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Interferon inducible X-linked gene CXorf21 may
contribute to sexual dimorphism in Systemic Lupus
Erythematosus
Christopher A. Odhams1,5,10, Amy L. Roberts1,2,10, Susan K. Vester 1, Carolina S.T. Duarte1,

Charlie T. Beales 1, Alexander J. Clarke 3, Sonja Lindinger1,4,6, Samuel J. Daffern 1,7, Antonino Zito 2,

Lingyan Chen 1,8, Leonardo L. Jones1, Lora Boteva1,9, David L. Morris 1, Kerrin S. Small 2,

Michelle M.A. Fernando1, Deborah S. Cunninghame Graham1 & Timothy J. Vyse 1

Systemic lupus erythematosus (SLE) is an autoimmune disease, characterised by increased

expression of type I interferon (IFN)-regulated genes and a striking sex imbalance towards

females. Through combined genetic, in silico, in vitro, and ex vivo approaches, we define

CXorf21, a gene of hitherto unknown function, which escapes X-chromosome inactivation, as

a candidate underlying the Xp21.2 SLE association. We demonstrate that CXorf21 is an IFN-

response gene and that the sexual dimorphism in expression is magnified by immunological

challenge. Fine-mapping reveals a single haplotype as a potential causal cis-eQTL for CXorf21.

We propose that expression is amplified through modification of promoter and 3′-UTR
chromatin interactions. Finally, we show that the CXORF21 protein colocalises with TLR7, a

pathway implicated in SLE pathogenesis. Our study reveals modulation in gene expression

affected by the combination of two hallmarks of SLE: CXorf21 expression increases in a both

an IFN-inducible and sex-specific manner.
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Females have a clear immunological advantage over males,
with reduced susceptibility to infection at an early age and a
superior ability to produce antibodies and serum IgM fol-

lowing immune challenge1,2. The immunological gain in females
is thought to contribute to the striking sexual dimorphism
observed in human autoimmune disease – where over 80% of
sufferers are female3 – and corroborates the hypothesis that
genetic risk to autoimmunity is an evolutionary consequence of
positive selection for favourable immune responses to infection4.
Systemic lupus erythematosus (SLE), an autoimmune disease
characterised by anti-nuclear autoantibodies and a type I inter-
feron (IFN) signature, displays one of the most striking female-
biased imbalances (9:1) in disease prevalence. Although the
underlying mechanism has yet to be fully elucidated, a prominent
role of X chromosome dosage is supported by the karyotypic risks
for SLE. Males with Klinefelter’s syndrome (47, XXY) have a 14-
fold increased prevalence of SLE compared to 46, XY males,
which approximates to the prevalence seen in 46, XX females5.
Furthermore, whereas 45, XO females have lower risk6, SLE
prevalence in 47, XXX females is ~2.5 times higher than in 46, XX
females7. Indeed, mammalian X chromosomes, for which males
are hemizygous, are enriched for immune-related genes8.

X chromosome inactivation (XCI) is a unique mammalian
dosage-compensation mechanism which equalises expression of
X-linked genes between sexes9. This random process results in
either the paternally or maternally inherited X chromosome
becoming inactivated (Xi) through enriched heterochromatic
modifications, which promotes gene silencing to leave one tran-
scriptionally active X chromosome (Xa) in females10. However,
an estimated 15% of X-linked genes, preferentially found on the
Xp arm, escape XCI and thus display expression from both
chromosomes, although typically expression is still lower from
the Xi compared with Xa11. A further 10% of X-linked genes
display variable expression from the Xi – an observation which
itself is variable between both individuals and cell types, and
throughout development and ageing12. It is these XCI-escaping
genes, through their partial or complete lack of dosage compen-
sation, that are thought to contribute to genetic sexual
dimorphism and phenotypic differences in X-chromosome
aneuploidies13. Furthermore, the relaxation of Xi silencing in
female mammals includes increases in the expression of several
immunity-related genes14. How genes that escape XCI contribute
to sexually dimorphic diseases has not been thoroughly studied.

A SLE association at the Xp21.2 locus (rs887369; PMETA=
5.26 × 10−10; OR= 1.15) was recently identified in a European
GWAS and replication study15. Intriguingly, this locus is encoded
outside the pseudo autosomal region (PAR) and the lead SNP (a
synonymous variant) resides in the final exon of CXorf21, a
protein-coding gene of unknown function. CXorf21 has been
shown to escape XCI in lymphoblastoid cell lines (LCLs), and is
one of only 14 X-linked genes that is differentially expressed
between Klinefelter’s syndrome (47, XXY) and 46, XY males in
LCLs16,17. A recent whole-blood gene expression study also
identified CXorf21 as one of seven genes upregulated in female
SLE patients displaying disease flare relative to those with
infection18.

Despite the stark karyotypic risk, there remains a lack of
understanding of the contribution of the X chromosome to SLE,
which is a leading cause of death in females aged under 34 years
of age19. Here we describe fine-mapping and characterisation of
the association at Xp21.2 through complementary genetic, in
silico, in vitro and ex vivo approaches using both existing and
newly generated data (all methods are summarised as a flow chart
in Supplementary Fig. 1). We demonstrate that the candidate
gene, CXorf21, is an IFN-responder with both cell-type specific
and sexually dimorphic expression amplified by cellular

activation. Additionally, we provide evidence at the protein-level
of CXORF21 co-localisation with TLR7; a gene causatively linked
to SLE and which also evades XCI. Our study demonstrates IFN-
inducible magnification of sexual dimorphic gene expression
contributing to SLE risk.

Results
Genetic refinement of the Xp21.2 SLE susceptibly locus. The
source of all cohorts used within this manuscript along with the
analyses performed are presented as a flow diagram in Supple-
mentary Fig. 1. The UK10K-1000 Genomes Project Phase 3
reference panel20 was firstly used to impute the Xp21.2 locus of the
Bentham and Morris et al. SLE GWAS (10,995 individuals of
European ancestry)15. Logistic regression revealed a synonymous
variant, rs887369 (MAF= 0.24), to be the most significantly
associated SNP (P= 3.34 × 10−7; OR= 1.43, 95% C.I= 1.23–1.66;
Fig. 1a) and conditional analysis upon rs887369 showed no evi-
dence of independent association signals (Fig. 1b). Haplotype
analyses revealed that rs887369 tags a single, 1 kb haplotype block
comprising five near-perfectly correlated SNPs mapping to the 3′
region of CXorf21 (Fig. 1c)– encoding a small, 301-amino acid
protein of unknown function. SNPs rs2529517 (distal) and
rs887369 (proximal) define the boundaries of the associated hap-
lotype, which map downstream of the 3′-UTR of CXorf21, and to
the gene’s third and final exon respectively (Fig. 1c). Three of the
five associated SNPs are transcribed from CXorf21, with rs887369
effecting a synonymous change (V209) and both rs2532873 and
rs2710402 residing in the 3′-UTR. The remaining two SNPs,
rs2429517 and rs2429518, are located in the downstream inter-
genic region of CXorf21. The associated haplotype is distinctly
separated from neighbouring haplotypes by high recombination
(D′ < 0.6, r2 < 0.2) and accordingly, the risk haplotype itself
represents the only observed association with SLE (χ2= 29.87, P=
4.63 × 10−8; χ2 test; Fig. 1d).

CXorf21 is known to escape XCI16. We performed a statistical
test on the association with rs887369 to see if a model that
assumed the SNP was in an area that escaped inactivation fitted
better than a model assuming full inactivation. A likelihood ratio
test to fit both association models failed to reject the model of full
inactivation (P= 0.78). Therefore, from our case/control data we
have no evidence against the hypothesis that this association lies
in an area of full inactivation. To extend these analyses, we
determined the odds ratios of the risk alleles in females and males
separately. We observed a higher odds ratio for females
homozygous for the rs887369 [C] risk allele with respect to
homozygous for [A] non-risk (OR= 1.58, 95% C.I. 1.29–1.93)
compared to the males (OR= 1.46, 95% C.I.= 1.10–1.92), who
are hemizygous for the risk or non-risk alleles. The higher odds
ratio in females is likely to reflect a gene dosage effect secondary
to some degree of loss of X inactivation.

The risk haplotype increases expression of CXorf21 in LCLs. As
no protein-altering variants were identified through fine-map-
ping, we sought to establish whether the SLE risk alleles at
CXorf21 colocalised with cis-eQTLs for gene transcription. Non-
random inactivation of the X chromosome (skewing) and varia-
bility in the degree of silencing of gene expression from the
inactivated X in females complicates the identification of X
chromosome eQTLs in females. Therefore, to study cis-eQTLs at
the CXorf21 locus, we employed two complementary methods of
assessing the influence of the risk haplotype, tagged by rs887369,
on the expression of genes within the Xp21.2 region: (1) using the
hemizygosity of males to isolate the allelic effects; (2) removing
females exhibiting strong evidence of extreme skewed XCI to

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10106-2

2 NATURE COMMUNICATIONS |         (2019) 10:2164 | https://doi.org/10.1038/s41467-019-10106-2 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


a
Regional association plot of the CXorf21 SLE susceptibility

locus tagged by rs887369
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Fig. 1 Genetic refinement of the Xp21.2 (rs887369) SLE susceptibility locus. a Association plot of the 1Mb region (X:30,077,846–31,077,845) of SLE-
associated region Xp21.2 following genotype imputation to the level of UK10K-1000G Phase III and association testing as described (n= 10,995 individuals
of European ancestry). rs887369 is shown as the most significantly associated lead SNP. Genetic association plots were generated using LocusZoom.
b Association plot of the 1Mb region following conditional analysis on lead SNP rs887369. c Haplotype construction and visualisation of the Xp21.2 SLE
susceptibility locus conducted in Haploview 4.2. The top panel shows the structure of the three blocks and haplotypes surrounding the lead SNP rs887369
(highlighted in red, block B, SNP #15). Blocks are separated by regions of high recombination as specified by D′ and r2. The frequency of each haplotype is
denoted. The middle panel presents the colour-coded haplotypes and individual SNPs by their genomic coordinates around CXorf21. The bottom panel
shows the LD structure and pair-wise correlation (r2) of SNPs, and length of each block. d Right table: case–control association analysis of each haplotype
using Haploview 4.2
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reduce the variability in the degree of skewing of X-chromosome
expression.

The associated haplotype, tagged by rs887369 [C], correlated
with increased expression of CXorf21 in LCLs from male samples
in the Geuvadis RNA-Seq dataset (β= 1.56, P= 1.94 × 10–03;
linear-regression; Fig. 2a). The expression of neighbouring genes
GK and TAB3 showed no significant association with rs887369
(P= 0.7 and P= 0.09, respectively, linear-regression, Fig. 2a).
Many variants may act as cis-eQTLs, however it is important to
note that rs887369 was the most significantly associated cis-eQTL
for CXorf21 (Fig. 2b) and the remaining cis-genes (the MAGEB
family and NR0B1; +/−1Mb from rs887369) were not expressed
in LCLs (RPKM < 1).

The allelic effect on CXorf21 expression was only nominally
significant when performing the cis-eQTL analyses in female
individuals from Geuvadis RNA-Seq dataset in LCLs (P= 0.02;
linear-regression; Supplementary Fig. 2a). In order to investigate
cis-eQTL effects at rs887369 in females, we interrogated an
additional RNA-Seq gene expression dataset in LCLs constructed
exclusively from female donors from the TwinsUK cohort21. This
dataset was selected for analysis as it had been previously
analysed for skewing of X chromosome inactivation using allele
specific expression (ASE) of the Xist silencing lncRNA (manu-
script in preparation). In order to study potential cis-eQTLs at the
CXorf21 locus, we removed individuals showing marked skewing,
in whom the Xist ASE showed that one parental X chromosome
contributed less than 20% of the Xist expression. In this subset of
412 non-skewed individuals, we observed a statistically significant
increase of CXorf21 expression with respect to the rs887369 [C]
risk allele in females (P= 7.00 × 10−03; linear-regression; Fig. 2c).

We validated this effect in vitro by qPCR of independent LCL
samples selected from the HapMap Project on the basis of their
genotype at rs887369. In these cells a 1.9-fold increase of CXorf21
mRNA was detected between rs887369 homozygous risk and non-
risk females (P= 4.1 × 10−5; t-test ;Supplementary Fig. 2b).
Following validation of the anti-CXORF21 antibody (Supplemen-
tary Fig. 3), the observed increase in expression by the risk allele
was found to persist at protein-level (β= 0.49, P= 2.88 × 10−5;
Fig. 2d; raw data are shown in Supplementary Fig. 2c).

Risk variants increase CXorf21 expression upon activation. We
expanded our analysis and interrogated a genotype-expression
cohort from a range of human primary ex vivo immune cells.
When assessing male samples only, we found that the associated
haplotype, tagged by rs887369, was a significant cis-eQTL
for CXorf21 in both Lipopolysaccharide (LPS) stimulated (P=
1.08 × 10−03) and IFN-γ-stimulated (P= 1.10 × 10−3; linear-
regression) monocytes (Fig. 2e). The [C] risk allele once again
correlated with increased CXorf21 expression. Interestingly, no
statistically significant cis-eQTL associations were observed in the
unstimulated experiments: B cells, NK cells, neutrophils and
monocytes, which suggests an activation-state specificity of
the cis-eQTL. When the same analysis was performed in the
female samples of the same cohort, no significant cis-eQTLs were
detected in any of the cell types (Supplementary Fig. 2d).

Epigenetic fine-mapping of the Xp21.2 associated haplotype.
Using the Roadmap Epigenomes Project22 (12 different histone
marks across 127 cell and tissue types), we used chromatin fine-
mapping to functionally prioritise the five SNPs carried on the 1-
kb associated haplotype. The associated SNPs localised only to a
single histone modification, H3K36me3, across five cell types:
blood mononuclear cells, peripheral blood B cells, monocytes,
neutrophils and the lymphoblastoid cell line GM12878. Analysis
of the signal value distribution of H3K36me3, designating regions

of active transcription, across these cell types revealed that
rs887369 localised to the binding site summit of H3K36me3
whilst the remaining four SNPs on the haplotype localised to the
tails of the signal distribution (Fig. 3a). The greatest enrichment
of H3K36me3 across the entire CXorf21 gene locus was con-
centrated to ±100bp of rs887369 in monocytes (P= 6.1 × 10−14;
MACS2) and neutrophils (P= 2.0 × 10−17; MACS2; Fig. 3b). The
rs887369 SNP also localised to the binding site summit of
H3K36me3 in primary B cells, LCLs and blood mononuclear
cells, with significant, albeit weaker enrichment.

As verification, we performed the same analysis using ChIP-
Seq experiments (n= 612) from the venous blood portion of the
Blueprint Epigenetics consortium23 (8 modifications across 24
unique cell types from 83 donors). Only 22 ChIP-Seq experiments
presented evidence of overlap with the SLE-associated haplotype,
and strikingly, all of these intersections were again for the
H3K36me3 chromatin modification. No other histone modifica-
tions intersected this region. All five SNPs on the 1 kb SLE-
associated haplotype were found to overlap with H3K36me3 in
monocytes, B cells and neutrophils – corroborating the Roadmap
Epigenomics data. We were unable to make robust conclusions
on differential H3K36me3 signal between the sexes as the sample
sizes per cell-type were too small (Supplementary Fig. 4,
Supplementary Table 1).

Lastly, the associated SNPs in the 3′-UTR of CXorf21 showed
no evidence of disrupting a microRNA binding site after
interrogation using miRDB24.

The risk haplotype interacts with the promoter of CXorf21. We
sought to investigate a conceivable molecular mechanism whereby
the SLE-associated haplotype at the 3′ end of CXorf21 modulates
expression through alteration of chromosome interactions. The
promoter capture Hi-C dataset curated by the CHiCP resource25

was interrogated. This resource comprises Hi-C data from 17
primary immune cell types taken from healthy donors. Three of
the five SNPs (rs887369, rs2710402 and rs2532873) on the asso-
ciated haplotype, which are closest to CXorf21, reside within the
chrX:30576528–30582605 target region. Across all primary
immune cell types tested, the target region was found to interact
with four baits (Fig. 3c): the promoter region of CXorf21
(chrX:30595248–30603761); the promoter of GK; and two intronic
antisense RNAs of TAB3 (TAB3-AS1 and TAB3-AS2). Significant
bait-target region interactions (CHiCAGO score ≥ 5) were detec-
ted exclusively in neutrophils (Fig. 3d), where the CXorf21 pro-
moter bait interaction presented the greatest strength of
interaction with the risk haplotype target region (6.09). Strong but
sub-threshold interactions (3 ≤CHiCAGO score < 5) were also
detected for the risk haplotype target and the CXorf21 promoter
bait region in monocytes (3.72) and naïve B cells (3.15). The
strength of the interaction score between the risk haplotype target
region and the CXorf21 promoter was found to correlate strongly
with the signal strength of epigenetic marks (from ENCODE26)
indicative of active gene-expression (H3K4me3 and H3K27ac) for
matched cell types (Fig. 3e). These findings suggest that the 3′-
promoter interaction of CXorf21 is more pronounced in the cell
types in which CXorf21 is expressed, and the interaction itself is
involved in regulation of expression. In fact, by assessing the
transcription factor landscape at the CXorf21 locus, we found
significant binding events of RNA polymerase II (POLR2A) at the
3′ SLE-associated region in immune cell types only; corroborating
our hypothesis that the observed chromatin looping is necessary
for transcriptional regulation (Supplementary Fig. 5).

Sexual dimorphic expression is magnified upon activation.
GTEx RNA-Seq data27 across 45 different cell/tissue types
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confirmed that there is significant sexual dimorphic expression of
CXorf21 in both LCLs and thyroid tissue (LCLs: 1.78-fold greater in
females, P= 1.10 × 10−5, thyroid: 1.33-fold greater, P= 2.65 × 10−3

following Bonferroni multiple testing correction; t-test; Supple-
mentary Fig. 6a and Supplementary Table 2). Neighbouring genes
GK and TAB3 were equally expressed in both sexes, in both LCLs
and in the cell types in which both genes are most expressed,
suggesting escape from XCI at this locus is restricted to CXorf21.
Using HapMap LCLs selected on the basis of their genotype at
haplotype-tagging rs887369, we employed the validated anti-
CXORF21 antibody (Supplementary Fig. 3) to quantify protein
abundance by western blot. When we examined cell lines that all
carried at least one risk haplotype, we confirmed that protein
expression was higher in females (Supplementary Fig. 6b): females
harboured 3.6 times more CXORF21 than males (P= 0.006; t-test).
These findings imply that the slight variation in CXorf21 mRNA
results in an amplified effect on overall protein abundance. To
ensure these results were not a consequence of monoallelic
expression of CXorf21 in pauciclonal LCLs, we assayed CXorf21
expression from microarray experiments across a range of primary
ex vivo immune cells and found, as with other XCI escaping genes,
the effect size of CXorf21 expression between sexes was cell-type
specific11. In resting B cells, NK cells, neutrophils and monocytes,
no significant difference in transcript abundance of CXorf21
between sexes was observed (Supplementary Fig. 6c, Supplementary
Table 3). However, though we see global increase of CXorf21
expression in both sexes, a striking sexual dimorphic responses to
LPS- or IFN-γ-stimulation in monocytes was observed (Fig. 4; PLPS
= 1.41 × 10−12; PIFN-γ= 9.29 × 10−8; t-test). Transcript abundance
of CXorf21 in monocytes is therefore greatest in females under
immune-stimulated conditions.

CXorf21 is a likely interferon response gene. Given the marked
increase of CXorf21 expression in stimulated immune cells
(including LCLs which exhibit a partially activated phenotype28)
and the observed up-regulation of IFN-regulated genes in SLE29,
we investigated whether CXorf21 is an interferon response gene
by profiling gene expression using in-house microarray data in
primary ex vivo B cells taken from healthy females (n= 49 in

total, of which n= 32 were treated with IFN-α). We observed
CXorf21 is one of eighteen X chromosome genes (including TLR7,
IL13RA1 and ELF4) which were up-regulated in response to IFN-
α stimulation (fold-change: 2.41; P= 6.0 × 10−9; ANOVA;
Fig. 5a). No other Xp21.1 gene was modulated by IFN-α. We
profiled the epigenetic landscape surrounding the CXorf21 locus
in ENCODE data and detected significant and localised binding
events of NF-κB, STAT1, STAT2, STAT3, IRF4 and IRF3 at the
immediate promoter region of CXorf21 in LCLs (Fig. 5b). We
also identified a single interferon-stimulated response element
(ISRE) +25bp upstream of the CXorf21 transcription start site
(TSS). This sequence motif and the array of interferon regulatory
factors was not detected in any of the promoters of other genes
within the Xp21.2 locus (Fig. 5b).

Functional characterisation of the Xp21.2 SLE risk locus. Eight
genes are encoded at the Xp21.2 SLE risk locus (rs887369; P=
3.34 × 10−7; OR= 1.43): four Melanoma Antigen B (MAGEB)
family genes (MAGEB1-4), NR0B1 encoding the DAX1 nuclear
receptor, GK (glycerol kinase), TAB3 (TGF-beta activated kinase
1 and MAP3K7 binding protein 3) and CXorf21 (Fig. 1a; Sup-
plementary Table 4). None of these eight genes had reported
associations with immune-related phenotypes in human
or mouse.

CXorf21 is the only gene in the locus with a discrete immune-
specific mRNA expression profile; being most highly expressed in
the spleen, appendix, bone marrow and lymph nodes (Protein
Atlas; Supplementary Fig. 7, GTEx and FANTOM5 validation in
Supplementary Fig. 8). This suggests the mechanism by which the
SLE-risk haplotype is affecting disease risk is through candidate
gene CXorf21. To refine this analysis in terms of cellular
expression, we used data from Blueprint Epigenome (RNA-
sequencing) and BioGPS (microarray) to show that within
immune cell types, the expression of CXorf21 is largely restricted
to monocytes, neutrophils and B cells (Supplementary Fig. 9). We
corroborated these findings in RoadMap Epigenomics data and
found a striking chromatin landscape around the transcription
start site of CXorf21, indicative of epigenetic silencing in non-
immune cell types (Supplementary Fig. 10). The expression
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profile of CXorf21 at protein-level was largely consistent with the
mRNA data; though CXORF21 protein was found to be in equal
abundance in certain secondary immune tissue such as the bowel
and skin (Supplementary Fig. 11).

RNA-Seq co-expression analysis across a range of human cell
and tissue-types was undertaken using the COEXPRES algo-
rithm30. The results indicate that GPR65 (G-couple protein
receptor 65) tops the ranking, whose protein product is important
in lysosomal function31. Examination of the top 100 ranked genes
revealed the expression signature of CXorf21 correlated with the
Toll-like receptor (TLR) signalling pathway including TLR7,
TLR6, PIK3CG and PIK3CD (Supplementary Table 5)30, of which
TLR7 was highest ranked. The correlation between the expression
of the two X-linked genes, CXorf21 and TLR7, was replicated in
TwinsUK RNA-Seq data21 from LCLs from non-skewed females
(n= 271; ρ= 0.38; P= 6 × 10−11).

In order to gain further insight into the potential function of
CXORF21, we utilised high-throughput affinity-purification mass
spectrometry data from BioPlex32 and revealed a high confidence
(quantitative score: 0.999) protein–protein interaction between
CXORF21 and SLC15A4, encoded by the SLE susceptibility gene
SLC15A4 (rs1059312; PMETA= 1.48 × 10−13; OR= 1.17)15.
SLC15A4 is an immune-restricted lysosomal amino-acid trans-
porter required for TLR7- and TLR9-mediated type I IFN
production in dendritic cells and B cells in lupus33. Interestingly,
in the BioPlex data, CXORF21 was also found to interact with
itself, suggesting probable oligomerization of this protein.

Protein level correlates with disease activity in females. In a
modest cohort (ncases= 19; ncontrols= 13) we did not observe a
statistically significant difference in CXORF21 protein abundance

between female case and controls in CD14+ monocytes or
CD19+ B cells (Supplementary Fig. 12). However, we observed
an age-dependent correlation between CXORF21 and SLE
Disease Activity Index (SLEDAI).CXORF21 protein abundance is
positively correlated with SLEDAI in SLE females <35 years of age
(CXORF21 ~ SLEDAI * Stratified Age) in both CD14+ mono-
cytes and CD19+ B cells (Supplementary Fig. 13).A likelihood
ratio test (LRT) rejected the model of SLEDAI as a single variable
(upper panels Supplementary Fig. 13) in favour of an interaction
model in monocytes (LRT P= 0.0002) and B cells (LRT P=
0.0006). The rejection of the single variable models are also
supported by BIC (ΔBICmonocytes= 8.1; ΔBICBcells= 5.9). We
observed a significant interaction term (SLEDAI * Stratified Age)
in monocytes (P= 0.002), though the interaction term in B cells
did not pass multiple testing correction (P= 0.011; lower panels
Supplementary Fig. 13).

CXORF21 protein may act within endosomal pathway.
CXORF21 is a small protein of ~34 kDa as identified by Western
Blot. Very little of the secondary/tertiary protein structure of
CXORF21 could be accurately determined by the Phyre bioin-
formatics prediction tool34. Thus, to gain insight into the pro-
tein’s function we sought to determine its cellular location in
ex vivo cells from healthy females and the GM12878 lympho-
blastoid cell line. We undertook multispectral imaging flow
cytometry (MIFC) with a range of labels for different organelles.
The results demonstrated minimal co-localisation of CXORF21
with nuclear, Golgi or lysosomal markers in ex vivo PBMCs, and
this was not affected by IFN stimulation (Supplementary Figs. 14
and 15). In view of these negative findings and the data showing
co-expression of CXorf21 with components of the Toll-like
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0.01; absolute fold-change >2). b Epigenetic landscape of CXorf21 using ENCODE transcription factor binding data in LCLs (GM12878 cell line). All five
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receptor signalling pathway (Supplementary Table 6), we utilised
the increased resolution of structured illumination microscopy
(SIM) to determine whether there was any evidence for coloca-
lisation of CXORF21 with TLR7. Representative images for the
staining in resting and stimulated ex vivo B cells are shown
(Fig. 6a through 6d). We quantified the correlation between
signals obtained from CXORF21 with TLR7 staining (Fig. 6e) and
determined the colocalisation of the two staining signals in B cells
using Mander’s co-efficient (see Methods). These analyses were
undertaken in both resting B cells and stimulated B cells (B cell
receptor cross-linking and CD40) and in each case with and
without exposure to IFN-α. We conclude that there is weak
colocalisation between TLR7 and CXORF21 in ex vivo B cells
(Pearson correlation 0.3 < ρ < 0.4). No significant differences in
colocalisation between CXORF21 and TLR7 were observed
after IFN-α treatment of resting or IgM/CD40 stimulated B cells.

As the endosomal intracellular pathway interacts with the
autophagy pathway (which has also been implicated in SLE
pathogenesis)35 we sought to determine whether CXORF21
colocalised with autophagosomes, once more utilising SIM. Using
LC3 as a marker of the autophagosome, representative results
of the joint staining (LC3 and CXORF21) are shown for Ig/
CD40 stimulated B cells (Fig. 7a) with exposure to the inhibitor of
autophagic flux, bafilomycin (Fig. 7b) and Ig/TLR7/8 stimulated

B cells (Fig. 7c) with bafilomycin (Fig. 7d). The results from
multiple cells are summarised in Fig. 7e, f, which show no
colocalisation between LC3 and CXORF21 in bafilomycin-
treated ex vivo B cells when stimulated with Ig/CD40 or Ig/
TLR7/8. Assaying CXORF21 protein abundance by western blot
in starved LCL (see methods) indicates that the amount of
CXORF21 is not altered by the addition of bafilomycin and hence
it is unlikely that CXORF21 is an autophagy substrate (Fig. 7g; left
panel). The blot shows some elevation of sequestome 1 (p62), an
autophagosome cargo protein, following exposure to bafilomycin,
which would be expected (Fig. 7g; right panel).

Discussion
The underrepresentation of genetic associations on the X chro-
mosome in autoimmune disease is highly paradoxical given the
prominent sex bias towards females and the increased density of
immune related genes compared to the autosomes. This is partly
due to the paucity of sex chromosome data in genome-wide
studies; only 33% of GWAS report sex chromosome data36. We
sought to functionally investigate the undefined SLE susceptibility
locus Xp21.2 from our own GWAS dataset (rs887369; P= 3.34 ×
10−7; OR= 1.43). Our investigation defines CXorf21 – encoding a
protein of hitherto unknown function – as the candidate gene and
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Fig. 6 Super resolution microscopy of CXORF21 and TLR7. Structured Illumination Microscopy data showing colocalisation of TLR7 and CXORF21 in ex vivo
B cells. Representative results on individual cells are shown in a through D with TLR7 staining in the first column, CXORF21 in the second column, DAPI
nuclear staining in column three, and in the fourth column all three stains are merged: TLR7 (magenta), CXORF21 (green) and DAPI (blue). The B cells are
under different conditions in the panels: a resting, b resting and IFN-α treated (1000 U/ml), c Ig/CD40 stimulated and d Ig/CD40 stimulated and IFN-α
treated ex vivo B cells at 20 h. Maximum intensity projections are shown. Scale bar in white on bottom left hand corner is 2 µm. e Plot showing the
correlation co-efficients (ρ) between TLR7 and CXORF21 staining of multiple B cells quantified using the results from Z-stack images from individual cells
(represented as open circles). From left to right: unstimulated cells (n= 84), cells stimulated with IFN-α (n= 60), B cells stimulated with Ig/CD40 (n=
32), B cells stimulated with Ig/CD40 and IFN-α (n= 22). The horizontal bar represents the mean correlation co-efficient (μρ) and the bars above and
below this denote the standard deviation of the distribution. f Mander’s colocalisation coefficient (M2) between TLR7 and CXORF21 are shown from Z-
stack images from single B cells (represented as open circles). From left to right: unstimulated cells (n= 84), cells stimulated with IFN-α (n= 60), B cells
stimulated with Ig/CD40 (n= 32), B cells stimulated with Ig/CD40 and IFN-α (n= 22). The horizontal bar represents the mean colocalisation co-efficient
(μM2) and the bars above and below this denote the standard deviation of the distribution. Source data are provided as a Source Data file
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Fig. 7 CXORF21 and the autophagosome. Structured Illumination Microscopy data showing colocalisation of LC3 and CXORF21 in ex vivo B cells.
Representative results on individual cells are shown in panels a through d with LC3 staining in the first column, CXORF21 in the second column, DAPI
nuclear staining in the third column, and in the fourth column all three stains are merged: LC3 (magenta), CXORF21 (green) and DAPI (blue). In panel a B
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correlation co-efficients (ρ) between LC3 and CXORF21 staining quantified using the results from Z-stack images, individual B cells are represented as open
circles. From left to right: Ig/CD40 stimulated cells (n= 17), Ig/CD40 stimulated cells in the presence of 10 nM bafilomycin (n= 22), B cells stimulated
with Ig and resiquimod (n= 21), B cells stimulated with Ig and resiquimod in the presence of 10 nM bafilomycin (n= 32). The horizontal bar represents the
mean correlation co-efficient (μρ) and the bars above and below this horizontal bar denote the standard deviation of the distribution. f Mander’s
colocalisation coefficient (M2) between LC3 and CXORF21 are shown from Z-stack images, individual B cells are represented as open circles. From left to
right: Ig/CD40 stimulated cells (n= 17), Ig/CD40 stimulated cells in the presence of 10 nM bafilomycin (n= 23), B cells stimulated with Ig and resiquimod
(n= 21), B cells stimulated with Ig and resiquimod in the presence of 10 nM bafilomycin (n= 32). The horizontal bar represents the mean colocalisation co-
efficient (μM2) and the bars above and below this denote the standard deviation of the distribution. g Western blot analysis of protein extract from starved
LCL, in the left-hand blot CXORF21 is quantified in the absence of bafilomycin and after 10 nM and 100 nM treatment. The amount of CXORF21 was
quantified by densitometry and the relative abundance shown against a beta actin control, using the unstimulated conditions as a reference point. In the
right-hand blot sequestosome 1 (p62) is quantified in the absence of bafilomycin and after 10 nM and 100 nM treatment. The amount of Sequestosome-1
was quantified by densitometry and the relative abundance shown against a beta actin control, using the unstimulated conditions as a reference point.
Source data are provided as a Source Data file
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demonstrates its expression is upregulated through by a number
of distinct factors: chromosome X dosage and loss of XCI, the risk
haplotype (tagged by rs887369) and cellular activation by inter-
feron (summarised in Fig. 8). Our study supports the hypothesis
that altered expression of X-linked genes contributes to the sexual
dimorphism in autoimmunity14 and provides some preliminary
evidence for the role of CXorf21 in SLE, although this topic clearly
warrants further investigation.

To date, six X-encoded SLE susceptibility loci have been
identified, and four have been shown to harbour genes that escape
XCI (TLR7, TMEM187, IRAK1, and CXorf21). Of these, CXorf21
is the most robustly escaping; possessing evidence of escape in
~80% of individuals in contrast to the remaining genes that
exhibit escape in <30%16. We show that escape from XCI is
highly localised to CXorf21 across a ±1-Mb window.

The Xp21.2 locus is not as strongly associated with SLE in
individuals of non-European ancestry, although an association
has been reported in Koreans37. This is partially explained by the
marked disparity in allele frequency of risk allele rs887369
[major allele: C] between populations (1000Genomes: 0.76 in
Europeans, 0.92 in Africans, 0.95 in Asians). The lower minor
allele frequency in non-Europeans may clearly impact on power,
especially as non-European GWAS have been of smaller sample
size. The fraction of individuals who exhibit XCI of CXorf21 is
reported to be diminished in individuals of African descent
(relative to those of European descent16); however, lower allele
frequencies of transcribed polymorphisms and limited samples
sizes impede power. Whether allele frequency of rs887369 and
reduced XCI escape are correlated or whether variation at
rs887369 itself is causal to a degree of escape poses an interesting
line of enquiry. Furthermore, the reduced level of escape in non-

Europeans may mean the effect size will limit the power of this
locus to be detected.

CXorf21 has a discrete expression pattern in immune cells,
both adaptive and innate, with the greatest expression of CXorf21
found in monocytes and neutrophils, primary B cells and LCLs. It
appears to be epigenetically inert in non-immune cell types,
suggesting the regulatory mechanisms driving expression of
CXorf21 are not present in non-immune cell types. These data
align with the observation that other candidate genes of SLE and
their accompanying causal variants exhibit a discrete expression
signature and cis-regulatory landscape that is largely restricted to
immune cell subsets; particularly B cells (including B-
lymphoblastoid cell lines), T cells and monocytes15,38–40.

We demonstrate that CXorf21 expression is upregulated in LPS
and IFN-γ-stimulated monocytes, and in IFN-α-stimulated B
cells, with the magnitude of increase greater in females leading to
significant sexually dimorphic expression levels. We have also
identified binding sites of respective transcription factors from
these signalling cascades: IRF3, NF-κB and STAT1-3 at the
immediate promoter of CXorf21suggesting CXorf21 transcription
could be a primary response gene of the TLR4 (IRF3) and IFN
(STATs) signalling pathways. However, CXorf21 expression
decreases following acute (2 h) LPS-stimulation, suggesting
CXorf21 is in fact a late response gene induced by secondary
activation of the TLR4-induced type I IFN feed forward loop41.
Indeed, late response genes are characterised by STAT binding
sites and ISRE41, which we also identify in the CXorf21 promoter.
Sex differences in the LPS-induced monocyte response have been
previously reported, whereby females have heightened activation
and cytokine release compared with males, although the under-
lying mechanism has yet to be delineated42,43.
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rs887369 tags a short 1-kb haplotype comprising five perfectly
correlated SNPs. The haplotype is an eQTL for CXorf21, with the
risk allele increasing the gene’s expression; we hypothesise that a
self-regulatory mechanism involving modification of
H3K36me3 state and chromatin looping affects RNA polymerase
II within the gene promoter (Fig. 8).

The expression of CXorf21 transcript has previously been
shown to be the most accurate delineator of disease flare from
infection in SLE patients18. Interestingly, this previous study was
conducted in largely non-European patients, suggesting the role
of CXorf21 is not limited to individuals of European ancestry.
Further supporting our hypothesis that CXorf21 is an IFN-
inducible gene, the genes with dysregulated expression at exome-
wide significant expression changes identified in this study are
enriched for IFN-inducible genes18. We observed an age-
dependent correlation between CXORF21 expression and dis-
ease activity using flow cytometry in a modest cohort, with
CXORF21 protein abundance positively correlating with SLEDAI
in patients <35 years of age. These data warrant further investi-
gation and suggest age-stratified analysis in disease cohorts could
be illuminating.

The CXORF21 protein has no known function and the primary
amino acid sequence gives no clear clues in this regard. In an
attempt to provide some insight into the function of CXORF21,
we conducted a number of imaging studies to investigate its
intracellular location. These studies showed that CXORF21 is
present in both the nucleus and cytoplasm. Interestingly, we show
that there was some colocalisation of CXORF21 with TLR7 in B
cells. This intracellular toll-like receptor was selected for imaging
as it is known to play a role in nucleic acid sensing in SLE and our
analyses revealed some degree of co-expression of TLR7 and
CXorf21 at the RNA level. Intracellular toll-like receptors operate
in a complex system involving the endosomal and lysosomal
compartments44. However, the precise points at which CXORF21
and TLR7 may interact within these compartments is not clear on
the basis of our data, but further exploration of this question
should reveal more insights into the function of CXORF21 and
how it promotes systemic autoimmunity.

The female-biased sex imbalance of autoimmune diseases is
not understood. Our study, which characterises the SLE asso-
ciation at CXorf21, an IFN-inducible gene which escapes XCI,
adds support to the hypothesis that sex bias in immune function
has a genetic basis and provides an underlying immunological
mechanism that underpins the sexual dimorphism in SLE.

Methods
European SLE GWAS data. Genotype data from 10,995 individuals of matched
European ancestry (4036 SLE cases, 6959 controls) genotyped on the Illumina
HumanOmni1 BeadChip from the Bentham and Morris et al.15 study were
imputed as outlined below. These data had undergone quality control and PCA as
described15.

Imputation. The European SLE GWAS15, Fairfax et al.45,46 and Naranbhai et al.47

cohorts were imputed using UK10K-1000GP3 merged reference panel across the
X:30077468–31077846 1-Mb region, plus a 2-Mb buffer region (GRCh37 assem-
bly). A full imputation without pre-phasing was conducted using IMPUTE2 to
increase the accuracy of imputed genotype calls48,49. Imputed genotypes were fil-
tered using an info score threshold of 0.5. The most likely genotype from
IMPUTE2 was taken if its probability was >0.5. If the probability fell below this
threshold, it was set as missing.

Allelic and haplotype association fine-mapping. Imputed data from the Eur-
opean SLE GWAS were filtered to include variants with MAF > 0.01 and HWE >
1 × 10−4, and minimum genotype rate >90%. SNPTEST 2.5.250 was used to test for
additive models of allelic associations across the X:30077468–31077846 1Mb
region, fitting a logistic regression model (including the first four covariates from
the original GWAS15) with equal effect size between males and females50,51.
Independent signals were assessed by including the genotype for the rs887369 SNP
as a covariate using the SNPTEST algorithm. Association plots were generated

using LocusZoom52. Haplotype association analysis and LD calculations between
SNPs were performed using Haploview 4.253 (implementing X-chromosome
analysis) using the entire GWAS of 10,995 individuals. Specifically, haplotype
blocks across a 100-kb region anchored on rs887369 were defined by the con-
fidence internals algorithm54 and haplotype association testing performed by a χ2

test using marker thresholds of MAF > 0.01 and HWE > 1 × 10−4, and minimum
genotype rate >90% (657 SNPs in total).

We fitted two models for association in SNPTEST. The inactivation model is
the default in SNPTEST’s newmlmethod with male genotypes coded as 0/1 and
females coded as 0/0.5/1 and one shared estimated effect (log odds ratio). In the
escape model we used SNPTEST with the stratify_on option which fits separate
effects for males and females. In both models, we fit a different intercept for males
and females (using sex as a covariate in the inactivation model) and so the two
models only differ by one parameter (being the differing log odds ratio). A
likelihood ratio test (LRT) on one degree of freedom was performed in R (using the
likelihood values output by SNPTEST), where the escape model was tested against
the simpler inactivation model. A statistically significant result (based on the p-
values form the LRT) would therefore reject the inactivation model.

Genotype data for ex vivo cell eQTL cohorts. X chromosome SNPs of the Fairfax
et al.45,46 and Naranbhai et al.47 cohorts with an Illumina GenCall score of <0.7
and called on both X and Y were removed. PLINK v1.955 was used to remove
samples that failed sex check assignments. Following separation of male and
females, SNPs were removed if: HWE < 1 × 10−4, MAF < 0.01 and SNP missingness
>10%. Individuals were removed if >10% of SNPs were missing. Coordinates were
converted from hg18 to hg19 using the UCSC liftOver application56.

Genotype-expression cohorts and cis-eQTL analysis. Gene-level RNA-Seq data
from LCLs were downloaded from ArrayExpress (Geuvadis; EGEUV-1)57 and
genotypes (X:30077468–31077846) of these individuals containing SNPs (MAF >
0.05) were taken from the 1000 Genomes Project Phase III58. Expression data of
purified ex vivo primary immune cells were obtained from Fairfax et al.45,46 and
Naranbhai et al.47 Details are described in the respective articles. Data include
resting B-cells, natural killer cells and monocytes;45 IFN-γ stimulated monocytes
after 24 h, LPS stimulated monocytes after 2 h, LPS stimulated monocytes after
24 h;46 and resting neutrophils47. In all instances, cis-eQTL association analysis
(1 Mb of rs887369) was performed against expression residuals using the linear-
model of the MatrixeQTL R package59 including the number of PCs described in
the respective articles.

The TwinsUK RNA-Seq eQTL cohort profiled in LCLs21 was used for cis-eQTL
association analysis in non-skewed females (n= 412). Individuals were firstly
assessed for skewed X-chromosome inactivation patterns using allele-specific
expression of Xist to estimate the proportion of X inactivation from each parental X
chromosome. Individuals were removed if the allele-specific expression of XIST-
linked SNPs was <0.2 or >0.8, these parameters were chosen on the basis of
precedence60–62. cis-eQTL analysis in the twins was performed as above against
exon-count residuals corrected for probabilistic estimation of expression residuals
(PEER) factors and family relatedness63.

Differential expression analysis of CXorf21 between males and females using
GTEx RNA-Seq (TMP) data across the 45 cell/tissue types where expression data
were available for both sexes was performed using an unpaired t-test between males
and females after grouping by cell/tissue type. Associations passing the Bonferroni
adjusted P-value cut-off of PBF < 0.05 were deemed significant.

Cell culture. LCLs were obtained from Coriell Biorepository and cultured in
suspension at 5% CO2, 37 °C in RPMI 1640 medium supplemented with 2 mM L-
glutamine, 15% foetal bovine serum, 100 units/ml penicillin and 100 µg/ml
streptomycin. Cells were seeded every 2 days to a concentration of 300,000 viable
cells/ml. Individuals used in functional assays were of European descent
(GM12878, HG01702, HG01786, HG01746, HG0111, HG01628, HG00254,
HG12878, HG01501, HG01507, HG01504, HG00269 and HG00232).

qPCR. Total RNA was extracted with the RNeasy Mini Kit (QIAGEN) according to
manufacturer’s instructions. cDNA synthesised with the cDNA Synthesis Kit
(Thermo Scientific) and quantified using the NanoDrop 2000 spectrophotometer.
qPCR reactions were performed using the TaqMan® Universal PCR Master Mix
and Universal ProbeLibrary System Technology (UPL) from Roche. Primers were
purchased from Sigma and reactions performed using the Applied Biosystems 7500
and subsequent analysis with SDS 2.3. CXorf21 F: GGATGTTTGACACA-
GACTTCAAA, R: CCGGATCAGATGAGCAGATT, UPL #65. ACTB F:
AGAGCTACGAGCTGCCTGAC, R: CGTGGATGCCACAGGACT, UPL #9.
Relative abundance and fold change was calculated using the ΔΔCt method.

Verification of anti-CXORF21 antibody by gene-knockdown. Gene-knockdown
of CXorf21 in LCLs (GM12878) was performed by siRNA using the Nucleofector II
Device (Lonza) and Amaxa Cell Line Nucleofector Kit V. Two days before
transfection, cells were seeded to a concentration of 0.5 × 106 cells/ml. In duplicate,
2 × 106 cells were spun at 100 g for 10 min and re-suspended in 100 μl supple-
mented transfection solution and 20 pmol Silencer Select Pre-Designed &
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Validated siRNA (Thermo Fisher Scientific) against CXorf21 (#4392420). The
Silencer Select Negative Control No. 1 siRNA (#4390843) was used as a non-
targeting negative control at the same concentration. Cell/siRNA suspensions were
transferred to a Nucleofector cuvette and electroporated using the X-001 pro-
gramme. Samples were cultured in 1.5 ml medium in a 12-well plate and harvested
48 h post-transfection.

Immunoblot. Cell lysates were prepared in RIPA buffer (Sigma-Aldrich) and run
on a SDS polyacrylamide gel for electrophoresis. Protein was transferred onto a
nitrocellulose membrane and blocked in 5% milk-PBS solution. The rabbit poly-
clonal anti-CXORF21 antibody (Atlas Antibodies; HPA001185) was used at a
concentration of 1:1000 and the secondary polyclonal swine anti-rabbit immu-
noglobulins/HRP (Dako; P0217) at 1:1000. Membranes were stripped by Restore™
Western Blot Stripping Buffer (Thermo Fisher) and re-probed with mouse
monoclonal β-Actin antibody (Santa Cruz Biotechnology; sc-47778) at 1:4,000 and
anti-mouse IgG HRP conjugate (Promega; W4028) at 1:5,000 or secondary goat
anti-mouse IgG HRP conjugate (Invitrogen; A16078) at 1:10,000. ImageJ was used
to calculate the density of the bands relative to the loading control. Rabbit anti-
SQSTM1/p62 (Cell Signalling, 5114) was used at a concentration of 1:1000 and
detected with secondary goat anti-rabbit IgG HRP conjugate (Invitrogen; A16110)
at 1:10,000. Raw blots are presented in accompyning Source Data file.

Epigenetic fine-mapping. SNPs in X:30077468–31077846 were downloaded from
the 1000 Genomes Project Phase III58. Epigenetic data across all available cell types
(n= 127) in NarrowPeak format were obtained from the NIH Roadmap Epige-
nomics Project22. Peaks were filtered for genome-wide significance using an FDR
threshold of 0.01, and peak widths harmonised to 2 kb in length centred on the
peak summit. SNPs were reported as being localised to an epigenetic mark if they
overlapped the 2 kb region. The signal value of the epigenetic mark was reported
for the exact coordinate of the SNP using the signal track of the mark in bigWig
format visualised using IGV v2.3.8064.

NarrowPeak files of ChIP-Seq experiments (H3K4me3, H3K27ac, H3K4me1,
H3K36me3, H3K27me3, H3K9me3, H3K9/14ac and H2A.Zac) were downloaded
from the Blueprint Epigenome Project ftp site (http://ftp.ebi.ac.uk/pub/databases/
blueprint/data/homo_sapiens/GRCh38/). Only non-diseased cell-types from
venous blood were selected for analysis (24 unique cell-types). Using the GRCh38
genomic positions of the 5 SNPs carried on the associated haplotype, intersection
was performed against the genome-wide binding sites of the selected Blueprint
ChIP-Seq experiments as per the Roadmap Epigenomics project (above). Fold-
enrichment of the peaks that overlapped the associated haplotype were compared
by unpaired t-test between males and female samples for H3K36me3 across
different cell-types.

Promoter capture Hi-C chromatin interaction data. Chromatin interaction data
across a 17 primary immune cell-types was assessed using Capture Hi-C Plotter
(CHiCP; www.chicp.org)25. The study focuses on autoimmune susceptibility loci
from GWAS and ImmunoChip integrating promoter capture Hi-C datasets from
three separate studies65–67. The bait to target coordinates and interaction scores
were extracted from CHiCP manually. Scores were defined by the CHiCAGO
algorithm68, where scores ≥5 were considered as significant interactions.

B-cell isolation and cell stimulation. CD19+ B cells from healthy female subjects
(n= 49) were isolated by negative selection using the Dynabeads Untouched
Human B Cells Kit (Invitrogen). 1.5–3 × 106 cells/ml ex vivo B cells were cultured
in RPMI 1640 medium, supplemented with 20% FCS, 2mM L-glutamine and
100 U/mL penicillin/streptomycin. B cells from 32 of the 49 subjects were incu-
bated with or without IFN-α 2b (1000 U/mL; PBL Assay Science) at 37 °C and 5%
CO2. Cells were harvested after 6 h or 20 h as indicated.

For immunostaining, human B Cell Isolation Kit II (Miltenyi Biotec). Ex vivo B
cells (1 × 106 cells/ml) were cultured in RPMI 1640 medium, supplemented with
10% heat-inactivated FBS, 2 mM L-glutamine and 100 U/mL penicillin/
streptomycin. B cells were stimulated with 10 µg/ml F(ab')2 Fragment Anti-Human
IgG+IgM (Jackson ImmunoResearch) and either 0.1 µg/ml CD40L with 0.1 µg/ml
Enhancer (Enzo) or 5 µg/ml resiquimod (Sigma). B cells were incubated with or
without 10 nM bafilomycin A1 (Sigma) for 3 h before harvesting and with or
without 1000 U/mL IFN-α 2b (PBL Assay Science) at 37 °C and 5% CO2. Cells were
harvested after 20 h or 27 h as indicated.

Ex vivo B cell RNA extraction and array hybridisation. RNA was isolated using
the RNeasy Mini kit (Qiagen) according to the manufacturer’s instructions and
integrity assessed using the Agilent 2100 Bioanalyzer (Agilent) with the RNA 6000
Pico Kit (RIN < 8 excluded). cDNA was synthesised from 50ng of RNA using the
High Capacity RNA-to-cDNA Kit (Applied Biosystems). Each sample was hybri-
dised to Affymetrix Human Exon 1.0 ST arrays and expression data were obtained
by fluorescence-based detection using the GeneChip Scanner 3000 7G (Affyme-
trix). Signal intensities were quantified and stored as CEL files.

Quality control of exon array. Quality control was carried out using the probe-set
and transcript cluster annotation release 33.1 (GRCh37 build). Probe and probe-set
filters were applied to the data as recommended69. All probe sets targeting RefSeq-
annotated RNA transcripts were included. Probes containing polymorphisms
(MAF > 0.01) from 1000Genomes were removed. Cross-hybridising probes and
probe sets containing less than three probes were also excluded. Detection above
background noise (DABG) was calculated for all CEL files and probe-sets were
filtered using Affymetrix Power Tools. Probe sets with DABG P > 0.01 in 50% of
resting or IFN-α stimulated samples were removed. Probes and probe-sets that
failed QC filters were removed from the data using Affymetrix Power Tools.

Intensity signals were normalised at exon-level and log2-transformed using the
robust multi-array average algorithm in the Affymetrix Expression Console
software (build 1.2.1.20). Array hybridisation quality was verified using Affymetrix
Expression Console according to the recommendations of the Affymetrix Quality
Assessment of Exon and Gene Arrays White Paper. All arrays showed high
hybridisation quality and a normal distribution of probe intensity signals.

PCA was performed using Partek GS version 6.6 (Partek Incorporated) and
sample outliers removed. Duplicate data for one monozygotic twin pair was
processed in both batches to be used as technical replicates and sibling data from
the same twin pair within each batch were used as biological replicates. Correlation
between replicates was assessed using a Spearman correlation test in R. All
replicates showed high correlation (r2 > 0.89). A total of 81 samples from 49
individual twins were included in the analyses.

Exon array data normalisation and analysis. Probe sets were summarised to
generate gene-level data by calculating the winsorized mean (10 and 90%) using
Partek GS. Batch effects were accounted for using the sva ComBat function70.
Differential gene expression was calculated using Partek GS with a mixed-model
analysis of variance (ANOVA) as follows: Y= µ + treatment + individual ID +
twin ID + PC1 + PC3 + error. The fitted ANOVA model regressed expression
levels at each gene (Y) on fixed-effect terms (treatment, explained by PC2) and on
random-effect terms denoting individual ID, family structure and zygosity (twin
ID) and PCs explaining most of the data variability (PC1 and PC3).

SLE patients and healthy controls. Female patients meeting the American Col-
lege of Rheumatology (ACR) criteria for the definition of SLE active disease71 were
recruited from Louise Coote Lupus unit, Guy’s Hospital (n= 19), following
informed consent and with ethical approval (Research Ethics Committee; REC 12/
LO/1273 and REC 07/H0718/49) and SLE Disease Activity Index (SLEDAI) scores
were calculated72. The investigator was blinded to SLEDAI scores during mea-
surement of CXORF21 protein abundance. Healthy female controls were recruited
from the TwinsUK Bioresource. The TwinsUK study is approved by the research
ethics committee at St Thomas Hospital, London. Volunteers gave informed
consent and signed an approved consent form prior to participation. Volunteers
were supplied with an appropriate detailed information sheet regarding the
research project and procedure by post prior to attendance.

PBMC isolation. Twenty milliliter of whole blood in EDTA anti-coagulant was
taken from female volunteers (SLE or healthy controls). Peripheral blood mono-
nuclear cells (PBMCs) were separated from whole blood using Histopaque-1077
Hybri-Max (Sigma-Aldrich) density centrifugation and plated at 2 × 106 cells/ml in
RPMI 1640-medium (Gibco) supplemented with 10% foetal calf serum (FCS),
2mM L-glutamine and 100 U/mL penicillin/streptomycin (all from Invitrogen).

Flow cytometry. PBMCs were first incubated with Human TrueStain FcX (5 μl;
BioLegend) to block Fc receptors, before cell-surface staining with 1 μl anti-human
CD14 PerCP-Cy5.5 (eBioscience; 45–0149–42) and 1 μl anti-human CD19 PE
(eBioscience;12–0198–42) for 20 min on ice. Cells were fixed with 200 μl 1X sta-
bilising fixative (BD biosciences) and then permeabilized in 0.1% Triton X-100
(Sigma-Aldrich). Fc blocker was again added before intracellular staining of 0.1 μg
rabbit polyclonal anti-human CXORF21 (Atlas antibodies; HPA001185) or 0.1 μg
rabbit monoclonal IgG isotype control (Abcam; ab172730), as appropriate, for 60
min on ice. Following washing, cells were incubated with secondary goat anti-
rabbit-Alexa Fluor 488 (Abcam; ab150077) antibody at 1:2000. Cells were washed
and resuspended in 250 μl PBS for analysis on BD FACSCanto™ II cytometer (BD
Biosciences) using BD FACSDiva software (version 8.0.1; BD Biosciences). Com-
pensation was performed using compensation beads (BD Biosciences), and cyt-
ometer settings were standardised using Cytometer Setup and Tracking Beads (BD
Biosciences). Following data acquisition, FlowJo v.10.1 software was used to cal-
culate the Median fluorescent intensity (MFI). An unpaired Student’s t-test was
used for case–control analyses. Logistic regression models were fitted for CXORF21
abundance as a function of SLEDAI, and as a function of SLEDAI stratified by age
(under/over 35 years of age) with an interaction term. The models were compared
using a likelihood ratio test (LRT; d.f.= 5) and BIC using R. Multiple testing was
corrected using Bonferroni correction. Preliminary results showed no expression of
CXORF21 on cell surface.

ImageStream analysis. Multispectral imaging flow cytometry (MIFC) was per-
formed on an ImageStreamX (Amnis) instrument. Golgi colocalisation: 2 × 106
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cells were fixed with 200 μl 1X stabilising fixative (BD biosciences) and then per-
meabilized in 0.1% Triton X-100 (Sigma-Aldrich). Fc blocker was added before
intracellular staining with 0.1 μg rabbit polyclonal anti-CXORF21 antibody (Atlas
antibodies; HPA001185) and secondary goat anti-rabbit Alexa Fluor 488 (Abcam;
ab150077) at 1:2000. Cells were then incubated for 60 min on ice with 0.1 μg anti-
GM130-Alexa Fluor 647 (Abcam; ab195303). Lysosomal and nuclear colocalisa-
tion: 2 × 106 cells were incubated at 37 °C for 15 min in 1X Assay Buffer and 0.1 µl
Lyso-ID Red Detection Reagent and 0.1 µl Hoechst 33342 Nuclear Stain (Lyso-ID
Red Detection Kit; Enzo; anti-ENZ-51005–0100). Cells were then fixed with 200 μl
1X stabilising fixative (BD biosciences) and permeabilized in 0.1% Triton X-100
(Sigma-Aldrich). Fc blocker was added before intracellular staining with 0.1 μg
rabbit polyclonal anti-CXORF21 antibody (Atlas antibodies; HPA001185) and
secondary goat anti-rabbit Alexa Fluor 488 (Abcam; ab150077) at 1:2000. Cells
were resuspended in 60 µl PBS. Up to 100,000 images were acquired per sample.
Cells were gated on aspect ratio to include only singlets, and the gradient root-
mean-square feature to include focused cells. Using the co-localisation mask on the
IDEAS software (Amnis), we calculated the overlap of CXORF21 and organelle
markers for cellular localisation.

Immunostaining of autophagic LC3-II and CXORF21. LCL (1 × 106 cells/ml) were
starved in EBSS with or without 10 nM or 100 nM bafilomycin A1 (Sigma) for 3 h
at 37 °C and 5% CO2 before harvesting, when starvation was required. For
LC3 staining, the cells were selectively permeabilized with 0.05% saponin prior to
fixation. Cells were fixed in 4% formaldehyde for 20 min at room temperature, then
permeabilized with 0.1% Triton X-100 and 2% goat serum (both Sigma-Aldrich) in
PBS for 30 min on ice. After overnight incubation in 5% goat serum, cells were Fc
receptor blocked (Human TruStain FcX, Biolegend) and incubated with 2 µg/ml
rabbit anti-human CXORF21 (Atlas antibodies; HPA001185) and either 2 µg/ml
mouse anti-human TLR7 (Novus Biologicals, NBP2–27332) or 40 µg/ml mouse
anti-human LC3 (MBL, M152–3) in 5% goat serum for 1 h on ice. Following
washing, cells were stained with goat anti-rabbit Alexa Fluor 488 (Abcam;
ab150077) and goat anti-mouse Alexa Fluor 594 (Abcam; ab150116), both at
1:2000, in 5% goat serum for 30 min on ice. Cells were washed and mounted in
ProLong™ Gold Antifade Mountant containing DAPI (Invitrogen).

Imaging and analysis. Imaging was performed at the Nikon Imaging Centre at
King’s College London. Z stacks were acquired at 0.12 µm step size on an Eclipse
Ti-2 Inverted microscope with Vt-iSIM scan head and Hamamatsu
Flash4.0 sCMOS camera using a ×100 oil immersion objective. Laser settings,
image capture and Richardson-Lucy deconvolution were managed in NIS-
Elements. Images were further processed and Pearson’s correlation coefficient and
Mander’s colocalisation coefficient were calculated using the Colocalization Studio
plugin73 in Icy software. Maximum intensity projections are shown for better
visualisation. A one-way ANOVA with Tukey multiple comparison correction was
performed to test for statistical significance in GraphPad Prism v7.04.

Data availability
Summary statistics on 10,995 individuals of matched European ancestry (4036 SLE cases,
6959 controls) genotyped on the Illumina HumanOmni1 BeadChip are available at
http://insidegen.com/insidegen-LUPUS-data.html. TwinsUK RNASeq data are deposited
in European Genome-Phenome Archive (EGAS00001000805). The UK10K (REL-
2012–06–02) plus 1000 Genomes Project Phase3 data (release 20131101.v5) merged
reference panel (UK10K-1000GP3) was accessed through the European Genome-
phenome Archive (EGAD00001000776). All other data are contained within the article
and its supplementary information or available upon reasonable request from the
corresponding author. The source data underlying Figs. 2d, 6e, f and 7e–g, and
Supplementary Figs. 2b, 3, 6b, 12 and 13 are provided as a Source Data file.
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