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Abstract
Recent studies have developed simple techniques for monitoring and assessing sleep. However, several issues remain to be 
solved for example high-cost sensor and algorithm as a home-use device. In this study, we aimed to develop an inexpensive 
and simple sleep monitoring system using a camera and video processing. Polysomnography (PSG) recordings were per-
formed in six subjects for four consecutive nights. Subjects’ body movements were simultaneously recorded by the web cam-
era. Body movement was extracted by video processing from the video data and five parameters were calculated for machine 
learning. Four sleep stages (WAKE, LIGHT, DEEP and REM) were estimated by applying these five parameters to a support 
vector machine. The overall estimation accuracy was 70.3 ± 11.3% with the highest accuracy for DEEP (82.8 ± 4.7%) and 
the lowest for LIGHT (53.0 ± 4.0%) compared with correct sleep stages manually scored on PSG data by a sleep technician. 
Estimation accuracy for REM sleep was 68.0 ± 6.8%. The kappa was 0.19 ± 0.04 for all subjects. The present non-contact 
sleep monitoring system showed sufficient accuracy in sleep stage estimation with REM sleep detection being accomplished. 
Low-cost computing power of this system can be advantageous for mobile application and modularization into home-device.

Keywords Sleep stage · Body movement · Video monitoring · Video image processing

1 Introduction

Sleep is an important factor for recovering from fatigue and 
reducing stress. Therefore, usual and natural sleep monitoring 
at home can contribute to healthcare and stress management 
[1, 2]. The sleep quality is objectively assessed by sleep cycles 
representing time-course change of sleep stages such as rapid-
eye movement (REM) and non-REM sleep at the clinical sites. 
However, two common problems arise for monitoring sleep at 
home. Firstly, sleep stages are judged based on polysomnogra-
phy (PSG) data, a global standard method in the clinical setting, 

but this makes subjects or patients feel highly constrained 
because the test requires physical attachment to electrodes for 
the acquisition of three core measurements: electroencephalo-
grams (EEG), which require at least six electrodes and codes; 
and electroocculograms (EOG), which require two electrodes 
and codes; and electromyograms (EMG), which require two 
electrodes and codes [3]. The second problem is the neces-
sity for a specialist. The device settings and PSG scoring are 
required intervention and visual observation by a trained sleep 
technician [4]. Sleep stages are judged by a sleep technologist at 
a clinical site by visual observation following American acad-
emy of sleep medicine (AASM) scoring manual [5].

In order to solve the above-mentioned problems, some 
unconstrained sleep monitoring devices capable of automat-
ically estimating sleep stage have been developed. These 
devices measure some biological signals which changes with 
sleep stage change such as Electrocardiogram (ECG) and 
respiratory movement. For example, Hwang and et al. devel-
oped a mattress-type sensor and estimated sleep stage by 
measuring body movement and respiration signals with an 
accuracy close to 79.0% [6]. Kagawa et al. estimated sleep 
stage using body movement and respiratory interval meas-
ured by a multiple radar sensor and their average estimation 
accuracy was 71.9% [7]. Their method is able to classify 
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four stages including REM sleep. However, contact-type 
sensors are expensive because high sensitivity transducer 
is needed for detecting slightly change of respiratory move-
ment. Recently, some mobile applications have been devel-
oped that can monitor sleep with a smartphone [8]. Although 
these applications are inexpensive, in most cases they assess 
sleep condition by their own rules and scales rather than 
providing authentic sleep stages based on PSG. Sleep moni-
toring at home should output sleep stages for healthcare.

About the relationship between body movements and sleep 
stages, it is reported that there is a significant difference in fre-
quency of body movements at each sleep stages [9, 10]. In addi-
tion, as a new parameter, we focused on the duration time of 
motionless related to frequency of body movements. We previ-
ously developed a technique to measure body movement using 
a camera in order to estimate sleep stages without contact [11, 
12]. In this system, sleep was classified into three stages such as 
WAKE, LIGHT and DEEP since it was difficult to detect REM 
sleep. Therefore, the present study aimed to develop sleep mon-
itoring system that can estimate sleep stages including REM 
sleep. Sleep stages were estimated by machine learning based 
on non-contact body movement measurement using a camera 
and video processing. Moreover, based on a device that most 
consumers use at home, we aimed to construct an inexpensive 
system using a web camera and simple video processing. As 
end goal, we suppose that body movement is detected and sleep 
stages are estimated by a smartphone for easy to use.

2  Methods

In this study, body movement was extracted from video 
images using a PC. In addition, PSG recording was per-
formed to produce training data for machine learning 
and to evaluate estimation accuracy. Figure 1 shows the 
experimental procedure and analysis. Six healthy males 
(24.8 ± 2.6 years old) participated in this experiment. Sub-
jects’ mean height, weight, and body mass index were 
170.2 ± 4.6 cm, 57.8 ± 6.5 kg and 19.9 ± 1.5 kg/m2, respec-
tively. Written informed consent was obtained from all sub-
jects. The experiment was performed with the approval of 
the ethics committee of the Osaka University Dental Hos-
pital and the Graduate School of Density (H29-48). PSG 
recordings were conducted for four consecutive nights in 
the sleep research laboratory at Osaka University Graduate 
School of Dentistry. In this experiment, PSG recording was 
performed to obtain multiple biosignals for sleep stage esti-
mation. At the same time, the object, that was sleeping sub-
ject, was recorded with a camera to obtain body movement 
data. The PSG data and recorded video data were stored 
on the PC. A sleep technologist judged sleep stage from 
the PSG data off-line. Body movement information was 
extracted from the video data using video processing and 

five parameters for machine learning were calculated from 
the body movement data. Sleep stage from the PSG data was 
used as the correct answer data and estimated from param-
eters using support vector machine (SVM) machine learning.

2.1  PSG recording and sleep stage scoring

The PSG montage included the following biosignals; EEG 
(C3-A2, C4-A1, O1-A2, O2-A1, F3-A2, and F4-A1 based 
on international 10–20 system [13]), EOG and EMG (chin/
suprahyoid). All signals were recorded using a PSG ampli-
fier (Embla N7000, Natus Medical Inc., USA). Subjects went 
to bed between 22:30 and 23:00 after the electrodes were set 
and woke up between 6:30 and 7:00. The data were col-
lected by REMbrandt software (Natus Medical Inc., USA). 
A trained sleep technologist scored the sleep stages accord-
ing to AASM scoring criteria version 2.1 based on 30-s PSG 
data. Stage N1 and stage N2 were defined as LIGHT, stage 
N3 were defined as DEEP. Stage R was defined as REM and 
stage W was defined as WAKE.

2.2  Body movement detection

The state of sleeping subject was recorded using a web cam-
era (DC-NCR300U, Hanwha Q CELLS Japan co. ltd., Japan) 
equipped with an infrared LED light. This is an inexpensive 
web camera for a typical laptop PC.The camera can record 
a subject’s movements in a dark room and image resolution 
was set at 640 × 480 (width × height) and video recorded at 
2 frames/s. The camera was set on the wall of the bedroom 
as shown in Fig. 2. Body movements were extracted from 
recorded video data through inter-frame difference video 
processing. The inter-frame difference algorithm is a general 
method used for detecting a moving target [14–16]. Differ-
ences of each pixel’s luminance value are calculated between 
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Fig. 1  Procedure of experiment and analysis
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the Nth and (N − 1)th frames of a video and the differences 
indicate moving objects.

Figure  3 shows the video processing algorithm and 
examples of a processing result. Initially, the video image 
is converted into grayscale images because colour informa-
tion is not needed for calculating the inter-frame difference. 

Secondly, the difference of luminance value between two 
frames at every pixel is calculated. If the luminance value 
difference at a pixel is over a set threshold, the pixel is con-
verted into white (luminance value is 255) or black other-
wise (luminance value is 0) for binarization. Next, noise in 
the inter-frame difference is reduced through dilation and 
erosion. Finally, the number of white pixels is counted and 
the summed value is regarded as a measure of the amount 
of body movement. Inter-frame differences are calculated 
between Nth and (N − 1)th frame where N is any arbitrary 
frame. We calculated two types of frame interval in this 
study. The first is a one-frame interval (oneFI) meaning 
0.5 s intervals because video was recorded at 2 frames/s. 
At the second, differences are calculated between Nth and 
(N − 6)th frame to give a six-frame interval (sixFI) mean-
ing 3.0 s intervals. Fast movement increases difference of 
inter-frame and slow movement decreases difference of 
inter-frame. High FPS decreases difference of inter-frame 
and low FPS increases difference of inter-frame. Therefore, 
detection of fast movement is easier than slow movement and 
can be detected oneFI. For detection of slow movement, we 
proposed that the interval of inter-frame difference is made 
longer (artificially fps is made low = sixFI). Body movements 
can be detected, if there are results monochrome pictures of 
inter-frame difference. Since the original movie is not stored 
during processing, the privacy of the user is protected.

2.3  Sleep stage estimation

Sleep stages were estimated through an SVM machine learn-
ing using only body movement data [17, 18]. In order to 
estimate sleep stage by machine learning, it was necessary 
to prepare several parameters that represent features of each 
sleep stage. Body movement during sleep is characterized 
by sleep stages [9, 10]. During WAKE, body movements are 
large and occur frequently with high magnitude because it 
is close to arousal. The occurrence frequency is high during 
LIGHT and REM following WAKE. However, body move-
ment during REM is smaller than LIGHT and very few body 
movements occurs in DEEP. Five parameters represent-
ing these characteristics were calculated by the following 
method. These parameters were calculated every 30 s in each 
because sleep stage was judged at once every 30 s.

Parameter 1: Eq. (1), n = 1, 61, 121, …. Since oneFI and 
sixFI are calculated every 0.5 s, this parameter represents the 
mean value of the body movement in every 30 s and was pre-
pared to classify WAKE and other stages. In WAKE, body 
movement is larger because it is close to arousal.

Parameter 2: Eq. (2), n = 1, 61, 121, …. Since oneFI and 
sixFI are calculated every 0.5 s, this parameter represents a 

(1)
(

∑n+59

k=n
(oneFIk + sixFIk)

)

∕60
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moving average over 5 min. When the antilogarithm is less 
than 1, the value of this parameter is replaced to 0 because 
that it means there is no body movement. This parameter 
represents the occurrence frequency of body movement 
over 5 min and was used to classify LIGHT and REM with 
high body movement occurrence frequency. Moreover, this 
parameter was expected to detect continuous WAKE states 
with high frequencies of large body movements.

Parameter 3: Eq. (3), n = 1, 61, 121, …. Since oneFI and 
sixFI are calculated every 0.5 s, this parameter represents a 
moving average over 5 min. This parameter represents the 
volume of body movement for 5 min and was used to classify 
DEEP, whose body movements are rare than the other Stage.

Parameter 4: Based on parameter 3 and measures the 
number of seconds passed since the last body movement 
was detected. This parameter was used for classifying DEEP 
because body movement frequency is very low and the dura-
tion of still periods is long.

Parameter 5: The time elapsed since measurement began. 
DEEP is predominant in the first half of sleep and less so in 
the second. In contrast, REM occurs less in the first half of 
sleep and more in the second. This parameter was therefore 
used to reduce misclassification between DEEP and REM.

These five parameters were used for training and test data 
for SVM. The test dataset consisted of one subject’s data 
and the training dataset consisted of the other subjects’ data. 
For example, if the sleep stage of subject 1 was estimated, 
the test data consisted of subject 1’s data and training data 
consisted of subjects 2–6’s data.

2.4  Evaluation method

The evaluation methods are explained in Table 1 as a con-
fusion matrix. For example,  DD represents the number that 
actual DEEPs classified as DEEP by the SVM while  DL 
represents the number of actual DEEPs classified as LIGHT. 
Results of sleep stage estimation were evaluated based on 
sensitivity, specificity and accuracy for each stage, and the 
three indices were calculated for each subject and each stage.

DALL,  LALL,  RALL, and  WALL are defined as follows:

(2)log 10
((

∑n+599

k=n
(oneFIk + sixFIk)

)/

600
)

(3)
(

∑n+599

k=n
(oneFIk × sixFIk)

)

∕600

(4)DALL = DD + DL + DR + DW

(5)LALL = LD + LL + LR + LW

(6)RALL = RD + RL + RR + RW

(7)WALL = WD +WL +WR +WW

In the case of DEEP, sensitivity (Sens.) was calculated 
with Eq. (8), specificity (Spec.) with Eq. (9) and accuracy 
(Acc.) with Eq. (10).

Moreover, total accuracy was calculated with Eq. (11) and 
kappa static was calculated [19, 20].

3  Results and discussions

3.1  Sleep stage assessed by PSG scoring

Video was not recorded on the third night for subject 6 and 
body movement data was therefore not obtained. Thus, a 
total of 23 nights were used for analysis. Table 2 shows the 
percentage of sleep periods from the PSG data.

Figure 4 shows the average of each sleep stages in all 
subjects and all nights.

The percentage of DEEP was high for subjects 3 and 4 but 
low for subject 5. The proportion of LIGHT was high for sub-
jects 2 and 5 while REM was high for subject 5. WAKE was 
highest for subject 6 on the 1st night where there was a 137-
min period of consecutive awakening. The sleep structures of 
all subjects were in the normal range for young adults [21, 22].

3.2  Parameters calculation for machine learning

A representative calculation of parameters 1 to 4 is shown 
in Figs. 5, 6, 7, 8. Parameter 5 is the elapsed time and is 

(8)Sens. =
DD

DALL

(9)

Spec. =
LL + LR + LW + RL + RR + RW +WL +WR +WW

LALL + RALL +WALL

(10)

Acc. =

DD + LL + LR + LW + RL + RR + RW +WL +WR +WW

DALL + LALL + RALL +WALL

(11)Total Acc. =
DD + LL + RR +WW

DALL + LALL + RALL +WALL

Table 1  Confusion matrix for evaluation

Results of estimation

DEEP LIGHT REM WAEK

Actual
DEEP DD DL DR DW

LIGHT LD LL LR LW

REM RD RL RR RW

WAKE WD WL WR WW
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not shown because it simply a straight line with a fixed 
slope. Figure 5 shows that parameter 1 exhibited large 
values in WAKE and almost 0 in DEEP. Parameter 1 con-
tributed to the detection of short WAKE periods and ful-
filled its purpose. Figure 6 shows that parameter 2 exhib-
ited large values at times where WAKE was continuous 
and values in LIGHT and REM after WAKE. There was 

Table 2  The ratio each stage in nocturnal sleep (%)

Night DEEP LIGHT REM WAKE

Subject 1 1st 17.6 50.1 29.1 3.2
2nd 13.9 52.2 26.9 6.9
3rd 18.2 52.8 25.5 4.4
4th 18.5 54.9 24.3 2.3

Subject 2 1st 19.7 58.5 15.9 5.8
2nd 18.9 62.6 13.9 3.6
3rd 23.3 59.1 15.9 1.6
4th 19.7 54.5 23.9 1.9

Subject 3 1st 26.1 55.0 15.3 3.7
2nd 28.3 51.2 20.9 9.5
3rd 29.8 53.2 18.4 8.6
4th 18.2 47.4 22.7 11.7

Subject 4 1st 32.4 50.5 13.9 3.2
2nd 32.1 43.8 22.2 1.9
3rd 27.4 45.6 24.2 2.7
4th 28.9 48.7 18.1 4.3

Subject 5 1st 12.0 62.6 23.8 2.6
2nd 15.6 62.2 20.1 3.2
3rd 18.9 56.7 22.5 1.9
4th 14.8 47.8 29.8 7.6

Subject 6 1st 12.8 48.0 4.0 33.2
2nd 23.7 52.9 14.2 9.2
3rd – – – –
4th 20.8 54.6 17.0 7.6

LIGHT
53.0% 5.2

DEEP
21.1% 6.0

REM
20.1% 5.8

WAKE
5.8% 6.4

Fig. 4  The Average of Sleep stage ratio in all subjects and all nights
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a little difference between LIGHT and REM. As with 
parameter 1, most of the values were 0 in DEEP. Param-
eter 2 contributed to the classification of consecutive 
WAKE periods, in line with its purpose. In contrast, its 
use for classification of LIGHT and REM was difficult. 
This was due to the similar frequency of body movements 
in LIGHT and REM [10]. Figure 7 shows that parameter 
3 exhibited large values in WAKE. And as with param-
eter 1, most of the values were 0 in DEEP. However, in 
REM, there were some periods producing values close 
to 0. As with DEEP, the same phenomenon occurred in 
LIGHT. This is due to the fact that the small body move-
ments could not be detected by our video processing algo-
rithm and the duration time of stillness was calculated 
longer than the actual. Figure 8 shows that parameter 4 
showed large values in continuous DEEP and frequently 
also exhibited large values in REM. In the intermittent 
DEEP occurring in the latter half of sleep, its values were 
equivalent to values in LIGHT and REM. Parameters 1 to 
3 were almost 0 and parameter 4 was larger in DEEP. This 
result indicated that body movement mostly did not occur 
in DEEP and relatively made the classification of DEEP 
easy. However, in intermittent DEEP, stillness durations 
became shorter (parameter 4) and classification became 
difficult.

3.3  Sleep stage estimation

The percentages of sleep stages estimated from body move-
ments and compared with those from PSG data are shown 
in Table 3.

In Table 4, sensitivity, specificity and accuracy was aver-
aged for all subjects. In Table 5, the calculation results of 
total accuracy and kappa were represented.

In classification of DEEP, sensitivity was highest with 
Subject 3 at 68.6% with the least miss-classification being 
to REM. DEEP sensitivity was the lowest in subject 5 at 
37.3% and miss-classification to REM was the greatest. 
For all subjects, sensitivity was 53.3 ± 14.8%, but standard 
deviation was large. Conversely, specificity was over 90% 
and standard deviation was small. Average accuracy of all 
subjects was 82.8 ± 4.7%. In Subject 3, the ratio of DEEP 
was large in nocturnal sleep and its duration was long. They 
contributed to the high classification accuracy of DEEP. On 
the other hand, as in subject 5 in the case that the ratio of 
DEEP was small and intermittent like for 5–6 h in Fig. 5, the 
classification accuracy of DEEP was low. This was because 
the classification of DEEP depends on parameter 4.

In cases where body movement occurred in the middle 
of a continuous DEEP, parameter 4 (duration time of still-
ness) became smaller, and it became more difficult to clas-
sify the stage as DEEP. Yoon and et al. reported that sensi-
tivity was 67.22 ± 15.70% and accuracy was 89.80 ± 3.47% 

in the classification of DEEP using a contact-type electro-
cardiogram measurement [23]. Compared with this result, 
our system has sufficient accuracy as a non-contact type 
sleep monitoring methodology. Sensitivity and accuracy of 
LIGHT were low for all subjects. This was due to the fact 
that LIGHT comprises about half of nocturnal sleep and also 
includes the transition period to other stages. Even when 
a technologist judges sleep stage, it is difficult to identify 
the transition period [24, 25]. It is therefore inevitable that 
miss-classification increases in machine learning. In Subject 
5, because that proportion of LIGHT was larger than in the 
other subjects, sensitivity was the lowest. Parameter 2 was 
expected to classify LIGHT and other stages but differentia-
tion between LIGHT and REM was difficult due to that the 
similar occurrence frequency of body movements.

Accuracy of REM was 68.0 ± 6.3% and there were many 
miss-classifications to LIGHT. REM was expected to be 
classified by parameter 2 but it was difficult for the same 
reason as LIGHT. In addition, the value of parameter 4 
increased in REM, and it was sometimes misclassified as 
DEEP. It is possible that this is because body movements 
in REM could not be detected by our video processing 
algorithm. Small body movements that are not gross body 
movements cannot be detected. Komine et al. reported on 
the classification of REM using contact-type measurement 
of body movement and respiration cycle, and the accuracy 
of REM was 80 ± 9% [26]. In addition, Kortelainen et al. 
reported classified REM using contact-type measurement 
of body movements and heart beat interval, the accuracy of 
REM was 80 ± 10% [27]. Since our system is a non-contact-
type measurement of only body movements, its classification 
accuracy of REM is sufficient.

The average sensitivity of WAKE for all subjects was high 
but the standard deviation was also high. Miss-classifications 
to LIGHT were more than to the other stages. In cases where 
body movement was small in single or short WAKE, the 
period was classified to LIGHT because the value of param-
eter 1 is at the same level as in LIGHT. Parameters 2 and 3 
are unable to detect short WAKE because these parameters 
use a moving average of 5 min. For subject 7, there were 
many miss-classifications to DEEP. This is because there 
was a continuous WAKE of 137 min on the first night where 
the subject tried intentionally tried not to move in order to 
get back to sleep. This was an unnatural action on this single 
night where the duration of stillness had been artificially 
lengthened (and the value of parameter 4 became large), and 
thus the section was miss-classified to DEEP.

Figure 9 shows a typical result of sleep stage scored by 
a sleep technologist (AASM scoring) and estimated by our 
technique. Classification accuracy of consecutive DEEP was 
high. REM was estimated to be long or intermittent but the 
times of its appearance were approximately in agreement. 
These results demonstrate the possibility of estimating sleep 
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cycle, although average of total accuracy was 40.5 ± 2.2% 
and average kappa was 0.19 ± 0.04 (slight agreement) [28].

Wei et al. reported that estimation total accuracy of 
three stages using single-lead EEG measurement was 
77% [29]. Hong et al. reported that classification total 
accuracy of the four sleep stages as defined here was 81% 
using body movement and respiration measurement from 
a Doppler radar sensor [30]. Classification accuracy by our 
method is inferior to their study but we did not use auto-
nomic nervous system information to reduce system cost. 
Our system is sufficiently accurate as a device for easy 
home use. Our sleep monitoring system requires only one 
inexpensive camera to measure bio-signals. The cost of 
the computing power necessary for video processing and 
parameter calculation is also low compared with the other 

Table 3  Confusion matrices 
and evaluation indices for each 
subject

Estimation [%] Evaluation [%]

DEEP LIGHT REM WAKE Sens. Spec. Acc.

Subject 1
Actual
DEEP 52.8 20.3 8.0 18.9 52.8 90.5 84.0
LIGHT 9.6 30.7 33.5 26.3 30.7 76.0 52.6
REM 10.3 28.4 48.4 12.8 48.4 73.8 67.1
WAKE 2.9 11.8 12.4 72.9 72.9 78.8 78.6
Subject 2
Actual
DEEP 54.5 14.8 16.8 13.9 54.5 94.9 87.0
LIGHT 5.0 31.5 29.4 34.1 31.5 77.3 51.4
REM 1.7 28.5 43.5 26.2 43.5 76.0 70.5
WAKE 13.1 30.5 2.2 54.2 54.2 71.6 70.3
Subject 3
Actual
DEEP 68.6 7.5 5.6 18.3 68.6 86.8 83.0
LIGHT 15.5 29.7 23.3 31.5 29.7 82.3 55.3
REM 12.5 33.2 40.0 14.3 40.0 83.3 74.9
WAKE 0.6 7.2 3.6 88.6 88.6 75.1 76.3
Subject 4
DEEP 56.1 11.4 17.9 14.7 56.1 89.5 79.5
LIGHT 12.1 27.7 42.1 18.1 27.7 75.3 53.1
REM 7.2 46.1 29.2 17.4 29.2 67.9 60.4
WAKE 7.8 20.5 22.3 49.4 49.4 83.1 81.7
Subject 5
Actual
DEEP 37.3 25.0 15.7 22.0 37.3 93.1 84.5
LIGHT 8.0 38.2 28.6 25.2 38.2 68.1 51.3
REM 5.4 38.7 40.9 15.0 40.9 74.8 66.5
WAKE 0.0 15.8 12.2 71.9 71.9 77.9 77.7
Subject 6
Actual
DEEP 51.8 20.7 24.5 3.0 51.8 83.7 77.5
LIGHT 13.4 35.5 31.6 19.4 35.5 75.4 54.8
REM 24.2 35.0 36.2 4.6 36.2 73.1 68.6
WAKE 19.5 22.0 15.5 43.0 43.0 86.6 79.0

Table 4  Evaluation indices for all subjects

Sensitivity Specificity Accuracy

DEEP 53.3 ± 14.8 90.1 ± 4.5 82.8 ± 4.7
LIGHT 32.0 ± 5.8 75.9 ± 7.0 53.0 ± 4.0
REM 41.5 ± 14.4 74.9 ± 5.7 68.0 ± 6.3
WAKE 66.3 ± 21.3 78.5 ± 6.1 77.2 ± 6.0
Average 48.3 ± 12.9 79.8 ± 6.0 70.3 ± 11.3
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technique. Therefore, it can also be built into a smart-
phone and modularized based on microcomputer if camera 
is attached. These considerations are advantageous in the 
development of a home use device.

Our system does have limitations. It is unable to pro-
duce high classification accuracy suitable for medical use, 
because it is for home use and utilizes only body move-
ment. If higher classification accuracy is required, an index 
of autonomic nerve activity will also need to be measured 
to provide additional parameters for machine learning, for 
example heat rate or respiration frequency [31]. There are 
possible that classification accuracy of LIGHT an REM is 
improved by these autonomic nerve indices. In our system, 
Two-dimensional moving data converted one-dimension 
during process of inter-frame difference. Accordingly, two-
dimensional information like direction of body movements 
is lost. However, our system can obtain more information 
than one-dimension sensor like infrared motion detec-
tion sensor, because that information of two-dimension is 
included as volume of body movement in one-dimension 
data of our system. If these two dimensional data is applied, 
detection of respiration frequency,direction of body move-
ments and movements of each four limbs using camera is 
technologically possible even though cost becomes high 
[32]. The results of six subjects indicate an availability of 
our system for home use. However, more subjects are needed 
to generalize. The results of six subjects indicate an avail-
ability of our system for home use. However, considering 
environmental factors and user’s age, there is a possibility 
that the number of subjects is not enough to generalize.

In the future work, we would like to collect data for 
generalization. Moreover, using a high-resolution camera 
to improve the ability to detect fine body movement and 

respiratory movement may improve accuracy sufficiently for 
clinical use. Additionally, since video processing has been 
simplified sufficiently for home use in this study, further 
improvements in software are still possible. For home use, 
we aim to further develop a method to monitor individuals 
even when several people are sleeping in the same bed or 
room.

4  Conclusion

In this study, we developed an inexpensive and simple sleep 
monitoring system for home use using an inexpensive cam-
era and low-cost computing power. Our system made it pos-
sible to estimate sleep stages, including REM, using two 
types of video inter-frame difference to improve the ability 
to detect body movement and five parameters representing 
features of body movement in each sleep stage. Classifica-
tion accuracy of four sleep stages, including REM, was suffi-
cient for a home use, as non-contact device, and the potential 
for estimating sleep cycle stages was demonstrated. This 
indicates that our method can be used as a basis for envi-
ronmental control for sleep according to sleep cycle stage.
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Table 5  Results of total 
accuracy and kappa for each 
subject

Subject1 Subject2 Subject3 Subject4 Subject5 Subject6 Average

Total accuracy 41.1 39.6 44.8 37.4 40.0 40.1 40.5 ± 2.2
Kappa 0.20 0.19 0.27 0.15 0.15 0.18 0.19 ± 0.04

Fig. 9  Sleep cycle of AASM 
scoring and estimation results
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