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It has been argued that epidemiology is currently going through a methodologic revolution 

involving the “causal inference” movement [1 2]. This proposes that observational studies 

should mimic key aspects of randomized trials, since this allows them to be rooted in 

counterfactual reasoning, which is said to formalize the natural way that humans think about 

causality [3–5]. These new methods have many merits, particularly for conducting studies of 

interventions; they have also led to technical analytic innovations [6–9].

However, we and others have argued that causal inference needs integration of a wider range 

of methods to answer the complex questions needed to improve population health[6–12]. 

Causal inference almost never hinges on a single method or a single study, but rather 

involves considering a wide variety of evidence[13]. Thus, we consider it unfortunate that 

the term “causal inference” is being used to denote a specific set of newly developed 

methods rather than taking a pluralistic approach that encompasses both the older traditional 

methods that we continue to use as well as the newer ones that have become available [9] 

(we use quotation marks to denote this randomized controlled trial (RCT)-mimicking set of 

“causal inference” methods, in contrast to the broader field of causal inference of which it is 

a part).

Environmental epidemiologists have always attempted to make inferences about causality 

from imperfect data and have discovered many major environmental causes of disease (e.g., 

contaminated water and cholera [14], air pollution and respiratory disease[15], Balkan 

nephropathy [16], and many more[17]), using “traditional” methods, i.e., those existing 

before the new “counterfactual based” methods. These traditional methods reflect the nature 

of population level exposures that are fundamental to environmental epidemiology. The 

purpose of this commentary is to describe the challenges of making causal inferences in 

environmental epidemiology and to describe complementary causal inference methods (both 

old and new). In particular, we describe how several methods can be integrated in a 

triangulation framework to improve causal inference in this field.
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Challenges to causal inference in environmental epidemiology

The term “environmental exposure” is sometimes used loosely to mean any exposure that is 

not genetic. However, the field of environmental epidemiology is typically restricted to 

“physical, chemical and (noninfectious) biological factors in our everyday environment”

[18], although some approaches may also include the global eco-environment[19] and the 

local social environment; many environmental exposures (e.g. pesticides) can also occur in 

the occupational environment, so the two fields overlap considerably. On the other hand, it 

does not usually consider individual behavioral factors. For example, environmental tobacco 

smoke exposure would be considered as an environmental epidemiology problem, whereas 

individual smoking behavior typically would not.

Environmental epidemiology has some relatively unique characteristics that have often made 

causal inference difficult, because it is inherently focused on exposures which occur in 

dynamic and evolving populations, with their particular societal characteristics. This is 

typified by issues such as climate change, urban design, public transportation, air pollution, 

and water and soil contamination, all of which usually affect individuals across entire 

communities. The implication of this is that it is often difficult to mimic an RCT, with 

specific well-defined interventions, and (conditional) exchangeability of exposure groups. 

An extreme but increasingly urgent example is to determine the effects of climate change on 

health: mimicking an RCT would require the existence and availability of similar societies 

that could be (cluster) randomized; this would require at least two planets for a study to be 

conducted successfully [20 21].

A related issue is that confounders will also often affect entire communities. For example, 

the association of population-level exposure to contaminated water with health outcomes, is 

likely to be confounded by other population-level factors such as the level of economic 

development, poor housing and indoor air pollution. Some sources of confounding so 

closely co-occur with the specific toxicants or pollutants that are the exposures of interest, 

such that methods dealing with collinearity and identifiability need to be considered[22]. 

This has been a particular issue in air pollution studies where it has been difficult to validly 

estimate the effects of individual components of PM2.5 pollution [23].

These methodologic difficulties mean that some environmental epidemiology questions 

cannot be answered simply by doing “better” studies that more closely mimic RCTs. A 

pluralistic approach is required, with the integration of evidence provided by a variety of 

study designs and approaches. Therefore, we briefly describe different approaches to causal 

inference that we feel have value in environmental epidemiology, and discuss the possibility 

of integrating findings in a triangulation framework. We group these methods into three 

general categories: (i) “traditional” methods; (ii) extensions of these traditional approaches; 

and (iii) triangulation of evidence.

Table 1 summarizes methods that we consider have specific value for causal inference in 

environmental epidemiology.
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‘Traditional’ methods

As noted above, environmental epidemiology is often concerned with population-level 

exposures. Thus, time trends and geographic differences, often disparaged as implying a 

lower level of causal evidence (“old-fashioned” descriptive epidemiology), may be 

particularly useful, both in generating new ideas and as a check on existing explanations[24]. 

For example, global asthma prevalence comparisons have provided strong evidence that 

“established” asthma risk factors such as allergen exposure, air pollution, and environmental 

tobacco smoke do not explain the population patterns, and are likely to be secondary rather 

than primary causes of asthma itself[25]. Ecologic studies have played a key role in 

identifying that arsenic in drinking water is a cause of cancer[26]. Similarly, international 

comparisons of the prevalence of chronic kidney disease of unknown cause are playing a 

crucial role in the search for the causes of this major public health problem[27].

Furthermore, findings from environmental epidemiology can be more convincing if they are 

replicated in different populations with different underlying patterns of confounding (an 

approach known as cross-context comparisons) [12]. For example, exposure to air pollution 

from truck traffic primarily occurs in poor people in high income countries whereas it is 

often more common in rich urban-dwellers in low- and-middle income countries; thus it is 

reassuring that findings for air pollution from truck traffic and asthma symptoms are similar 

in high-income- and low-and-middle-income countries.[28] The effects of environmental 

exposures can also be investigated in specific occupational populations where exposures are 

often higher, and confounding is often minimal, because there are usually few socio-

economic and behavioral differences between different groups of workers [29]. Thus, risks 

from low-level environmental exposures are rarely studied directly; rather, the effects of 

occupational exposures (which are higher and less subject to confounding) are studied, and 

the risks to exposed communities are estimated by extrapolation.

Extensions of traditional approaches

In this section we consider several extensions of traditional approaches, many of which have 

been used for decades in econometrics, but only applied to epidemiology more recently.

Instrumental variable (IV) analyses utilize variables that robustly relate to the exposure of 

interest in a way that they can be seen as as good as randomizing the exposure. Such 

variables, like any technique used for proper randomization, should not be related directly to 

the outcome, nor to potential confounders (i.e. other risk factors for the outcome). If such a 

variable is found, it has the potential to improve causal inference[30]. For example, one 

study, using wind speed and height of the planetary boundary layer as IVs that determine air 

pollution (and are not direct causes of mortality, nor likely to be associated with other risk 

factors for mortality), found evidence for an effect of local air pollution (at levels below the 

US standards) on daily death rates.[31] In another study, differences in the order that piped 

water was supplied to houses and the water company providing water, in Yemen, were used 

as IVs to test the effect of piped water supply on childhood diarrhea.[32 33] The results 

suggested that piped water increased childhood diarrheal diseases due to water rationing or 

broken pipes resulting in its contamination.
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Mendelian randomization, the use of genetic variants as IVs is increasingly used to explore 

causal effects in epidemiology.[34 35] While genetic IVs may be less prone than non-genetic 

IVs to violations of the assumptions of IV analyses,[35] they do not reflect the population-

level exposures that are the focus of this commentary. However, an extension of Mendelian 

randomization that uses gene–environment interactions to explore causality could have value 

in establishing underlying mechanisms in environmental epidemiology. The assumption is 

that genetic variants that are known to influence the metabolism of, for example, pollutants 

would only be associated with the relevant health outcomes in populations exposed to that 

pollutant. For example, trichloroethylene (TCE) has been found to be associated with renal 

cancer risk in workers with at least one intact GSTT1 allele (OR=1.88), but not among 

workers with two deleted alleles (OR=0.93)[36]. Similarly, active GSTT1 genotype was 

associated with renal cancer risk in those exposed to TCE, but not in those unexposed to 

TCE. Such analyses are also particularly relevant to studies which explore mechanisms 

through which population level exposures might act [37].

There are two types of “negative control” studies: outcome and exposure negative controls. 

Negative control outcome studies use associations between the exposure of interest and a 

condition thought to be unaffected by the exposure to highlight potential residual or 

uncontrolled confounding.[12] These studies are widely used in pharmacoepidemiology, 

where the control outcomes are known as prespecified falsification outcomes [38] We have 

found few examples of this approach in environmental studies of physical or chemical 

exposures, but we found one example used in social environmental epidemiology. Numerous 

studies have shown associations between social networks (i.e. where persons with social ties 

are more likely to have a similar outcome than two random people from the same 

population) and the spread of complex health related outcomes (e.g. smoking, obesity, and 

depression). The assumed causal mechanism here is that social networks influence behavior, 

such that (for example) people of a healthy weight who change their social networks towards 

groups who are overweight or obese, may increase their own risk of becoming overweight or 

obese (because of moderating their ideas of what constitutes a healthy weight, and changing 

behaviors to those of the new social network which are more obesogenic). However, a 

prespecified falsification/negative outcome control study suggested that such hypothesized 

mechanisms were unlikely, since they found similar associations with outcomes that the 

authors a priori assumed could not be explained by these mechanisms (acne, height, and 

headaches).[39] On the other hand, negative control exposure studies have been widely used 

in studies of the developmental origins of disease, typically by using the association between 

paternal exposures (negative control) and outcomes to highlight potential uncontrolled 

confounding (see eg [40]). Population level exposures in environmental epidemiology make 

negative control exposure studies less plausible in environmental epidemiology, but we 

would encourage the greater use of negative control outcome studies. For example, exposure 

to pesticides from aerial spraying often affects whole districts, and a number of different 

health outcomes may be affected by these pesticides, but showing associations with one or 

more outcomes where a confounded association is likely but a causal effect not plausible 

(e.g. deaths from violence) would raise questions as to whether the observed associations for 

other outcomes might be also due to confounding.
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Regression discontinuity designs[41–43] can be applied when exposure is assigned at a 

threshold, as is often the case in medicine, particularly if the threshold is a continuously 

measured variable. The assumption is that people just above or just below the threshold will 

be assigned different exposures, but that these people are in fact very much alike, given the 

likely random errors in measuring the variable used for the assignment. An example is the 

assignment of antiretroviral therapy according to CD4 count, where the idea is that the 

persons just below or above the threshold may differ little; another is the study of the effect 

of mailing of a warning letter by a health authority to general practitioners who prescribed 

an inordinate amount of a particular drug (say, a painkiller or sleeping drug) where the idea 

is that the general practitioners just above and just below the threshold for mailing the letter 

might be similar. The design has been applied in a variety of other contexts, including a 

study of ozone, smog warnings, and asthma hospitalizations [44].

Difference in differences analyses require that the outcome is measured repeatedly over 

time. They compare the mean change in outcome over time between exposed and unexposed 

groups (or between different levels of exposure). In all categories of exposure there must be 

at least one measure of the outcome before, and at least one measure after, exposure 

occurred. The assumption is that baseline differences in outcome (i.e. prior to exposure) 

reflect differences in confounders and that rates of change in outcome are similar until the 

exposure occurs (parallel slope assumption). Under this assumption, the differences in 

outcome between those exposed and those unexposed, ‘before’ versus ‘after’, reflects the 

causal effect of exposure. In one example, this method was used to explore the impact of 

greening vacant urban spaces (in comparison with urban spaces which were not greened), 

finding some evidence of benefits on criminal behavior, but limited effects on health 

outcomes[45].

Triangulation of evidence

The idea of triangulating evidence from different methods and data sources has been 

proposed and used implicitly for decades, often without explicitly describing it as 

triangulation.[10 12 46] In fact, the term “triangulation” has been used in at least two 

different ways in health research: (i) to refer to multiple lines of evidence from different 

research approaches, including integrating epidemiologic findings with other forms of 

evidence; and (ii) to refer within the field of epidemiology to different analytical approaches/

populations that have been chosen because they have differing key sources of bias (ideally in 

different directions)[12].

The first type of triangulation is routinely used in assessing environmental health research, 

e.g. by the International Agency for Research on Cancer (IARC) Monographs Programme, 

which integrates epidemiologic, animal, and mechanistic evidence to infer causality for 

various potential carcinogens, including environmental carcinogens. One application was the 

assessment of the health effects of environmental tetrachlorodibenzo-p-dioxin (TCDD; 

dioxin) exposure. The main health effects are likely to occur due to exposure to low levels 

that are near-ubiquitous across populations, but these were difficult, if not impossible, to 

elucidate. However, by integrating evidence from different study designs and methods 

(occupational studies in a number of different countries, animal studies, and mechanistic 
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studies showing that TCDD increases the risk of cancer through its action at the aryl 

hydrocarbon (Ah) receptor), IARC has concluded that there is sufficient evidence in human 

(i.e. epidemiologic) studies that dioxin is a cause of cancer[47]. A similar example is that of 

Balkan Endemic Nephropathy (BEN)[16], for which a wide variety of evidence 

(epidemiologic, genetic, toxicologic) was required before it was established that the likely 

cause was chronic dietary exposure to aristolochic acid, a contaminant of wheat in the 

endemic regions. These can be regarded as examples of triangulation in that different 

methods were brought to bear on the issue, with studies being conducted in a number of 

different populations; however, the term “triangulation” was not used in either.

As noted above, the second type of triangulation refers to triangulation of different types of 

evidence within epidemiology, which might be called “epidemiologic triangulation”. We 

have had difficulty in finding examples of the latter approach within environmental 

epidemiology, and we propose that this approach be used more systematically in this field to 

improve causal inference and understanding in human populations. Criteria for its use in 

causal inference in epidemiology have been proposed recently, and these specify that results 

from at least two (but ideally more) methods that have differing key sources of unrelated 

bias be compared[12]. If evidence from such different epidemiologic approaches all point to 

the same conclusion, this strengthens confidence that that is the correct causal conclusion, 

particularly when the key sources of bias of some of the approaches would predict that the 

findings would point in opposite directions.

The difference between epidemiologic triangulation and the systematic review approach of 

trials or epidemiologic studies is that a systematic review seeks similar studies, which are 

expected to yield similar findings, and hence can be grouped in a meta-analysis to obtain a 

more precise estimate of an exposure. Epidemiologic triangulation, in contrast, looks for 

different types of studies, which might be expected to yield different findings, because they 

involve different potential biases, or biases in different directions; this allows one to assess 

the likely existence or absence of the biases that one might be concerned about in one 

particular type of study.

Conclusions

Where does this leave us? It is opportune to write this commentary in Epidemiology, which 

has published many of the successes of the causal inference movement, and which is also the 

official journal for the International Society of Environmental Epidemiology (ISEE). We are 

not arguing that ‘causal inference methods’ that mimic randomized controlled trials are not 

useful; for example, they can improve individual studies with individual-level exposures that 

can be seen as interventions. Rather, we are arguing that they form only part of the larger set 

of causal inference methodologies. There have been older methods, as well as other 

developments in methodology, which are complementary to, and in some instances superior 

to ‘causal inference methods’, at least for some risk factors or in some contexts. All methods 

have assumptions that are often not possible to (fully) test. We believe that all valid methods 

should be part of the (environmental) epidemiology toolkit and that integrating the resulting 

evidence in a framework that acknowledges the key sources of bias of each will provide for 

better causal inference.
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Table 1

Summary of selected epidemiological approaches that could be triangulated to improve causal inference 
in environmental epidemiology (Note: This is illustrative rather than exhaustive)

Approach Assumptions Examples

Traditional methods

Cross population comparisons[12 48] Populations being compared have 
different confounding structures;
Beyond confounding, the effect of the 
exposure is the same in populations 
being compared

Findings for truck traffic air pollution and 
asthma are similar in high-income countries 
and low-and-middle income countries[28]

Occupational (homogeneous) cohorts[29] Different jobs result in different 
environmental exposures
Distributions of confounders are similar 
in groups doing different jobs

There is little or no confounding by smoking 
in studies of occupational causes of lung 
cancer[29], many of which may also be 
considered as environmental exposures

Extensions of traditional approaches

Instrumental variable (IV) analyses IV robustly relates to exposure of interest
IV is not related to confounders of 
exposure outcome association
IV is not related to other (independent of 
the exposure of interest) risk factors of 
the outcome

Use of wind speed and height of the planetary 
boundary layer as IVs to test the effects of 
local air pollution on death.[31]

Gene–environment interactions (as an extension 
of Mendelian randomization)

Genetic variants would only be 
associated with the outcome in those 
who have the environmental exposure 
Groups can be accurately stratified into 
those exposed and unexposed

Active Glutathione S-transferase theta-1 
(GSTT1) genotype is associated with renal 
cancer risk in those exposed to 
trichloroethylene (TCE), but not in those not 
exposed to TCE [36]

Negative control outcome (also known as pre-
specified falsification)

There is no plausible causal effect of the 
real exposure on the negative control 
outcome Confounding structures are 
similar for the real and negative control 
outcome

Similar patterns of associations of social 
networks with acne, height and headaches 
(negative control outcomes) to those seen for, 
e.g., obesity and smoking, suggest that the 
assumed mechanisms of developing ‘new 
norms’ for obesity and smoking, and 
behaviours related to these, are not causal 
mechanisms. [39]

Regression discontinuity Exposure is assigned on the basis of a 
threshold of a continuous variable
Exposure assignment is judged to be 
essentially random close to the threshold

Smog alerts cause individuals to take 
substantial action to reduce exposure, thus 
reducing the risk of asthma 
hospitalizations[44]

Difference in differences Baseline differences in outcome reflect 
confounding Rates of change in outcome 
are similar before exposure occurs
Differences in differences are due to the 
exposure and no new confounding was 
introduced at the time of exposure

Greening vacant urban spaces (in comparison 
with urban spaces that have not been greened) 
reduces criminal behavior but has limited 
effects on health outcomes[45]

Triangulation of epidemiological evidence

Comparison and integration of evidence from 
different epidemiological methods which have 
differing key sources of bias

Bias is in different directions in the 
populations and/or methods that are 
being compared
Thus, if the findings are similar in 
different populations, or using different 
methods, this indicates that bias is not a 
major problem

Researchers have used this spontaneously in 
some epidemiological fields for some decades, 
though we could not find examples in 
environmental epidemiology. We recommend 
that it should be used and formalized more in 
environmental epidemiology.
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