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Abstract

Rationality principles such as optimal feedback control and Bayesian inference underpin a 

probabilistic framework that has accounted for a range of empirical phenomena in biological 

sensorimotor control. To facilitate the optimization of flexible and robust behaviors consistent with 

these theories, the ability to construct internal models of the motor system and environmental 

dynamics can be crucial. In the context of this theoretic formalism, we review the computational 

roles played by such internal models and the neural and behavioral evidence for their 

implementation in the brain.

1 Introduction

Over the last half century, the hypothesis that the nervous system constructs predictive 

models of the physical world to guide behavior has become a major focus in neuroscience 

[1, 2, 3]. In his 1943 book, Craik was perhaps the first to suggest that organisms maintain 

internal representations of the external world and provide a rationale for their use [4]:

If the organism carries a “small-scale model” of external reality and of its own 

possible actions within its head, it is able to try out various alternatives, conclude 

which is the best of them, react to future situations before they arise, use the 

knowledge of past events in dealing with the present and future, and in every way 

to react in a much fuller, safer, and more competent manner to the emergencies that 

face it.

K. Craik, p61, The Nature of Explanation.

In this cognitive view of prospective simulation, an internal model allows an organism to 

contemplate the consequences of actions from its current state without actually committing 

itself to those actions. Since Craik’s initial proposal, internal models have become widely 
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implicated in various brain sub-systems with a diverse range of applications in biological 

control. Beyond facilitating the rapid and flexible modification of control policies in the face 

of changes in the environment, internal models provide an extraordinary range of advantages 

to a control system, from increasing the robustness of feedback corrections to distinguishing 

between self- and externally-generated sensory input. However, there tends to be confusion 

as to what exactly constitutes an internal model. This confusion has likely arisen because the 

internal model hypothesis has independently emerged in distinct areas of neuroscientific 

research prompted by disparate computational motivations. Furthermore, there are intricate 

interactions between various types of internal models maintained by the brain. Here, we aim 

to provide a unifying account of biological internal models, review their adaptive benefits, 

and evaluate the empirical support for their use in the brain.

In order to accomplish this, we describe various conceptions of internal models within a 

common computational formalism based on the principle of rationality. This principle posits 

that an agent will endeavor to act in the most appropriate manner according to its objectives 

and the “situational logic” of its environment [5, 6] and can be formally applied to any 

control task and dataset. It provides a parsimonious framework in which to study the nervous 

system and the mechanisms by which solutions to sensorimotor tasks are generated. In 

particular, probabilistic inference [7] and optimal feedback control [8] together provide 

parsimonious computational accounts for many sensory and motor processes in biological 

control. In Section 2, we describe how these theories characterize optimal perception and 

action across a wide variety of scenarios. Recently, technical work has integrated these two 

theories into a common probabilistic framework by developing and exploiting a deeper 

theoretic equivalence [9, 10]. This will provide the mathematical architecture necessary to 

integrate putative internal modeling mechanisms across a range of research areas, from 

sensorimotor control to behavioral psychology and cognitive science. In Section 3, we 

review theoretical arguments and experimental evidence supporting the contribution of 

internals models to the ability of nervous systems to produce adaptive behavior in the face of 

noisy and changing environmental conditions at many spatiotemporal scales of control.

2 Internal Models in the Probabilistic Framework

Bayesian inference and optimal control have become mainstream theories of how the brain 

processes sensory information and controls movement, respectively [11]. Their common 

theme is that behavior can be understood as an approximately rational solution to a problem 

defined by task objectives and a characterization of the external environment, sensory 

pathways, and musculoskeletal dynamics—that is they are normative solutions. In this 

section, we contextualize these theories in each of their respective domains of perception 

and action and review the experimental techniques employed to acquire evidence supporting 

their implementation in the nervous system.

2.1 Bayesian Inference in the Brain

In Bayesian inference, probabilities are assigned to each possible value of a latent state 

variable z one wishes to estimate, reflecting the strength of the belief that a given value 

represents the true state of the world [7]. It is hypothesized that the brain encodes a prior 
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p(z) reflecting its beliefs regarding the state z before any sensory information has been 

received, as well as a probabilistic internal model describing the dependency of sensory 

signals y on the latent state z known as a generative model in computational neuroscience 

[12]. On receiving sensory information y, this probabilistic internal model can be used to 

compute a likelihood p(y|z) that quantifies the probability of observing the signals y if a 

particular state z is true. Using these probabilistic representations of state uncertainty, Bayes 

rule prescribes how the prior p(z) and likelihood p(y|z) are combined in a statistically 

optimal manner to produce the posterior probability distribution p(z|y):

p z y = p y z p z
p y (1)

where p(y) = Σz p(y|z)p(z) is known as the evidence for the observation y. In the context of 

sensory processing, Bayesian inference is proposed as a rational solution to the problem of 

estimating states of the body or environment from sensory signals afflicted by a variety of 

sources of uncertainty (Fig. 1, Perception). Sensory signaling is corrupted by noise at many 

points along the neural pathway including transduction, action potential generation, and 

synaptic transmission [13]. Furthermore, relevant state variables are typically not directly 

observable and therefore need to be inferred from stochastic, statistically dependent, 

observations drawn from multiple sensory modalities.

Several lines of behavioral evidence suggest that humans and other animals learn an internal 

representation of prior statistics, and integrate this with knowledge of the noise in their 

sensory inputs, in order to generate state estimates through probabilistic inference. First, 

many studies have applied a known prior (e.g. the location of an object or duration of a tone) 

to a subject performing a task and shown that the prior is internalized and reflected in 

behavior [14, 15, 16, 17]. Importantly, as predicted by Bayes rule this bias is greater when 

the stimulus is less reliable and thus more uncertain. Second, other studies have assumed a 

reasonable prior so as to explain a range of phenomena and illusions as rational inferences in 

the face of uncertainty. For example, a prior over the direction of illumination of a scene [18, 

19, 20] or over the speed of object motion[21] can explain several visual phenomena such as 

how we extract shape from shading or perceive illusory object motion.

Beyond the sensorimotor domain, Bayesian methods have also been successful in explaining 

human reasoning. In the cognitive domain, the application of Bayesian principles using 

relatively complex probabilistic models has provided normative accounts of how humans 

generalize from few samples of a variable [22], make inferences regarding the causal 

structure of the world [23], and derive abstract rules governing the relationships between sets 

of state and sensory variables [24]. Behavioral analyses which estimate high-dimensional 

cognitive prior representations from low-dimensional (e.g. binary) responses have been used 

to demonstrate that humans maintain a prior representation for faces and that this naturalistic 

prior is conserved across tasks [25].

2.1.1 Bayesian forward modeling—Bayesian computations can be performed with 

respect to the current time or used to predict future states as hypothesized by Craik. 
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Consider the problem of tracking a ball during a game of tennis (see Fig. 1, Perception). The 

response of any given photoreceptor in our retina can only provide delayed, noisy signals 

regarding the position y of the ball at a given time. From the probabilistic point of view, this 

irreducible uncertainty in the reported ball position is captured by a distribution p(y). Since a 

complete characterization of the state z of the tennis ball, including velocity, acceleration, 

and spin, is not directly observable, this information must be inferred from position samples 

transduced from many photoreceptors at different timepoints in concert with the output of an 

internal model. Given a previously inferred posterior p(zt|y:t) over possible ball states zt 

based on previous sensory input y:t up to time t, an internal forward model pfw(zt+1|zt) can 

be used to predict the state of the ball at the future timestep t + 1 (Fig. 1, Prediction):

p zt + 1 y: t = ∫
zt

pfw zt + 1 zt p zt y: t dz (2)

The internal forward dynamical model pfw must take physical laws, such as air resistance 

and gravity, into account. From a perceptual point of view, new sensory information yt+1 can 

then be integrated with this predictive distribution in order to compute a new posterior 

distribution at time t + 1:

p zt + 1 y: t + 1 ∝ p yt + 1 zt + 1 p zt + 1 y: t (3)

This iterative algorithm, known as Bayesian filtering, can be used to track states zt, zt+1, … 

of the body or the environment in the presence of noisy and delayed signals for the purposes 

of state estimation (see Section 3.2). The extrapolation of latent states over longer timescales 

can be used to predict states further into the future for the purposes of planning movement 

(see Section 3.3). The results of such computations are advantageous to the tennis player 

from the control perspective. On a short timescale, it enables the player to predictively track 

the ball with pursuit eye movements, while on a longer timescale, the player can plan to 

move into position well in advance of the ball’s arrival in order to prepare their next shot.

In the brain, the dichotomy between the prediction step, based on a forward model and the 

observation step is reflected, at least partially, in dissociated neural systems. With respect to 

velocity estimation, a detailed analysis of retinal circuitry has revealed a mechanism by 

which target velocity can be estimated at the earliest stages of processing [26]. Axonal 

conductance delays endow retinal cells with spatio-temporal receptive fields which integrate 

information over time and fire in response to a preferred target velocity. Furthermore, the 

retina contains a rudimentary predictive mechanism based on the gain control of retina 

ganglion cell activity whereby the initial entry of an object into a cell’s receptive field causes 

it to fire but then the activity is silenced [27]. However, more complex predictions (e.g. 

motion under gravity) require higher order cortical processing.

2.1.2 Neural implementation—Theories have been developed regarding how neuronal 

machinery could perform the requisite Bayesian calculations. These theories fall into two 

main classes: population coding mechanisms in feedforward network architectures [28, 29, 
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30, 31] and recurrently connected dynamical models [32, 33, 34]. In the former, neural 

receptive fields are proposed to “tile” the sensory space of interest such that their expected 

firing rates encode the probability (or log-probability [29]) of a particular value of the 

encoded stimulus. For example, this implies that each neuron in a population would 

stochastically fire within a limited range of observed positions of a reach target and fire 

maximally for its “preferred” value. Importantly, the variability in neural activity can then be 

directly related to the uncertainty regarding the precise stimulus values that generated the 

input in a manner consistent with Bayesian theory [28]. Thus, across neurons, the population 

activity would reflect the posterior probability distribution of the target position given 

sensory input. This neural representation can then be fed forward to another layer of the 

network in order to produce a motor response. It has been shown that such population codes 

are able to implement Bayes rule in parsimonious network architectures and account for 

empirical neural activity statistics during sensorimotor transformations [30], Bayesian 

decision-making [35], and sensory computations such as cue integration [28], filtering [36], 

and efficient stimulus coding [31].

Although the functional implications of population codes can be directly related to Bayesian 

calculations, they do not incorporate the rich dynamical interactions between neurons in 

cortical circuits nor model the complex temporal profiles of neural activity which follow 

transient stimulus input [37, 38]. These considerations have motivated the development of 

dynamical models of cortex with recurrent connectivity which approximate Bayesian 

inference [32, 34] though the characterization of this class of models from a computational 

point of view remains an ongoing challenge [39]. In contrast to the probabilistic population 

coding approach, it has been postulated that neural variability across time reflects samples 

from a probability distribution based on a “direct-coding” representation [40]. In this model, 

population activity encodes sensory variables directly (as opposed to the probability of a 

particular variable value) such that the variability of neural activity across time reflects the 

uncertainty in the stimulus representation. When sensory input is received, it is suggested 

that neural circuits generate samples from the posterior distribution of inferred input 

features. In the absence of external input, spontaneous activity corresponds to draws from 

the prior distribution which serves as an internal model of the sensory statistics of the 

environment. In support of this theory, the change in spontaneous visual cortical activity 

during development has been shown to be consistent with the gradual learning of a 

generative internal model of the visual environment whereby spontaneous activity adapted to 

reflect the average statistics of all visual input [41].

2.2 Optimal Feedback Control

Bayesian inference is the rational mathematical framework for perception and state 

estimation based on noisy and uncertain sensory signals. Analogously, optimal control has 

been a dominant framework in sensorimotor control to derive control laws which optimize 

behaviorally relevant criteria and thus rigorously comply with the principle of rationality[11] 

(Fig. 1, Optimal feedback control). Understanding how natural motor behavior arises from 

the combination of a task and the biomechanical characteristics of the body has driven the 

theoretic development of optimal control models in the biological context [42, 43]. Initially, 

models were developed which posited that given a task, planning specified either the 
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desired-trajectory or the sequence of motor commands to be generated. These models 

typically penalized lack of “smoothness” such as the time derivative of hand acceleration 

(known as “jerk”) [44] or joint torques [45]. The role of any feedback was, at best, to return 

the system to the desired trajectory. These models aimed to provide a normative explanation 

for the approximately straight hand paths and bell-shaped speed profiles of reaching 

movements. However, these models are only accurate for movement trajectories averaged 

over many trials and do not account for the richly structured trial-to-trial variability observed 

in human motor coordination [8].

A fundamental characteristic of biological control is the number of effector parameters to be 

optimized far exceeds the dimensionality of the task requirements. For example, infinitely 

many different time series of hand positions or joint angles can be used to achieve a task 

such as picking up a cup. Despite the plethora of possible solutions motor behavior is 

stereotypical both across a population and within a person suggesting that the nervous 

system selects actions based on a prudent set of principles. How the brain chooses a 

particular form of movement out of the many possible is known as the “degrees of freedom” 

problem in motor control [46]. A ubiquitous empirical observation in goal-directed motor 

tasks is that effector states tend to consistently covary in a task-dependent manner [47, 8, 48, 

49, 50]. In particular, these covariances tend to be structured in such a way as to minimize 

movement variance along task-relevant dimensions while allowing variability to accumulate 

in task-irrelevant dimensions.

Optimal feedback control (OFC) was introduced [8, 11] in the motor control context in order 

to provide a normative solution to the “degrees of freedom” problem of motor coordination 

and, in particular, to develop a broad account of effector covariance structure and motor 

synergy as a function of task requirements. In this class of control laws, the core distinction 

with respect to optimal (feedforward or desired trajectory) control, is that sensory feedback 

is integrated into the production of motor output. Optimal feedback control policies 

continually adapt to stochastic perturbations (for example, due to noise within the motor 

system [51]) and therefore predict temporal patterns of motor variability which have been 

widely tested in behavioral experiments. An emergent property of OFC, known as the 

minimum intervention principle, explains the correlation structures of task-oriented 

movements [8]. Simply put, as movements deviate from their optimal trajectories due to 

noise, OFC specifically predicts that only task-relevant deviations will be corrected [8]. For 

example, when reaching to a target which is either narrow or wide subjects tend to make 

straight line movements to the nearest point on the target (Fig. 2A, black trajectories). 

However, when the hand is physically perturbed early in the movement, corrections are only 

seen when reaching towards the narrow target and not the wide target as the perturbation 

does not affect task success in the latter case, so there is no reason to intervene (Fig. 2A, red 

trajectories). Intervening would be counterproductive as it typically requires more energy 

and adds noise into the reach.

In sensorimotor control, the specification of a particular behavioral task begins with a 

definition of what constitutes the relevant internal state x (which may include components 

corresponding to the state of the arm and external environment) and control signals u. In 

general, the state variables should include all the variables, which together with the 
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equations of motion describing the system dynamics and the motor commands, are sufficient 

to predict future configurations (in the absence of noise). A discrete-time stochastic 

dynamics model can then be specified which maps the current state xt and control inputs ut 

to future states xt+1. This model is characterized by the conditional probability distribution 

penv(xt+1|xt, ut). For reaching movements, for example, the state x could correspond to the 

hand position, joint angles and angular velocities and the control signals u might correspond 

to joint torques. Given these dynamics, the aim of optimal control is to minimize a cost 

function which includes both control and state costs. The state cost Q “rewards” states that 

successfully achieve a task (such as placing the hand on a target), while R represent an 

energetic cost such as that required to contract muscles (see Box: Costs, Rewards, Priors, 

and Parsimony for a discussion of cost function specification in the biological context). In 

order to make predictions regarding motor behavior, a control policy π (a mapping from 

states to control signals ut = π(xt)) is optimized to minimize the total cumulative costs 

expected to be incurred. This objective Vπ (xt) is known as a cost-to-go function of a control 

policy (in control theory) or value function (in reinforcement learning where it typically 

quantifies cumulative expected rewards rather than costs):

Vπ xt = Q xt + R π xt + 𝔼x
t + 1 ∼ penv ⋅ xt, π xt

Vπ xt + 1 . (4)

This characterization of the value function, known as a Bellman equation, intuitively implies 

that the optimal controller balances the instantaneous costs in the current state xt with the 

minimization of expected future cumulative costs in the subsequent state xt+1.

This formulation is quite general. When applied to motor behavior, costs are often modeled 

as a quadratic function of states and control signals while the dynamics model penv(xt+1|xt, 

ut) typically takes the form of a linear equation with additive Gaussian noise [43]. 

Furthermore, the noise term is adapted to scale with the magnitude of the control input; as 

found in the nervous system [51]. This signal-dependent noise arises through the 

organization of the muscle innervation. The force that a single motor neuron can command 

is directly proportional to the number of muscle fibres that it innervates. When small forces 

are generated, motor neurons that innervate a small number of muscle fibres are active. 

When larger forces are generated, additional motor neurons that innervate a larger number of 

muscle fibres are also active. This is known as Henneman’s size principle. By recruiting 

larger number of muscle fibres from a single alpha motoneuron (the final neuronal output of 

the motor system) the variability of output is increased leading to variability in the force that 

is proportional to the average force that is produced by that muscle [54, 55]. This OFC 

problem formulation provides a reasonable balance between capturing the essential features 

of the sensorimotor task and enabling the accurate computation of optimal control policies; 

linear-quadratic-Gaussian problems with signal-dependent noise can be solved by the 

iteration of two matrix equations which converges exponentially fast [43].

Variants of this OFC model have been tested in many experiments involving a variety of 

effectors, task constraints, and cost functions [49, 48, 56, 57, 58, 59]. For example, studies 

have examined tasks in which the two hands either each control their own cursor to 
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individual targets or control a single cursor (whose location is the average position of the 

two hands) to a single target (Fig. 2B). The predictions of OFC differ for these two scenarios 

(Fig. 2C). In the former, perturbations to each arm can only be corrected by that arm so that 

a perturbation to one arm should only be corrected by that arm. However, in the latter 

situation both arms could contribute to the control of the cursor so that perturbations to one 

arm should also be corrected by the other arm. Indeed, force perturbations of one hand 

resulted in corrective responses in both hands consistent with an implicit motor synergy as 

predicted by OFC (Fig. 2D). Moreover, in a directed force production task, a high-

dimensional muscle space controls a low dimensional finger force. Electromyography 

recordings revealed task-structured variability in which the task-relevant muscle space was 

tightly controlled and the task-irrelevant muscle space showed much greater variation, again 

confirming predictions of OFC [57].

OFC is also a framework in which active sensing can be incorporated. Although engineering 

models typically assume state-independent noise, in the motor system the quality of sensory 

input can vary widely. For example, our ability to localize our hand proprioceptively varies 

substantially over the reaching workspace. By including state-dependent noise in OFC the 

quality of sensory input will depend on the actions taken. The OFC solution leads to a trade-

off between making movements which allow one to estimate the state accurately and task 

achievement. The predictions of the optimal solution match those seen in human participants 

when they are exposed to state-dependent noise [60].

Recent work has focused on the adaptive feedback responses within an OFC framework. 

One way to measure the magnitude of the visuomotor response (positional gain) is to apply 

lateral visual perturbations to the hand during a reaching movement. Typically on such a 

visually perturbed trial a robotic interface is used to constrain the hand within a simulated 

mechanical channel so that the forces into the channel are a reflection of the visuomotor 

reflex gain. Such studies have shown that reflex gains are sensitive to the task and that the 

gains increase or decrease respectively depending on whether the perturbation is task 

relevant or not [56]. Moreover, the reflex gain varies throughout a movement in a way that 

qualitatively agrees with the predictions of OFC [59]. Reflexive responses due to muscle 

stretch caused by mechanical perturbation can be decomposed into short-latency (<50 ms) 

and long-latency (50-100 ms) components, both of which occur before the onset of 

volitional control (>100 ms) [61]. The former are generated by a spinal pathway (i.e. the 

transformation of proprioceptive feedback into motor responses occurs at the level of spinal 

cord) while the latter are transcortical in nature (i.e. cortex is involved in modulating the 

reflex). It has been shown that the long-latency response specifically can be “voluntarily” 

manipulated based on the behavioral context [62] and it has been suggested that this task-

based flexibility is consistent with an optimal feedback controller operating along a pathway 

through primary motor cortex (M1) [63]. Neural activity in primary motor cortex has been 

shown to reflect both low-level sensory and motor variables [64] while also being influenced 

by high-level task goals [65]. This diversity of encoding is precisely what one would expect 

from an optimal feedback controller [66]. Further evidence in favor of this hypothesis 

includes the fact that M1 neurons appear to encode the transformation of shoulder and elbow 

perturbations into feedback responses [67].
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2.3 Duality Between Bayesian Inference and Optimal Control

Classically, a control policy u = π(x) deterministically maps states to control signals. 

However, in the probabilistic framework, it is more natural to consider stochastic policies 

p(u|x) representing distributions over possible control commands conditioned on a given 

state. Furthermore, it is impossible for the brain to represent a deterministic quantity with 

perfect precision and therefore probabilistic representations may be a more appropriate 

technical language in the sensorimotor control context [75]. This perspective will allow us to 

review a general duality between control and inference. It has long been recognized that 

certain classes of Bayesian inference and optimal control problems are mathematically 

equivalent or dual. Such an equivalence was first established between the Kalman filter and 

the linear-quadratic regulator [76] and has recently been generalized to nonlinear systems 

[77, 9]. The intuition is as follows. Suppose somebody is performing a goal-directed 

reaching movement and wants to move their hand to a target. The problem of identifying the 

appropriate motor commands can be characterized as the minimization of a value function 

(Eqn. 4). However, an alternative but equivalent approach, can be considered. Instead, the 

person could fictively imagine their hand successfully reaching the target at some point in 

the future and infer the sequence of motor commands that were used to get there. The 

viewpoint transforms the control problem into an inference problem.

More technically, the duality can be described parsimoniously using trajectories of states x 
≔ (x1, …, xT) and control signals u ≔ (u0, …, uT–1) up to a horizon T. Consider the 

conditional probability defined by p (g|x) ∝ exp [−Q (x)] where Q x : = ∑i = 0
T Q xt  is the 

aforementioned state-dependent cost encoding the desired outcome (Eqn. 4). The variable g 
can be thought as as an “observation” of a successfully completed task. The task is “more 

likely” to be successful if less state costs are incurred. The control cost R u : = ∑i = 0
T − 1 R ut

can be absorbed in a prior over control signals p(u) ∝ exp [−R (u)] with more costly control 

commands (large R(u)) being more unlikely a priori. Bayesian inference can then be 

employed to compute the joint probability of motor outputs u and state trajectories x given 

the “observation” of a successful task completion g:

p x, u g ∝ penv x x0, u p g x p u = penv x x0, u e−Q x e−R u (5)

It is observed that the posterior probabilities of control signals u which are “most likely” to 

lead to a successful completion of the task g along a particular state trajectory x are 

proportional to the expected cumulative costs as in the optimal control perspective (Eqn. 4). 

By marginalizing over state trajectories x, one obtains the posterior p(u|g) as a“sum-over-

paths” of the costs incurred [78]. This perspective has led to theoretic insights within a class 

of control problems known as Kullback-Leibler control [10] or linearly solvable Markov 

decision processes [79] where the control costs take the form of a KL-divergence. In 

particular, this class of stochastic optimal control problems is formally equivalent to 

graphical model inference problems [10] and is a relaxation of deterministic optimal control 

[80]. Thus, approximate inference methods, which have provided inspiration for neural and 
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behavioral models of the brain’s perceptual processes, potentially may also underpin the 

algorithms used by the brain during planning (see Section 3.3).

2.4 What Constitutes an Internal Model in the Nervous System?

In neuroscience, neural representations of our body or environment, that is internal models, 

are conceptualized in a wide range of theories regarding how the brain interprets, predicts, 

and manipulates the world. Most generally, one may consider a representation of the joint 

distribution p(x, z, y, u) between time series of sensory inputs y, latent states z, internal 

states x, and motor signals u. Together the latent states z and internal states x reflect the state 

of the world and the body but we separate them conceptually to reflect a separation between 

external and internal states. This probabilistic representation can be considered a “complete” 

internal model. Such a formulation contains within it various characterizations of internals 

models from different disciplines of neuroscience as conditional densities. Therefore, the 

phrase internal model can be used for markedly different processes and we suggest it is 

important for researchers to be explicit about what type of internal model they are 

investigating in a given domain. Here we attempt to non-exhaustively categorize the 

elements which can be considered part of an internal model in sensorimotor control:

1. Prior models. Priors over sensory signals, p(y), and states of the world, p(z). 

The world is far from homogeneous and numerous studies have shown that 

people are adept at learning the statistical regularities of sensory inputs and the 

distributions of latent states (for a review see [40]).

2. Perceptual inference models. These form a class of internal models which are 

postulated to be implemented along higher-order sensory pathways. These 

models compute latent world states (for example objects) given sensory input, 

p(z|y). Conversely, generative models are models which describe processes 

which generate sensory data. This may be captured by the joint distribution 

between sensory input and latent variables, p(y, z), or computed from the product 

of a state prior and the conditional distribution of sensory inputs given latent 

world states, p(y|z). Given sensory input, the generative model can be “inverted” 

via Bayes rule to compute the probabilities over the latent states which may have 

generated the observed input. Further uses of such generative models are 

predictive coding [81] and reafference cancellation (see section 3.1).

3. Sensory and motor noise models. The brain is sensitive to the noise 

characteristics and reliability of our sensory and motor apparatus [13]. On the 

sensory side, to calculate p(y|z) not only involves a transformation but also 

knowledge of the noise on the sensory signal y itself. In motor control, the 

control output u is also corrupted by noise, and knowledge of this noise can be 

used to refine the probability distribution of future states x. Maintaining such 

noise models aids the nervous system in accurately planning and implementing 

control policies which are robust to sensory and motor signal corruption [82].

4. Forward dynamical models. In general, we think of a forward dynamical model 

as a neural circuit that can take the present estimated state, x0, and predict states 
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in the future. This could model the passive dynamics, p(x|x0), of the system or 

also use the current motor output to predict the state evolution, p(x|x0, u).

5. Cognitive maps, latent structure representation, and mental models. 
Abstract relational structures between state variables (e.g. pertaining to distinct 

objects in the world) may be compactly summarized in the conditional 

probability distributions, p(zn|z1, …, zn−1), of a graphical model. Such 

representations can also be embedded in continuous internal spaces such that a 

metric on the space encodes the relational strength between variables. These 

models can be recursively organized in hierarchies, thus facilitating the low-

dimensional encoding of control policies and the transfer of learning across 

contexts (for a review of latent structure learning in the context of motor control, 

see [83]).

The probabilistic formalism allows one to relate internal models across a range of systems 

within the brain. However, it leaves many aspects of the internal models unspecified. 

Internal models can be further defined by a structural form which links inputs and outputs. 

For example, internal models may capture linear or nonlinear relationships between motor 

outputs and sensory inputs such as in the relationship between joint torques and future hand 

positions. Internal models may contain free parameters which can be quickly adapted in 

order to adapt to contextual variations; for example, the length and inertia of our limbs 

during development. Internal models can be further specified by the degree of approximation 

in the model implementation. Consider the problem of predicting the future from the past. 

At one extreme, one can generate simulations from a rich model containing internal 

variables which directly reflect physically relevant latent states such as gravitational forces 

and object masses. On the other hand, a mapping from current to future states can be learned 

directly from experience without constructing a rich latent representation. Such mappings 

can be encapsulated compactly in simple heuristic rules which may provide a good trade-off 

between generalizability and efficiency. Finally, internals models span a range of spatio-

temporal resolution. Some internal models, such as those involved in state estimation 

compute forward dynamics on very short spatio-temporal scales such as centimeters and 

milliseconds (see section 3.2), while other internal models, such as those used during 

planning, simulate over timescales which may be longer by several orders of magnitude (see 

section 3.3).

2.5 Probabilistic Forward and Inverse Models

In the sensorimotor context, internal models are broadly defined as neural systems which 

mimic musculoskeletal or environmental dynamical processes [84, 85]. An important feature 

of putative internal models in sensorimotor control is their dynamical nature. This 

distinguishes internal models from other neural representations of the external world that the 

brain maintains such as generative and recognition models as studied in perception. This is 

reflected in the brain computations associated with internal models. Whether contributing to 

state estimation, reafference cancellation, or planning, internal inverse and forward models 

relate world states across a range of temporal scales. Recalling the previously described 

example of tennis, internal models may be used to make anticipatory eye movements in 

order to overcome sensory delays in tracking the ball. Incorporating a motor response, 
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internal models can be used to simulate the ballistic trajectory of a tennis ball after it has 

been struck. This leads to a classical theoretic dissociation of internal models into different 

classes [85]. Internal models which represent future states of a process (ball trajectories) 

given motor inputs (racquet swing) are known as forward models. Reversing this mapping, 

models which compute motor outputs (the best racquet swing) given the desired state of the 

system at a future timepoint (a point-winning shot) are known as inverse models.

In the probabilistic formalism, the internal forward model pfw(xt+1|xt, ut) can be 

encapsulated by the distribution over possible future states xt+1 given the current state x and 

control signals u. A prediction regarding a state trajectory x ≔ (x1, …, xT) can be made by 

repeatedly applying the forward model pfw x x0, u = ∏t = 1
T pfw xt xt − 1, ut − 1 . By 

combining a forward model pfw and a prior over controls p(u), the inverse model pinv can be 

described in the probabilistic formalism. Consider the problem of computing the optimal 

control signals which implement a movement towards a desired goal state g. This state could 

be, for example, the valuable target position of a reach movement. An inverse model is then 

a mapping from this desired state to a control policy u* which can be identified with the 

posterior probability distribution computed via control inference (Eqn. 5):

pinv(u | g) ∝ ∫x
pfw(x x0, u)p(g |x)p(u)dx (6)

u* = argmax
u pinv(u |g) (7)

Typically, in the sensorimotor control literature, a mapping from desired states at each point 

in time to the control signals u* is described as the “inverse model”. This mapping requires 

the explicit calculation of a desired state trajectory x*. This perspective can be embedded 

within the probabilistic framework by setting p(g|x*) = 1 and p(g|x) = 0 for all other state 

trajectories x ≠ x*. In contrast, in optimal feedback control and reinforcement learning, 

motor commands are generated based on the current state without the explicit representation 

of a desired state trajectory. The two concepts can be related by noting that the optimal 

deterministic control policy u* is the mode of the probabilistic inverse model pinv.

3 The Roles of Internal Models in Biological Control

3.1 Sensory Reafference Cancellation

Sensory input can be separated into two streams of input: afferent information which is 

information arising from the external world and reafferent information which is sensory 

input that is causes by our own actions. From a sensory receptors point of view these sources 

cannot be separated. However, it has been proposed that forward models are a key 

component that allows us both to determine whether the sensory input we receive is a 

consequence of our own actions and to filter out the components arising from our own 
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actions so as to be more attuned to external events which tend to be more behaviorally 

important [86]. To achieve this, a forward model receives a signal of the outgoing motor 

commands and uses this so-called efference copy in order to calculate the expected sensory 

consequences of an ongoing movement [87]. This predicted reafferent signal (known as the 

corollary discharge in neurophysiology although this term is now often used synonymously 

with efference copy), can then be removed from incoming sensory signals leaving only 

sensory signals due to environment dynamics.

This mechanism plays an important role in stabilizing visual perception during eye 

movements. When the eyes make a saccade to a new position, the sensory representation of 

the world shifts across the retina. In order for the brain to avoid concluding that the external 

world has been displaced based on this “retinal flow”, a corollary discharge is generated 

from outgoing motor commands and integrated into the visual processing of the sensory 

input [88]. A thalamic pathway relays signals about upcoming eye movements from the 

superior colliculus to the frontal eye fields where it causally shifts the spatial receptive fields 

of target neurons in order to cancel the displacement due to the upcoming saccade [89]. 

Furthermore, the resulting receptive field shifts are time-locked by temporal information 

pertaining to the timing of the upcoming saccade carried by the corollary discharge.

Perhaps the best worked-out example of the neural basis of such a predictive model is in the 

cerebellum-like structure of the weakly electric fish [90]. These animals generate pulses (or 

waves) of electrical discharge into the water and can then sense the field that is generated to 

localize objects. However, the field depends on many features that the fish controls such as 

timing of the discharge, movement and posture of the fish. The cerebellum-like structure 

learns to predict sensory consequences (i.e. the expected signals generated by the electrical 

field) based on both sensory input and motor commands and removes this from incoming 

signals so that the residual signals reflects an unexpected input which pertains to objects in 

the environment. The detailed mechanism of synaptic modulation (anti-hebbian learning) 

and the way that the prediction is built up from a set of bases functions has recently been 

elucidated [91].

3.2 Forward State Estimation for Robust Control

An estimate of the current state of an effector is necessary for both motor planning and 

control. There are only three sources of information which can be used for state estimation: 

sensory inputs, motor outputs and prior knowledge. In terms of sensory input, the dominant 

modality for such state estimation is proprioceptive input (i.e. from receptors in the skin and 

muscles). While blind and deaf people people have close to normal sensorimotor control, the 

rare patients with loss of proprioceptive input are severely impaired in their ability to make 

normal movements [92, 93]. The motor signals that generate motion can also provide 

information about the likely state of the body. However, to link the motor commands to the 

ensuing state requires a mapping between the motor command and the motion, that is a 

forward dynamic model [2], in an analogous fashion to many “observer models” in control 

theory. There are at least two key benefits of such an approach. First, the output of the 

internal model can be optimally combined with sensory inflow via Bayesian integration 

(Section 2.1) resulting in a minimization of state estimation variance due to noise in sensory 
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feedback [94]. Second, combining the motor command (which is available in advance of the 

change in state), together with the internal model, makes movement more robust with 

respect to errors introduced by the unavoidable time delays in the sensorimotor loop. 

Feedback-based controllers with delayed feedback are susceptible to destabilization since 

control input optimized for the system state at a previous time-point may increase, rather 

than decrease, the motor error when applied in the context of the current (unknown) state 

[85]. Biological sensorimotor loop delays can be on the order of 80–150 ms for 

proprioceptive to visual feedback [61]. However, a forward model which receives an efferent 

copy of motor outflow and simulates upcoming states can contribute an internal feedback 

loop in order to effect feedback control before sensory feedback is available [2, 3].

3.2.1 State estimation and sensorimotor control—Predictive control is essential 

for the rapid movements commonly observed in dexterous behavior. Indeed, this predictive 

ability can be demonstrated easily with the “waiter task”. If you hold a weighty book on the 

palm of your hand with an outstretched arm and use your other hand to remove the book 

(like a waiter removing objects from a tray) the supporting hand remains stationary. This 

shows our ability to anticipate events caused by our own movements so as to generate the 

appropriate and exquisitely timed reduction in muscle activity necessary to keep the 

supporting hand still. In contrast, if someone else removes the book from your hand, even 

with vision of the event, it is close to impossible to maintain the hand stationary even if the 

removal is entirely predictable [95].

Object manipulation also exhibits an exquisite reliance on anticipatory mechanisms. When 

an object is held in a precision grip, enough grip force must be generated to prevent the 

object from slipping. The minimal grip force depends on the object load (i.e. weight at rest) 

and the frictional properties of the surface. Subjects tend to maintain a small safety margin 

so that if the object is raised the acceleration causes an increase in the load force requiring 

an increase in the grip force to prevent slippage. Recordings of the grip and load force in 

such tasks show that the grip force increases with no lag compared to the load force even in 

the initial phase of movement thus ruling out the possibility that grip forces were adapted 

based on sensory feedback [96, 97]. Indeed, such an anticipatory mechanism is very general 

with no lag in grip force modulation observed if one jumps up and down while holding the 

object. In contrast, if the changes in load force are externally generated, then compensatory 

changes in grip force lag by around 80 ms suggesting a reactive response mechanism [98].

In contrast to internal models which estimate the state of the body based on efferent copies, 

internal models of the influence of external environmental perturbations are also utilized in 

state estimation. An analysis of postural responses to mechanical perturbations showed that 

long-latency feedback corrections were consistent with a rapid Bayesian updating of 

estimated state based on forward modeling of delayed sensory input [99]. Furthermore, trial-

to-trial changes in the motor response suggested that the brain rapidly adapted to recent 

perturbation statistics reflecting the ability of the nervous system to flexibly alter its internal 

models when exposed to novel environmental dynamics. Although forward modeling can be 

based on both proprioceptive and visual information, the delays in proprioceptive pathways 

can be several tens of milliseconds shorter than those in visual pathways. During feedback 

control, the brain relies more heavily on proprioceptive information than visual information 
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(independent of the respective estimation variances) consistent with an optimal state 

estimator based on multisensory integration [100].

Some actions can actually make state estimation easier and there is evidence that people may 

expend energy so as to reduce the complexity of state estimation. For example, in a task 

similar to sinusoidally translating a coffee cup without spilling its contents, people choose to 

move in such a way as to make the motion of the contents more predictable despite the extra 

energetic expense [101]. Such a strategy has the potential to minimize the computational 

complexity of the internal forward modeling and thereby reduce errors in state estimation.

3.2.2 Neural substrates—Extensive research has been conducted with the aim of 

identifying the neural loci of putative forward models for sensorimotor control. Two brain 

regions in particular have been implicated: the cerebellum and the posterior parietal cortex. 

It has long been established that the cerebellum is important for motor coordination. 

Although patients with cerebellar damage can generate movement whose gross structure 

matches that of a target movement, their motions are typically ataxic and characterized by 

dysmetria (typically the overshooting or undershooting of target positions during reaching) 

and oscillations when reaching (intention tremor) [102]. In particular, these patients 

experience difficulty in controlling the inertial interactions among multiple segments of a 

limb. This results in greater inaccuracy of multi-joint versus single-joint movements. An 

integrative theoretic account [2, 103] suggested that these behavioral deficits could be 

caused by a lack of internal feedback and thus that the cerebellum may contain internal 

models which play a critical role in stabilizing sensorimotor control. A range of 

investigation across multiple disciplines has supported this hypothesis including 

electrophysiology [104, 105, 106], neuroimaging [97], lesion analysis [107, 103], and 

noninvasive stimulation [108]. In particular, the aforementioned ability of humans to 

synchronize grip force with lift, which provided indirect behavioral evidence of an internal 

forward model, is impaired in patients with cerebellar degeneration [107]. Optimal control 

models have enabled researchers to estimate impairments of the forward dynamic models in 

cerebellar patients making dysmetric reaching movements [109]. Hypermetric patients 

appeared to overestimate arm inertia resulting in their movements overshooting the target 

while hypometric patients tend to underestimate arm inertia resulting in the opposite pattern 

of deviations from optimality. Consequently, dynamic perturbations could be computed 

which artificially increased (for hypermetric patients) or decreased (for hypometric patients) 

arm inertia and thus compensating for the idiosyncratic biases of individual patients [109]. 

This study highlights the contribution of optimal control and internal models towards a 

detailed understanding of a particular movement disability and the possibility of therapeutic 

intervention.

The parietal cortex has also been implicated in representing forward state estimates. A sub-

region of the superior parietal lobule, known as the posterior parietal cortex (PPC), contains 

neural activity consistent with forward state estimation signals [110] which may be utilized 

for the purposes of visuomotor planning [111]. Indeed, transcranial magnetic stimulation of 

this region, resulting in transient inhibition of cortical activity, impaired the ability of 

subjects to error-correct motor trajectories based on forward estimates of state [112]. In 

another study, following intracranial electrical stimulation of PPC, subjects reported that 
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they had made various physical movements despite these movements not having been 

performed, nor any muscle activity having been detected using electromyography [113]. 

This illusory awareness of movement is consistent with the activation of a forward state 

representation of the body. A study based on focal parietal lesions in monkeys reported a 

double dissociation between visually-guided and proprioceptively-guided reach movement 

impairments and lesions of the inferior and superior parietal lobules respectively [114]. This 

suggests that forward representations of state are localized to different areas of the PPC 

depending on the sensory source of state information.

3.3 Learning and Planning Novel Behaviors

The roles of internal models described thus far operate on relatively short timescales and do 

not fit Craik’s original conception of their potential contribution to biological control. This 

concerned the internal simulation of possible action plans, over longer timescales, in order to 

predict and evaluate contingent outcomes. Viewing his hypothesis through the computational 

lens of optimal control, Craik’s fundamental rationale for internal modeling falls within the 

broad domain of algorithms by which the brain can acquire new behaviors which we review 

in this section.

3.3.1 Reinforcement learning and policy optimization—Control policies can be 

optimized using a range of conceptually distinct, but not mutually exclusive, algorithms 

including reinforcement learning [115] and approximate inference [116]. Reinforcement 

learning provides a suite of iterative policy-based and value-based optimization methods 

which have been applied to solve optimal feedback control problems. Indeed, initial 

inspiration for reinforcement learning was derived from learning rules developed by 

behavioral psychologists [117]. Theoretical and empirical analyses of reinforcement learning 

methods indicate that a key algorithmic strategy which can aid policy optimization is to 

learn estimates of the value function Vπ introduced in Section 2.2. Once Vπ is known, the 

optimal controls u*(xt) are easily computed without explicit consideration of the future costs 

(by selecting the control output which is most likely to lead to the subsequent state xt+1 with 

minimal Vπ (xt+1)). A related, and even more direct, method is to learn and cache value 

estimates (known as “Q-values”) associated with state-action combinations [115]. Thus, 

value estimates are natural quantities for the brain to represent internally as theory are the 

long-term rationale for being in a given state and define optimized policies.

In many reinforcement learning algorithms, a key signal is the reward prediction error which 

is the difference between expected and actual rewards or costs. This signal can be used to 

iteratively update an estimate of the cost-to-go and is guaranteed to converge to the correct 

cost-to-go values (although the learning process may take a long time) [115]. Neural activity 

in the striatum of several mammalian species (including humans) appears to reflect the 

reinforcement learning of expected future reward representations [118, 119]. Indeed reward-

related neurons shift their firing patterns in the course of learning, from signalling reward 

directly to signalling the expected future reward based on cues associated with later reward, 

consistent with a reward prediction error based on temporal differences [118].
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The main shortcoming of such “model-free” methods for learning optimal control policies is 

that they are prohibitively slow. When applied to naturalistic motor control tasks with high-

dimensional, non-linear and continuous state-spaces (corresponding to the roughly 600 

muscles that are controlled by the nervous system) potentially combined with complex 

object manipulation, it becomes clear than human motor learning is unlikely to be based on 

these methods alone due to the time it takes to produce control policies with human-level 

performance. Furthermore, environment dynamics can transform unexpectedly and the goals 

of an organism may change depending on a variety of factors. Taken together, this suggests 

that humans and animals must integrate alternative algorithms in order to flexibly and 

rapidly adapt their behavior. In particular, internal forward models can be used to predict the 

performance of candidate control strategies without actually executing them as originally 

envisaged by Craik [4] (Fig. 1, Motor planning). These internal model simulations and 

evaluations (which operate over relatively long timescales compared to the previously 

discussed internal forward models) can be smoothly integrated with reinforcement learning 

[115] and approximate inference methods [120]. Thus, motor planning may be accomplished 

much faster, and more robustly, using internal forward models. Indeed, trajectory “roll-outs” 

[121] and local searches [122] form key components of many state-of-the-art learning 

systems.

3.3.2 Prediction for planning—Planning refers to the process of generating novel 

control policies internally rather than learning favorable motor outputs from repeated 

interactions with the environment (Fig. 1, Motor planning). Internal forward modeling on 

timescales significantly longer than those implemented in state estimation, contribute 

significantly at this point in the sensorimotor control process. Ultimately, once a task has 

been specified and potential goals identified, the brain needs to generate a complex 

spatiotemporal sequence of muscle activations. Planning this sequence at the level of muscle 

activations is computationally intractable due to the curse of dimensionality [124]. 

Specifically, the number of states (or volume in the case of a continuous control problem) 

which must be evaluated scales exponentially with the dimensionality of the state-space. 

This issue similarly afflicts the predictive performance of forward dynamic models where 

state-space dimensionality is determined by the intricate structure and nonstationarity of the 

musculoskeletal system and the wider external world. Biological control hierarchies have 

been described across the spectrum of behavioral paradigms from movement primitives and 

synergies in motor control [125] to choice “fragments” in decision-making [126]. From a 

computational efficiency perspective, this allows low-level, partially automated, components 

to be learned separately but also flexibly combined in order to generate broader solutions in 

a hierarchical fashion thus economising control by enabling the nervous system to curtail the 

number of calculations it need make [127]. For example, one does not learn to play the piano 

note-by-note but practices layers and segments of music in isolation before combining these 

fluent “chunks” together [128].

Given the hierarchical structure of the motor system, motor commands may be represented, 

and thus planned, at multiple levels of abstraction. Different levels of abstraction are 

investigated in distinct fields of neuroscience research which focus on partially overlapping 

sub-systems. However, here we take a holistic view and do not focus on arbitrary divisions 
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between components of an integrated control hierarchy. At the highest level, if multiple 

possible goals are available, a decision may be made regarding which is to be the target of 

movement. Neuroimaging [129] and single-unit recordings [130] suggest that scalar values 

associated with goal states are encoded in an area of the brain known as the ventromedial 

prefrontal cortex. Then, by comparing such value signals, a target is established. Selections 

between food options is often used to study neural value representation since food is a 

primary reinforcer. In such an experiment, when confronted with novel goals which have 

never been encountered before, the brain synthesizes value predictions from memories of 

related goals in order to make a decision [131]. The precise mechanism by which this is 

accomplished is still under investigation, but these results require an internal representation 

that is sensitive to the relational structure between food items, possibly embedded in a 

feature space of constitute nutrients, and a generalization mechanism with which new values 

can be constructed. Such an internal representation and mechanism can be embedded within 

the probabilistic rationality framework. Let x be a vector of goal features, then the value v 
can be modeled as the latent variable to be inferred. Based on this representation, a “value 

recognition” model p(v|x) can be trained using experienced goal/value pairs and used to 

infer the value of a novel item. Analogously, in the example of tennis, a player who has 

scored points from hitting to the backhand as well as performing a dropshot, may reasonably 

infer that a dropshot to the backhand will be successful.

In psychology and neuroscience, the process by which decision variables in value-based and 

perceptual decision-making are retrieved and compared is described mechanistically by 

evidence integration or sequential sampling models [132]. Within the probabilistic 

framework elaborated in section 2, these models can be considered as iterative approximate 

inference algorithms [133]. There is both neural [36] and behavioral [134] evidence for their 

implementation in the brain. These sampling processes have been extended to tasks which 

require sequential actions over multiple states of control [135]. A network of brain 

structures, primarily localized to prefrontal cortical areas, has been hypothesized to encode 

an internal model of the environment at the “task-level” which relates relatively abstract 

representations of states, actions, and goals [136, 137]. From a probabilistic perspective, this 

internal model can then be “inverted” via Bayesian inference in order to compute optimal 

actions [133]. In order to accomplish this, one heuristic strategy is to simply retrieve 

memories of past environment experiences based on state similarity as a proxy for internal 

forward modeling. In the human brain, this process appears to be mediated by the 

hippocampus [138].

Once a goal has been established, the abstract kinematic structure of a movement and the 

final state of the end effector (e.g. hand) may be planned, a stage which may be referred to 

as action selection. One line of evidence for the existence of such motor representations is 

based on the “hand path priming effect” [139]. In these studies, participants are required to 

make obstacle-avoiding reaching movements. However, when cued to do so in the absence 

of obstacles, they appear to take unnecessarily long detours around the absent obstacle as 

before. Such suboptimal movements are inconsistent with optimal feedback control but are 

thought be due to the efficient re-use of the abstract spatiotemporal form of the previously 

used movements. When such representations are available in the nervous system (as in the 
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hand-path priming task), it is possible that they may be re-used in forward modeling 

simulations during motor planning. When combined with sampling strategies [120], the 

retrieval of abstract motor forms could provide a computational foundation for the mental 

rehearsal of movement and may be relatively efficient when applied at a high level of 

abstraction in the motor hierarchy.

In tasks involving complex object interactions, it may be particularly important to internally 

simulate the impact of different control strategies on the environment dynamics in order to 

avoid catastrophic outcomes as envisaged by Craik. Recent research has shown that human 

participants were able to make accurate judgments regarding the dynamics of various visual 

scenes involving interacting objects under the influence of natural physical forces (Fig. 3). 

This putative “intuitive physics engine” [123], which combines an internal model 

approximating natural physics with Monte Carlo sampling procedures, could be directly 

incorporated into motor planning within the probabilistic framework. Consider, for example, 

the problem of carrying a tray piled high with unstable objects. By combining internal 

simulations of the high-level features of potential movement plans with physical reasoning 

about the resulting object dynamics, one would be able to infer that it is more stable to grip 

the tray on each side rather than in the center and thus avoid having the objects fall to the 

floor. Thus, internal forward models can make a crucial contribution at the planning stage of 

control by simulating future state trajectories conditional on motor commands. In addition, it 

may be necessary to implement this processing at a relatively high level of the motor 

hierarchy in order to do so efficiently given the complexity of the simulations. In the context 

of the tray example, the critical feature of the motor movement in evaluating the stability of 

the objects is the manner in which the tray is gripped. Thus, simulating the large number of 

possible arm trajectories which move the hand into position is irrelevant to the critical 

success of the internal modeling. Identifying the essential abstract features of movement to 

input into a forward modeling process may be a crucial step in planning complex and novel 

movements.

4 Conclusions and Future Directions

We have presented a formal integration of internal models with the rationality frameworks of 

Bayesian inference and optimal feedback control. In doing so we have used the probabilistic 

formalism in order to review the various applications of internal models across a range of 

spatiotemporal scales in a unified manner. Although many aspects of the computations 

underpinning processes such as sensory reafference cancellation and state estimation are 

well understood, the motor planning process remains poorly understood at a computational 

level. OFC provides a principled way in which a task can be associated with a cost leading 

to an optimal control law that takes into account the dynamics of the body and the world as 

well as the noise processed involved in sensing and actuation. The theory is consistent with a 

large body of behavioral data. OFC relies on state estimation which itself relies on internal 

models which are also of general use in a variety of processes and for which there is 

accumulating behavioral and neurophysiological evidence.

There are still major hurdles to understanding OFC in biology. First, it is unclear how a task 

specifies a cost function. While for a simple reaching movement it may be easy to use a 
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combination of terminal error and energy, the links to cost are much less transparent in many 

real-world tasks. For example, when a person needs to remove keys from their pocket or tie 

shoelaces, specifying the correct cost function is itself a difficult calculation to make. 

Second, although OFC can consider arbitrarily long (even infinite) horizon problems, people 

clearly plan our actions under finite horizon assumptions by establishing a task-relevant 

temporal context. It is unclear how the brain temporally segments tasks and the extent to 

which each task is solved independently [127]. Third, given a task context and a cost 

function or goal specification, fully solving OFC in a reasonable amount of time for a 

complex system such as the body is intractable. The brain must use approximations to the 

optimal solution which are as yet unknown although there are a variety of machine learning 

methods [140] which may provide inspiration for such investigations. Fourth, the 

representation of state is critical for OFC but how state is constructed and used is largely 

unknown though there are novel theories, with some empirical support, regarding how large 

state spaces could be modularized hierarchically to make planning and policy encoding 

efficient [75]. Finally, the neural basis of both OFC and internal models is still in its infancy. 

However, the elaboration of optimal feedback control within the brain will take advantage of 

new techniques for dissecting neural circuitry such as optogenetics, which have already 

delivered new insights into the neural basis of feedback-based sensorimotor control [141, 

142].

Although some behavioral signatures and neural correlates of the computational principles 

by which plans are formed have been identified, this has primarily occurred in tasks 

containing relatively small state and action spaces such as sequential decision-making and 

spatial navigation. In contrast, the processes by which biological control solutions spanning 

large and continuous state-spaces are constructed remains relatively unexplored. Future 

investigations may need to embed rich dynamical interactions between object dynamics and 

tasks goals in novel and complex movements. Such task manipulations may generate new 

insights into motor planning since the motor planning process may then depend on 

significant cognitive input. This may reveal a more integrative form of planning across the 

sensorimotor hierarchy.
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Costs, Rewards, Priors, and Parsimony

Critics of optimal control theories of motor control point out that one can always 

construct a cost function to explain any behavioral data (at the extreme the cost can be the 

deviations of the movement from the observed behavior). Therefore, to be a satisfying 

model of motor control, it is crucial that the assumed costs, rewards, and priors be well-

motivated and parsimonious. Initial work on optimal motor control used cost functions 

which did not correspond to ecologically relevant quantities. For example, extrinsic 

geometric “smoothness” objectives such as “jerk” [44] or the time derivative of joint 

torque [45] do not directly relate to biophysically important variables. In contrast, OFC 

primarily penalizes two components in the cost. The first component is an energetic or 

effort cost. Such costs are widespread to modelling animal behavior and provide well-

fitting cost functions when simulating muscle contractions [68] and walking [69, 70] 

suggesting that such movements tend to minimize metabolic energy expenditure. By 

representing effort as energetic cost discounted in time it is possible to account for both 

the choices animals make and the vigor of their movements [71]. The second component 

quantifies task success is typically represented by a cost on inaccuracy. When explicit 

costs or rewards are placed by experimenters on a task element (such as a target position), 

people are usually able to adapt their control to be close to optimal in terms of optimizing 

such explicit objectives [72, 73, 74]. The parsimony and the experimental benefits of a 

model where experimenter specifies costs at the task-level are not present in “oracular” 

motor control models, which requires an external entity to provide a detailed prescription 

for motor behavior. Early theories of biological movement were often inspired by 

industrial automation. Research tended to focus on how reference trajectories for a 

particular task were executed rather than planned. For any given task, there are infinitely 

many trajectories that reach a desired goal, and infinitely many others that do not, and the 

problem of selecting one is off-loaded to a trajectory oracle reminiscent of industrial 

control engineers serving as the “deus ex machina”. As a theory of biological movement, 

this is problematic. Oracles can select movement trajectories, not necessarily to “solve” 

the task in an optimal manner (as would be the goal in industrial automation), but to fit 

movement data.
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Summary Points

1. Optimal feedback control and Bayesian estimation are rational principles for 

understanding human sensorimotor processing.

2. Internal models are necessary to facilitate dexterous control.

3. Forward models can assist in sensory filtering, state estimation and planning.

4. Modular internal models can mitigate the curse of dimensionality in 

sensorimotor control.
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Future Issues

1. Given a motor task, how are a state representation and cost function 

constructed?

2. What are the neural algorithms by which the solution to optimal feedback 

control is approximated?

3. How are internal models structured?

4. Are similar circuit mechanisms implemented across different prediction 

timescales?

McNamee and Wolpert Page 29

Annu Rev Control Robot Auton Syst. Author manuscript; available in PMC 2019 November 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 1. The roles of internal models in sensorimotor control.
Perception. Sensory input y is used to estimate the ball’s state z0 which is uncertain due to 

noise along the sensory pathway and the inability to directly observe the full state of the ball 

(e.g. its spin and velocity). Bayes rule is used to calculate the posterior (an example of a 

posterior over one component of position and velocity shown in inset). Simulation. An 

internal dynamical model pfw simulates the forward trajectory z of the ball. At short 

timescales, this internal modeling is necessary to overcome delays in sensory processing, 

while at longer timescales, the predictive distribution pfw(z|z0) of the ball’s trajectory can be 

used for planning. Motor planning. Internal simulation of the ball’s trajectory along with 

prospective movements are evaluated in order to generate an action plan. The player may 

have to decide between re-orienting their body in order to play a forehand or backhand. 

Optimal feedback control. Once a motor plan has been specified, motor commands u are 

generated by an optimal feedback controller which uses a state estimator to combine sensory 

feedback and forward sensory predictions (based on an efference copy of the motor 

command) in order to correct motor errors online in task-relevant dimensions (green 

arrows).
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Figure 2. Minimum intervention principle and exploitation of redundancy.
A. Unperturbed movements (black traces show individual hand movement paths) to narrow 

or wide targets tend to be straight and to move to the closest point on the target. Hand paths 

during the application of mechanical loads (red traces in response to a force pulse that 

pushes the hand to the right) delivered immediately after movement onset, which disrupt the 

execution of the planned movement, obey the principle of minimum intervention. That is, for 

a narrow target (left), the hand paths correct to reach the target whereas, for a wide target 

(right), there is no correction and the hand just reaches to another point on the target. B. 
Participants make reaching movements to targets. In a two-cursor condition, each hand 

moves its own cursor (black dots) to a separate target. In a one-cursor condition, the cursor is 

displayed at the average location of the two hands and participants reach with both hands to 

move this common cursor to a single target. During the movement, the left hand could be 

perturbed with a leftward (red) or rightward (blue) force field or remain unperturbed (black). 

C. When each hand controls its own cursor there is only one combination of final hand 

positions for which there is no error (center of circle). Optimal feedback control predicts that 

there will be no correlation between the endpoint positions (black circle shows a schematic 

distribution of errors). When the two hands control the position of a single cursor, there are 

many combinations of final hand positions which give zero error (black diagonal line; task-

irrelevant dimension). Optimal control predicts correction in one hand to deviations in the 

other leading to negative correlations between the final locations of the two hands, so that if 

one hand is too far to the left the other compensates by moving to the right (black ellipse). 

D. Movement trajectories shown for the left and right hand for perturbations shown in B 

(one-cursor condition). The response of the right hand to perturbations of the left hand 

shows compensation only for the one-cursor condition in accord with the predictions of 

optimal feedback control. In addition, negative correlations in final hand positions can be 

seen in unperturbed movements for the one-cursor but not two-cursor condition (not shown). 

Modified with permission from [52] (A) and [53] (B-D).
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Figure 3. Physical reasoning.
Participants must decide if a complex scene of blocks will fall and if so the direction of the 

fall. A model of their performance combines perception, physical reasoning, and decision-

making. Left. A Bayesian model of perception uses the sensory input y to estimate 

participant’s belief p(z0|y) regarding environment states such as the position, geometry, and 

mass of the blocks. Middle. Stochastic simulations based on samples from the posterior are 

performed using a noisy and approximate model of the physical properties of the world. The 

simulations use a forward model to sample multiple (superscripts) state trajectories over 

time (subscripts) z(i) = z0
(i), …,zT

(i) . Right. The outputs of this “intuitive physics engine” can 

then be processed to make judgments, such as the probability that the tower block will fall 

(Ffall) and the direction of the fall (Fdir). Experiments have indicated that humans are adept 

at making rapid judgments regarding the dynamics of such complex scenes and these 

judgments are consistent with predictions generated using this model which includes 

approximate Bayesian methods combined with internal forward models. Modified with 

permission from [123].
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