing T regulatory (Treg) cells, suppressive cells that 

dampen effective anti-tumour immunity.

Methods: Blood, eyebrow hair (EBH) and skin swab samples (SSW) were collected from 352 

skin screening patients 60 years and older without prevalent skin cancer participating in an 

ongoing prospective cohort study of cutaneous viral infections and skin cancer. DNA 

corresponding to 98 cutaneous human papillomavirus (HPV) types and five polyomaviruses 

(HPyV) was assessed in EBH and SSW. Distinct classes of circulating Treg cell subpopulations 

were defined by flow cytometry including cutaneous lymphocyte antigen (CLA) and CCR4high 

Treg cells, both previously associated with cutaneous diseases. Age- and gender-adjusted 
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associations between circulating T-cell populations and infection were estimated using logistic 

regression.

Results: Total Treg cell proportion in peripheral blood was not associated with beta HPV or 

HPyV infection. However, the proportion of circulating CLA+ Treg cells was inversely associated 

with gamma HPV EB infection (OR= 0.54, 95% CI=0.35–0.84). Interestingly, circulating Treg 

cells expressing markers indicative of antigen activation (CD27−CD45RA−FOXP3+CD4+) were 

also inversely associated with gamma HPV infection in SS (OR=0.55, 95% CI=0.30–0.99) and EB 

(OR=0.56, 95% CI=0.36–0.86).

Conclusions: Inverse associations between circulating Treg cells and gamma HPV infection 

suggest that localised viral infection may promote immunosuppressive cell migration into skin.

INTRODUCTION

Cutaneous human papillomavirus (HPV) and human polyomavirus (HPyV) infections are 

highly prevalent in the general population1, 2, and have been linked to increased risks of 

cutaneous squamous cell carcinoma (cuSCC) and Merkel cell carcinoma (MCC), 

respectively3–6. In a previous case-control study conducted in immunocompetent 

individuals, we observed keratinocyte carcinomas (KC), including cuSCC, to be positively 

associated with cutaneous HPV or HPyV infection measured in eyebrow hairs (EBH)7, as 

well as by serology4, 8–10. While these findings are compelling, it is unclear whether these 

infections are playing a role in carcinogenesis, either directly or indirectly, or whether they 

are simply surrogate markers for underlying immune dysregulation associated with cuSCC.

Immunosuppression is an established risk factor for cuSCC. Organ transplant recipients have 

an over 100-fold increased risk of cuSCC 11–13 and a 103-fold increased risk of MCC 

compared to the general population14. While the pathogenesis of cuSCC is multifactorial15, 

incidence among transplant recipients increases with the magnitude and duration of 

immunosuppressive therapies12, 16, 17. While lifelong immunosuppressive treatments to 

prevent organ transplantation rejection entails significant suppression of the immune system, 

evidence suggests that lower levels of immunosuppression may also influence cuSCC risk. 

For example, long-term use of oral glucocorticoids was associated with cuSCC in a 

population of otherwise “immunocompetent” individuals18. Therefore, biomarkers of 

immune status should be incorporated into epidemiologic studies of cutaneous viral 

infections to better understand this interplay in relation to the development of cuSCC.

Treg cells, a subset of immunosuppressive FOXP3+CD4+ T lymphocytes19, are key 

mediators of immune homeostasis in healthy individuals, including suppression of immune 

response against self-antigens20, 21. Increased prevalence of circulating Treg cells has been 

observed in patients with various cancers compared to controls22–25. Higher proportions of 

Treg cells have been observed in cuSCC tumours compared to normal skin26, 27 and 

peripheral blood27, suggesting potential underlying immune dysregulation in cuSCC cases. 

Similarly, higher frequencies of circulating Treg cells have been observed in cervical cancer 

patients compared to controls28, with circulating Treg cells shown to suppress immune 

response against HPV 16 in cervical cancer patients, in vitro28. By analogy, it is plausible 

that our previously observed associations between cutaneous HPV infections and KC4, 7, 8 
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may be mediated by Treg cell-related suppression of immune response against these 

infections, KC or both. Thus, inter-individual variation in Treg cell-mediated immune 

surveillance against cutaneous HPV or HPyV infections may affect one’s ability to suppress 

anti-viral immunity and promote viral replication and proliferation. If these infections, in 

turn, promote skin carcinogenesis by inhibiting apoptosis of cells with ultraviolet radiation-

induced DNA damage29, 30, then individuals with an immunosuppressive profile, marked by 

higher numbers of circulating Treg cells or display a phenotype associated with more 

suppressive behaviour or homing to skin, may be at a greater risk of infection with 

cutaneous HPV or HPyV, and ultimately, virus-associated KC.

To examine the complex interplay of cutaneous viral infections, immune response and 

subsequent KC risk, we are conducting an ongoing prospective cohort study of viruses and 

skin cancer, the VIRUSCAN Study, among patients undergoing skin cancer screening 

exams. Using cross-sectional data from patients enrolled in the first year of the VIRUSCAN 

Study, we examined the association between circulating Treg cell phenotypes and infection 

with beta and gamma HPV and HPyV in EBH and skin swabs (SSW). We hypothesized that 

circulating Treg cells would be associated with cutaneous HPV and HPyV infections.

MATERIALS AND METHODS

Study population:

The VIRUSCAN Study is an ongoing, prospective cohort study being conducted at Moffitt 

Cancer Center and the University of South Florida (USF), in Tampa, Florida, to examine the 

association between cutaneous viral infections and KC. Patients attending the USF 

Dermatology Clinic for routine skin cancer screening exams were eligible for the study if 

they were ages 60 years or older, and had not had both a cuSCC and a basal cell carcinoma 

prior to or at the time of study enrolment. At study enrolment, patients underwent a full 

body skin cancer screening exam as part of their clinical visit, and any suspicious skin 

lesions detected were biopsied as part of routine clinical care. Patients completed an 

electronic questionnaire on skin cancer risk factors, and several biospecimens were 

collected, as described below.

A total of 917 patients were approached to participate in year 1 of the study (July 15, 2014 – 

July 14, 2015), of whom 448 (49%) were enrolled. Sex and age did not significantly differ 

between participants and non-participants. Peripheral blood mononuclear cells (PBMC) 

samples were cryopreserved at baseline for 390 patients, of which 378 had sufficient 

numbers of viable cells for flow cytometry. Based on pathology results of baseline biopsies, 

23 patients were diagnosed with KC and excluded from this analysis. Of the remaining 

patients, baseline SSW and EBH were available for 323 and 344 patients, respectively, and 

were included in the present analysis. All study methods were approved by the USF 

Institutional Review Board, and all patients provided written informed consent.

Cell isolation

PBMCs were isolated by Ficoll-Hypaque gradient centrifugation using 10–20 ml of 

Lymphocyte Separation Media (Ficoll) according to manufacturer’s recommended methods 
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(Amersham Pharmacia Biotech, Piscataway, NJ). Two cryovials of PBMCs were viably 

frozen using freezing medium (10% DMSO, 90% FBS), step-frozen in −80 C freezer and 

transferred to LN boxes for storage. Two additional vials of PMBCs were centrifuged to 

create cell pellets and snap frozen for future DNA extraction.

Eyebrow hair and skin swab collection:

3–4 EBH were plucked from each brow using disposable tweezers. EBH with attached 

follicles were snap frozen in liquid nitrogen and stored at −80°C until further processing. An 

area of the top of the sun exposed forearm, approximately 5×5 cm, was sprayed with 0.9% 

saline solution. A cotton-tipped Dacron swab (Digene, Gaithersburg, MD, USA) was then 

rubbed back and forth 10 times to collect exfoliated skin cells. Individual swabs were placed 

in a separate vial, preserved in Digene Standard Transport Medium, and stored at 4°C until 

further processing. EBH and SSW were subsequently shipped to the International Agency 

for Research on Cancer (IARC) for viral DNA extraction and genotyping.

Characterisation of Treg cells:

Viably frozen PBMCs were used to assess proportions of circulating Treg cells from 

peripheral blood samples using antibodies shown in Figure S1 (BD Biosciences; Table S1) 

and staining methods described previously31. Proportions of the following circulating T-cells 

were derived as follows: 1) CD4+ and CD8+ T-cells (CD3+CD4+ and CD3+CD4− among 

total T-cells), 2) total Treg cells and non-Treg CD4+ T-cells (CD3+CD4+CD25+ FOXP3+ 

and CD3+CD4+CD25−FOXP3−, respectively, among CD3+CD4+ T-cells), 3) Treg cells with 

naïve and post-activation markers including CD45RA+/CD27+ naïve, CD45RA−/CD27+ 

long-term memory, CD45RA+/CD27− exhausted, and CD45RA−/CD27− activated “effector” 

Tregs cells, as defined previously31, 32, 4) “skin homing” CLA+ Treg cells (% of CLA+ cells 

among Treg cells) and 5) “skin homing” CCR4high Treg cells (% of CCR4+ cells among 

Treg cells) (Fig. S1; see Supporting Information).

Viral DNA genotyping:

DNA extraction was performed using the Qiagen BioRobot EZ1 with the EZ1 DNA tissue 

kit according to the manufacturer’s instructions (Qiagen, Hilden, Germany). Briefly, the 

swabs were incubated overnight in proteinase K and buffer G2 (Qiagen, Hilden, Germany) at 

56°C. An EZ1 DNA Forensic protocol was used to extract the DNA from EBH per the 

manufacturer’s instructions. Viral DNA was detected by bead-based multiplex PCR-

Luminex assay, as described in detail previously33, using approximately 100 ng of total 

DNA and specific primers amplifying parts of the E7 and large T-antigen genes for HPV and 

polyomaviruses, respectively. Two primers for the amplification of β-globin primers were 

used as a positive control for assessment of template DNA quality. PCRs were performed 

with the QIAGEN multiplex PCR kit according to the instructions of the manufacturer. This 

multiplex PCR protocol is highly sensitive33 and reproducible34, being able to detect only 10 

copies of the viral genome. Using four multiplex-assays (one beta HPV panel, two gamma 

HPV panels and a polyomavirus panel), DNA corresponding to the following viruses was 

measured from SSW and EBH samples: 1) HPV types in genus beta (n=46): species 1 (5, 8, 

12, 14, 19, 20, 21, 24, 25, 36, 47, 93, 98, 99,105, 118, 124, 143, 152), species 2 (9, 15, 17, 

22, 23, 37, 38, 80, 100, 104, 107, 110, 111, 113, 120, 122, 145, 151, 159, 174), species 3 
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(49, 75, 76, 115), species 4 (92) and species 5 (96, 150); 2) HPV types in genus gamma 

(n=52): using panel 1 (4, 48, 50, 60, 65, 88, 95, 101, 103, 108, 109, 112, 116, 119, 121, 123, 

126, 127, 128, 129, 130, 131, 132, 133, 134, 148, 149, 56, SD2) and panel 2 (161, 162, 163, 

164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 175, 178, 179, 180, 184, 197, 199, 200, 

201 and 202); 3) cutaneous polyomaviruses: HPyV6, HPyV7, HPyV9, Merkel cell 

polyomavirus and trichodysplasia spinulosa-associated polyomavirus. Viral DNA results 

from a given SSW or EBH sample were only included in the analysis if the sample was 

positive for the human β-globin gene on at least two of the four genotyping panels.

Statistical analyses:

Wilcoxon rank-sum test and Spearman’s correlation coefficient were used to test for 

differences in Tregs by gender and age, respectively. Correlations between circulating Treg 

cell phenotypes were described using Spearman’s correlation coefficient. Circulating Treg 

cell phenotypes were dichotomised using the median proportion of phenotype-specific Treg 

cells. Genus- (or species-) level HPV infection in SSW and EBH was defined as presence of 

at least one type of HPV corresponding to a given genus or species. The associations 

between each of the circulating Treg cell phenotypes with HPV and HPyV infection were 

estimated with odds ratios (ORs) and 95% confidence interval (CIs), calculated using 

logistic regression, adjusted for age and gender. Correlations between circulating Treg cell 

phenotypes and number of HPV types detected in SSW and EBH were examined using 

Spearman’s correlation coefficients. False discovery rate corrected (FDR) p-values were 

calculated and two sided p-values <0.05 were considered significant. All analyses were 

performed using R, version 3.3.2 (R Foundation for Statistical Computing, Vienna Austria).

RESULTS

As described in Table 1, females comprised 54% of the study population, the mean age was 

69 years, and a majority of patients were White (97%) and non-Hispanic (94%). Total 

circulating Treg cells were not associated with age or gender (Table 2). However, circulating 

CD27−/CD45RA−, CLA+, and CCR4hi Treg cell populations were significantly greater in 

males than females and positively correlated with age (Table 2).

The total circulating Treg cells was not associated with any beta HPV, any gamma HPV or 

any HPyV in SSW (Table 3a) or EBH (Table 3b). However, higher proportions of circulating 

activated ‘effector’ CD27−/CD45RA− Treg cells, were significantly and inversely associated 

with any gamma HPV infection in both SSW (Table 3a, OR=0.55, 95% CI=0.30–0.99) and 

EBH (Table 3b, OR=0.56, 95% CI=0.36–0.86), the latter of which remained statistically 

significant after FDR adjustment (p=0.036). Interestingly, circulating skin homing CLA+ 

Treg cells were also significantly inversely associated with any gamma HPV infection in 

EBH (Table 3b, OR=0.54, 95% CI=0.35–0.84; FDR adjusted p-value = 0.036. None of the 

other circulating Treg cell phenotypes was significantly associated with HPV/HPyV 

infections in either SSW or EBH. No significant associations with circulating effector Treg 

cells were observed for specific beta HPV species in SSW or EBH (Table S2a and S2b, 

respectively).
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Circulating total Treg cells were not correlated with circulating activated effector Treg cells 

or skin homing Treg cells (Table 4). However, significant, positive correlations were 

observed between circulating activated effector Treg cells and the circulating skin homing 

CLA+ and CCR4hi Treg cells (Table 4). A statistically significant, inverse correlation was 

observed between proportion of circulating activated effector CD27−/CD45RA− Treg cells 

and number of gamma HPV types detected in both SSW (Fig. 1, median=2, range 0–19) and 

EBH (median=0, range =0–10), with the number of gamma HPV types decreasing with 

increasing proportion of circulating CD27−/CD45RA− Treg cells. An inverse correlation was 

also observed between proportion of circulating CLA+ Treg cells and number of gamma 

HPV types in EBH (p=0.01). Of interest, the numbers of beta HPV types were not correlated 

with proportion of circulating CD27−/CD45RA− or circulating CLA+ Treg cells (data not 

shown).

DISCUSSION

Total circulating Treg cells from peripheral blood were not associated with cutaneous HPV 

or HPyV infections, while higher proportions of circulating activated effector CD27−/

CD45RA− Treg cells were significantly inversely associated with the presence of gamma 

HPV infection in both SSW and EBH, the latter of which remained significant after 

correction for multiple comparisons. Circulating skin homing CLA+ Treg cells were also 

significantly inversely associated with gamma HPV infection in EBH, and both CD27−/

CD45RA− and CLA+ Treg cells were inversely associated with the number of gamma HPV 

types with which an individual was infected, evidence of a dose-response relationship.

Treg cells play a key role in maintaining balanced host immunity against foreign pathogens 

while limiting tissue damage caused by excessive immune response35–37. These cells are 

generated through thymic selection (ie, natural Treg cells) or through phenotypic conversion 

from effector cells in the peripheral lymphoid compartments (ie, inducible Treg cells)36. 

Germaine to this study, Treg cell subpopulations with functional relevance to the skin were 

delineated based on unique expression of surface markers38. As reported previously, 

increased circulating CLA+ Treg cells in patients undergoing stem cell transplant were 

inversely associated with cutaneous graft-versus-host disease, suggesting a role of CLA+ 

Tregs in prevention of skin-tissue specific pathology37. Moreover, CCR4 is not expressed on 

thymic Treg cells but is exceptionally high among FOXP3+ T-cells in the skin39.

Interestingly, mouse studies have demonstrated the exodus of activated Treg cells from 

peripheral circulation into tissues, especially the skin, whereby they can induce local 

immune homeostasis as tissue resident cells40. This recirculation function has been reported 

during chronic inflammation and in viral infections41. Treg cells, similar to conventional T-

cells, modify their CD45RA and CD27 cell surface marker expression based on their history 

or repeated antigen exposure, such as in the instances described above32. This phenotype 

conversion is similar to that observed in conventional T-cell memory cells.

It should be noted that the role of Treg cells in viral infections is complex. For some viral 

infections like hepatitis C virus (HCV), higher Treg cells in hepatic tissue42 and peripheral 

blood43 have been found to correlate with chronic HCV infection and HCV associated skin 

Hampras et al. Page 6

Br J Dermatol. Author manuscript; available in PMC 2020 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



lesions, respectively. In contrast, lower circulating Treg cells have been observed in patients 

with progressive HIV disease compared to HIV-negative controls and HIV-positive patients 

with controlled infection35. Given the high prevalence of HPV/HPyV in the asymptomatic 

general population, these infections may not trigger strong immune response involving 

circulating Treg cells, which may explain a lack of positive association in our study. 

Alternatively, HPV tissue infection may lead to activation and recruitment of circulating 

Treg cells to the relevant sites resulting in a corresponding decrease in peripheral circulation. 

Peripheral blood Treg cells are decreased in HIV infected individuals, perhaps as a result of 

recruitment of Treg cells to sites of infection with HIV35. Finally, a chance finding in our 

study cannot be ruled out. However, our observation of similar inverse association between 

two distinct subpopulations of circulating Treg cells and gamma HPV measured by two 

different tissue locations (SSW and EBH), overall and with number of HPV types, warrants 

further research44.

To our knowledge, this study is the first to report associations between subpopulations of 

circulating Treg cells and cutaneous viral infections. There is a dearth of epidemiologic data 

on the associations between circulating Treg cells and both KC and cutaneous HPV, 

particularly among immunocompetent individuals. Thus, our study has the unique strength 

of examining circulating Treg cells in preserved blood samples available from the parent 

VIRUSCAN prospective study. The parent study will facilitate further examination of 

circulating Treg cells measured at baseline with both incident HPV infections and KC 

diagnosed throughout the study follow-up period. Another study strength is the large panel 

of HPV and HPyV types examined using two different biomarkers of viral infection. Of 

note, EBH follicles are enriched for slow-cycling, epithelial stem cells, whereas SSW of the 

skin’s surface represent a mixture of sloughed stem cells and surface epithelial cells. 

Therefore, while type-specific infections are correlated across the two sites44, the relative 

recency of infection and rate of viral replication may vary across sites. Finally, several 

different subpopulations of circulating Treg cells were investigated, including activated and 

skin-homing Treg cells, which may be more relevant to skin-associated viral infections. 

Thus, the present study provides a comprehensive examination of the role of circulating Treg 

cells in cutaneous viral infections.

Some limitations of the study are noted. A number of host and environmental factors, 

including age, medical conditions and ultraviolet radiation, have been associated with 

circulating Treg cells31, 45. While all analyses were adjusted for age and gender, it is 

possible that circulating activated effector Treg cells are a surrogate marker for an 

underlying condition or exposures that impact gamma HPV infection. Future experimental 

studies should investigate the biological underpinning of the observed associations between 

circulating effector Treg cells and gamma HPV infection. Due to the cross-sectional design 

of this study, temporality of association between circulating Treg cells and infection cannot 

be established. However, examination of the associations between circulating Treg cells 

measured at baseline and subsequent incident cutaneous infections, as well as incident KC, 

is planned once follow-up is completed for the ongoing, prospective VIRUSCAN Study. 

While the results are generalizable only to individuals over the age of 60, this is the relevant 

age range for people at increased risk for KC.
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In conclusion, in this large cohort of skin-cancer free individuals, circulating CD27−/

CD45RA− and CLA+ Treg cell subpopulations were significantly and inversely associated 

with cutaneous gamma HPV infection in both SSW and EBH. Examination of the 

association between baseline Treg cells and incident KC, as well as the association between 

baseline HPV infection and incident KC, within the context of the ongoing VIRUSCAN 

study, will provide further insight into the complex interplay between host immune response, 

cutaneous HPV infection and KC.
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What’s already known about this topic?

• Cutaneous viral infections such as the human papillomavirus (HPV) and 

polyomavirus (HPyV) may play a role in the development of some non-

melanoma skin cancer types, including cutaneous squamous cell carcinoma 

(cuSCC) and Merkel cell carcinoma (MCC).

• Immunosuppression is an established risk factor for cuSCC and MCC.

• The relationship between cutaneous viral infections, immunosuppression and 

the development of cuSCC and MCC is not well understood.
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What does this study add?

• Higher proportions of circulating antigen activated CD27-/CD45RA- Treg 

cells were inversely associated with gamma HPV infection in skin swabs and 

eyebrow hairs, whereas no associations were observed for beta HPV or 

polyomavirus infections.

• Circulating skin homing CLA+ Treg cells were inversely associated with 

gamma HPV eyebrow hair infection.

• Gamma HPV infections may recruit immunosuppressive lymphocytes into the 

skin, perhaps contributing to cutaneous malignancy development.
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Figure1. 
Flow cytometry gating strategy for T regulatory (T reg) cell populations. Cells were first 

gated on CD3 expression and divided into CD4+ and CD4- populations. The CD4- 

population was assumed to be CD8+ T cells. CD4+ populations were further determined to 

be Foxp3+CD25+ (regulatory T cells, Treg cells) or Foxp3-CD25- (Th CD4). CD8, ThCD4 

and Treg cell populations were analysed for CD45RA and CD27 memory populations as 

well as CLA, PD-1 and CCR4 expression.
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Table 1.

Baseline characteristics of 352 skin cancer screening patients enrolled in the first year of the Viruses in Skin 

Cancer (VIRUSCAN) Study, Tampa FL, July 2014-July 2015 who screened negative for skin cancer at the 

time of study enrollment

Patient Characteristics n %

Age in years

   Mean (standard deviation) 69.37 6.2

Gender

   Female 189 53.7

   Male 163 46.3

Race

   White 342 97.2

   Others 10 2.8

Ethnicity

    Non-Hispanic 331 94.0

    Hispanic or Latino 19 5.4

    Unknown 2 0.6

Ever taken oral steroids for >30 days

    No 214 61.9

    Yes 132 38.2

Ever used topical cortisone or steroid cream

    No 170 49.3

    Yes 175 50.7

Ever had an organ transplant

   No 344 99.4

   Yes 2 0.6

Ever smoked 100 cigarettes

   No 176 50.7

   Yes 171 49.3

History of keratinocyte carcinoma at study enrolment

   No known keratinocyte carcinoma 222 63.1

   Squamous cell carcinoma only 58 16.5

   Basal cell carcinoma only 59 16.8

   Single non-melanoma skin cancer of unspecified type 13 3.7
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Table 4.

Spearman rank correlation matrix for baseline circulating T regulatory (Treg) cell phenotypes among 352 skin 

cancer screening patients enrolled in the first year of the Viruses in Skin Cancer (VIRUSCAN) Study who 

screened negative for skin cancer at study enrollment

Circulating CD27−/CD45RA− Treg CLA+ Treg CCR4hi Treg

T Regulatory Cells r p-value r p-value r p-value

Total Treg cells -0.09 0.09 0.03 0.55 0.09 0.10

CD27−/CD45RA− Treg cells 0.32 <0.01 0.38 <0.01

CLA+ Treg cells 0.64 <0.01
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