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Abstract
The purpose of this work is to set up a model that can estimate the mental fatigue of users based on the fusion of relevant

features extracted from Positive 300 (P300) and steady state visual evoked potentials (SSVEP) measured by electroen-

cephalogram. To this end, an experimental protocol describes the induction of P300, SSVEP and mental workload (which

leads to mental fatigue by varying time-on-task) in different scenarios where environmental artifacts are controlled

(obstacles number, obstacles velocities, ambient luminosity). Ten subjects took part in the experiment (with two suffering

from cerebral palsy). Their mission is to navigate along a corridor from a starting point A to a goal point B where specific

flickering stimuli are introduced to perform the P300 task. On the other hand, SSVEP task is elicited thanks to 10 Hz

flickering lights. Correlated features are considered as inputs to fusion block which estimates mental workload. In order to

deal with uncertainties and heterogeneity of P300 and SSVEP features, Dempster–Shafer (D–S) evidential reasoning is

introduced. As the goal is to assess the reliability for the estimation of mental fatigue levels, D–S is compared to multi layer

perception and linear discriminant analysis. The results show that D–S globally outperforms the other classifiers (although

its performance significantly decreases between healthy and palsied groups). Finally we discuss the feasibility of such a

fusion proposal in real life situation.
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Introduction

In recent years, brain computer interfaces (BCI) have

become very trendy and embedded in different frame-

works. The current field of applications of BCI systems is

very wide and ranges from wheelchair navigation, evalu-

ation of Brain-Computer Interface to categorize human

emotional response (Crowley et al. 2010), assessment of

cognitive loads (Haapalainen et al. 2010), shapes evalua-

tion (Chew et al. 2015) to neurofeedback training for

children with attention deficit disorders (Cortese et al.

2015). BCI allow users to communicate with the external

environment without relying on muscular or nervous

activity. A typical scheme is started by monitoring the

user’s brain activity [measured by Electroencephalography

(EEG), functional magnetic resonance imaging (fMRI),

positron emission tomography (PET), and functional near-

infrared brain monitoring (fNIRS)] which is conveyed into

brain signals and processed to get feature vector. The

mapping of the latter results into commands executed by

the system and can be presented in two different ways :

• Active BCI allow the user to perform ‘‘direct’’ orders

obtained from distinctive patterns reported by mental

activities and recognized by BCI. These patterns are

then mapped into actions depending on the application

(e.g. wheelchair directions control). The correlation

between the type of mental activity and EEG are known

as electro-physiological source of control. They are

categorized into internally generated signals (such as

sensorimotor rhythms) or triggered by external stimuli

[such as Event Related Potentials (ERP), Visual Evoked

Potentials (VEP)]. ERP and VEP-BCI systems have
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shown better results compared to internally generated

signals in terms of training and transfer rates (Wang

et al. 2006). In this manuscript, we focus on Positive

300 wave (P300) and Steady State Visual Evoked

Potentials (SSVEP) elicitation.

• Passive, implicit or non command BCI are set up by

recognizing specific mental states of the user such as

emotions (wakefulness, relaxation, nervousness… ) or

mental fatigue levels to provide enhanced systems

adapted to the user needs (e.g. switch to autopilot if

high level of stress is detected …).

BCI is very flexible and can be associated with many

other modalities. Consequently, new terminologies are

introduced such as ‘‘hybrid-BCI’’ which is the acquisition

of EEG data combined with physiological signals such as

Electromyography (EMG), Electrocardiography

(ECG)…(Liberati et al. 2015) to overcome the shortages of

individual acquisitions and build more robust classifiers.

Another field associates the user’s affective states with BCI

schemes. This is termed as ‘‘emotional-BCI’’ where

affective adaptation is suggested either in the input level to

interpret and adapt the user’s current state or in higher

levels to predict future actions (Molina et al. 2009).

The goal of the current manuscript is to estimate the

user’s mental fatigue levels in the context of virtual

navigation in indoor environment based on the fusion of

P300 and SSVEP features. It is motivated by the com-

plementarity between P300 and SSVEP as, each of which,

presents some advantages and shortages. To the best of

our knowledge, the fusion between both modalities is not

investigated yet. In this manuscript we evaluate different

fusion methods and investigate its efficiency compared to

other conventional techniques. The conclusions will be

exploited as a basis for future schemes in order to ensure

the migration of those findings from simulation to real life

situations. Speaking of which, in our former studies, P300

and SSVEP were used as a source of control for wheel-

chair commands (more details could be found in Lamti

et al. 2016, 2018) (as part of active BCI systems). In an

inverse scheme, under the framework of passive BCI,

those same modalities are assessed in order to detect,

estimate and predict the user’s state (mental fatigue and

emotions).

To this end, different terminologies will be exposed

such as P300, SSVEP and mental fatigue. Then, the

experimental setup and methodologies will be described

[for more details please refer to our former studies (Lamti

et al. 2014a, 2016)].

P300, SSVEP and mental fatigue

Mental fatigue can be defined as a state that occurs after

performing a cognitively demanding task for an extended

period (Myers and Downs 2009). From clinical perspec-

tive, this state can engender different symptoms such as

subjective feelings of tiredness, and the accompanying

unwillingness for further mental effort (Meng et al. 2006).

Nonetheless, from scientific point of view, mental fatigue

is a complex multidimensional phenomenon: It includes

changes in motivational, mood, and cognitive processes

(Zhang et al. 2007). It has been found to result in a reduced

goal-directed attention (Crippa et al. 2011), a decreased

effectiveness in selective attention (Schlesinger et al. 2007)

and an increased difficulty in dividing attention (Csatho

et al. 2013). As far as mental fatigue impacts cerebral

activity changes, EEG patterns show specific perturbations.

We report the correlated features from P300 and SSVEP.

P300

Event Related Potentials (ERP) are consequent to the use

of infrequent visual, auditory or somatosensory stimuli

which evoke a positive peak over the parietal cortex after

the stimulus presentation (Luck 2005). When the subject is

unable to predict whether the next stimulus would be, the

peak is generated around 300 ms post-stimulus. This is

referred as P300. In a visual-based experiment, P300 is

elicited by presenting a matrix of stimuli and request from

the user to choose one of them. A P300 appears when the

highlighted choice appears. Knowing the user’s choice is

very important in BCI in order to execute corresponding

action. One of the well known experiments that elicits

P300 response is the ‘‘oddball’’ paradigm (Luck 2005), in

which a sequence of 80% non-target stimuli of ‘‘X’’ and

20% of target stimuli ‘‘O’’ that rarely occurs among the

more common non-target stimuli are presented to the user.

Each time the target stimulus appears, the P300 response

follows in the EEG signals. P300 was used in many pro-

jects related to wheelchair command such as Puanhvuan

et al. (2017). They aimed to propose a prototype BCW to

allow severe motor disabled patients to practically control a

wheelchair for use in their home environment. The users

were able to select from 9 possible destination commands

in the automatic mode and from 4 directional commands

(forward, backward, turn left and right) in the shared-

control mode. These commands were selected via the

designed P300 processing system. Recently, many auditory

BCIs are using beeps as auditory stimuli, while beeps

sound unnatural and unpleasant for some people. It is

proved that natural sounds make people feel comfortable,

decrease fatigue, and improve the performance of auditory
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BCI systems. Drip drop is a kind of natural sounds that

makes humans feel relaxed and comfortable. In Huang

et al. (2017) work, three kinds of drip drops were used as

stimuli in an auditory-based BCI system to improve the

user-friendness of the system. This study explored whether

drip drops could be used as stimuli in the auditory BCI

system. The auditory BCI paradigm with drip-drop stimuli,

which was called the drip-drop paradigm (DP), was com-

pared with the auditory paradigm with beep stimuli, also

known as the beep paradigm (BP), in items of event-related

potential amplitudes, online accuracies and scores on the

likability and difficulty to demonstrate the advantages of

DP. The results showed that the drip drops were reliable

acoustic materials as stimuli in an auditory BCI system. A

typical P300 is characterized by the following parameters

(see Fig. 1):

• Maximum amplitude: the maximum magnitude of the

generated peak it varies depending on the sensor and

the region where the P300 occurred.

• Minimum amplitude: the minimum magnitude reached

before signal deflection.

• Latency: the time that separates the onset time of the

stimulus and the appearance of the P300. It is known

that this value is approximately 300 ms. However, we

try to investigate if this parameter changes jointly with

mental fatigue levels.

• Period: the needed time for the EEG signal to reach its

steady state.

Different types of stimuli can be used to elicit P300

(Girelli and Luck 1997). From those, features pop-outs can

differ by color, orientation or motion. The results of dif-

ferent experiments confirm that all these targets showed

successful P300 waveform. In our case, the stimuli feature

pop-outs are of color type.

SSVEP

Steady-state Visual Evoked Potential (SSVEP) is a brain

response to visual sinusoidally modulated stimuli (Vialatte

et al. 2010). When the retina is excited by a visual stimulus

presented at frequencies ranging from 3.5 Hz to 75 Hz, a

continuous or oscillatory response is produced. According

to Regan (1966), discrete frequency components in the

steady state potentials are amplitude and phase constant

over a long period of time. While these features are not

visible in time domain, their spectral distribution is still

constant. Hence, SSVEP peaks remain stable over time.

Many applications are dervied from SSVEP-based BCI.

These systems can be used for remotely controlled devices

such as wheelchairs which can be useful for severely dis-

abled people (Gao et al. 2003). We study SSVEP because

of its excellent signal-to-noise ratio and relative immunity

to artifacts produced by blinks and eye movements (Perl-

stein et al. 2003), SSVEP also provide a means to char-

acterize preferred frequencies of neocortical dynamic

processes. Multivariate Synchronization Index (MSI) has

been proved to be an efficient method for frequency

recognition in SSVEP-BCI systems. It measures the cor-

relation according to the entropy of the normalized

eigenvalues of the covariance matrix of multichannel sig-

nals. In the MSI method, the estimation of covariance

matrix omits the temporally local structure of samples.

Zhang et al. (2016) studied, a spatio-temporal method,

termed temporally local MSI (TMSI), was presented. This

method explicitly exploits temporally local information in

modelling the covariance matrix. In order to evaluate the

performance of the TMSI, they performed a comparison

between the two methods on the real SSVEP datasets from

eleven subjects. The results show that the TMSI outper-

forms the standard MSI. TMSI benefits from exploiting the

temporally local structure of EEG signals and could be a

potential method for the performance of SSVEP-based

BCI. In our former study (Lamti et al. 2018), an active

gaze/SSVEP hybrid wheelchair command system was set

up in order to enhance navigation performance. This pro-

ject deals mainly with the case of distracted users where

gaze and cerebral distractions were added. In the current

study, the passive aspect of the SSVEP based wheelchair

navigation will be addressed.

In SSVEP-BCI paradigms, many considerations have to

be addressed (Vialatte et al. 2010). In the following sub-

sections, we will detail the choice of paradigm and stimuli.

Type of paradigm

There are two types of stimuli that can be used for SSVEP-

BCI: either simple or complex. The simple stimuli rangesFig. 1 P300 parameters (maximum, minimum amplitudes, latency

and period)
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from blinking diodes, light-emitting diodes or flickering

sources on an LCD computer screen while complex flick-

ering includes reversing checkerboard. The latter produces

more accentuated SSVEP patterns than simple stimuli at

the same frequency (Lalor et al. 2005). It is recommended

that the choice of the type of stimulus depends on the

number of commands to generate (Dornhege et al. 2003): if

it does not exceed four commands, complex stimuli is

recommended because of its high detection rate while

simple ones provide lower detection rate and faster

responses with more commands. In this experiment, the

fastness of response is privileged hence, simple stimuli are

adopted with blinking lights.

Stimuli choice

In order to make the right choice of stimulus properties,

different issues have to be addressed. First the stimulus

generator depends on the complexity of the BCI (or the

number of commands to be detected) (Wu et al. 2008). We

choose liquid crystal display (LCD) computer screen as

stimuli generator because it induces less eye fatigue [in

contrast to cathode-ray tube (CRT) or Light-emitting

diodes (LEDs) which tend to be more efficient for more

complex BCI]. Second, the optimal stimulus frequency is

very important for the experiment setup. Many criteria can

be helpful to determine frequency but the most cited ones

are (Wang et al. 2006): stability and signal-to-noise ratio

(SNR). In our case, we choose 10 Hz because of its high

SSVEP amplitude although its poor SNR due to sponta-

neous EEG.

Mental fatigue and its impact on P300 and SSVEP

In our living, we often have a sense of being tired due to a

mental or physical work, plus a feeling of performance

degradation even in the accomplishment of simple tasks.

However, these mental states are often not consciously felt

or are ignored, an attitude that may result in human fail-

ures, errors and even in the occurrence of health problems

or on a decrease in the quality of life. States of fatigue may

be detected with a close monitoring of some indicators,

such as productivity, performance or even the health states.

A Pimenta et al. (2013) proposed a model and a prototype

to detect and monitor fatigue based on some of these items.

They focused specifically on mental fatigue, a key factor in

an individuals performance. With this approach they aimed

to develop leisure and work context-aware environments

that may improve the quality of life and the individual

performance of any human being.

Mental fatigue and mental workloads are two overlap-

ping terms but do not refer to the same concept. The mental

workload is presented as the part of mental capacity

allocated for a given task (O’Donnell and Eggemeier 1986)

while mental fatigue is usually considered as a gradual

process that affects negatively the subject performance and

efficiency (Grandjean et al. 1971). In order to evaluate

mental fatigue, varying the time-on-task is usually under-

taken (Roy et al. 2013).

Many projects investigated the influence of mental

fatigue on P300 and SSVEP. In Kthner et al. (2014),

dichotic listening was used to increase mental fatigue.

They found that P300 amplitude as well as alpha band

power showed significant correlations with higher mental

fatigue levels. While in Murata et al. (2005), mental fati-

gue was evaluated in VDT context using features extracted

from P300. For this purpose, Principal Component Anal-

ysis was deployed to estimate the best correlated parame-

ters. They concluded that evaluation of mental fatigue

based on ERP must be conducted from other perspectives

than P300 amplitude and latency as those measures were

not powerful enough to characterize by themselves mental

fatigue. In our pilot study (Lamti et al. 2014a), alpha and

beta band ranges showed the best correlated parameters in

SSVEP induction experiment during virtual wheelchair

navigation.

Ryu and Myung (2005) developed a combined measure

based on signals issued from EEG, ECG and HRV during

dual task. Ten subjects took part in the experiment and

performed different versions of dual tasks composed of

tracking and mental arithmetic. They found that the

extracted features (alpha rhythm, eye blink interval and

heart rate variability) showed alternate correlations with

respectively tracking and arithmetic tasks. By combining

all those measures into a single one, the latter showed

significant increase proportionally to the difficulty and the

version of each task.

Dey and Mann (2010) performed a task analysis to

assess mental fatigue coupled with operating an agricul-

tural sprayer equipped with navigation device. The gath-

ered observations consisted of eye-glance behavior and

heart rate variability recording during a field spraying task.

Based on eye-glance behavior external cues were sug-

gested to be more important than lightbar in order to pro-

vide necessary navigation information. However, heart rate

variability proved that operators using light-bar navigation

experienced more mental fatigue.

Jo et al. (2012) proposed a cognitive architecture based

on ACT-R. They suggested a quantitative methodology to

predict mental fatigue based on mathematical representa-

tion of mental workload over time with respect to the

activated time of the ACT-R modules. For this purpose, a

series of experiments were set up based on three different

tasks: memorization, visual-manual and menu selection

tasks. They found that this method can reliably predict the
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mental fatigue as long as it can represent human perfor-

mance in a given task properly.

Grandjean et al. (1971) present a study which examined

the effect of differing levels of visual taskload on critical

flicker frequency (CFF) change during performance of a

complex monitoring task. The task employed was designed

to functionally simulate the general task characteristics of

future, highly automated air traffic control systems in

which passive monitoring is likely to be a principal job

requirement.

There have been few reports that investigated the effects

of the degree and pattern of a spectral smearing of stimuli

due to deteriorated hearing ability on the performance of

auditory brain-computer interface (BCI) systems. In

Ho Hwang et al. (2017) they assumed that such spectral

smearing of stimuli may affect the performance of an

auditory steady-state response (ASSR)-based BCI system

and performed subjective experiments using 10 normal-

hearing subjects to verify this assumption. they constructed

smearing-reflected stimuli using an 8-channel vocoder with

moderate and severe hearing loss setups and, using these

stimuli, performed subjective concentration tests with three

symmetric and six asymmetric smearing patterns while

recording electroencephalogram signals. Then, 56 ratio

features were calculated from the recorded signals, and the

accuracies of the BCI selections were calculated and

compared. These results imply that by fine-tuning the

feature settings of the BCI algorithm according to the

degree and pattern of hearing ability deterioration of the

recipient, the clinical benefits of a BCI system can be

improved.

Roy et al. (2013) proposed a novel electro-encephalog-

raphy (EEG) signal processing chain designed to classify

two levels of mental fatigue that appears after having spent

a long time on a tedious task. The decrease in vigilance

associated with mental fatigue makes it a dangerous state

for operators in charge of complex systems. The processing

chain, inspired from active brain computer interface com-

puting, is implemented as follows: the EEG signal is ini-

tially filtered in a given frequency band and 15 electrodes

out of 32 are then selected using a method based on Rie-

mannian geometry. Next, a spatial filtering step is carried

out using 6 common spatial pattern (CSP) filters.

To summarize, the influence of mental fatigue on P300

and SSVEP was investigated in different scenarios (Perez

and Cruz 2007), however in the context of wheelchair

navigation, environmental artifacts can influence mental

workload such as: facing obstacles, going through hall-

ways, lighting conditions… which in turn can induce a long

term cognitive fatigue. While our main goal is to provide

physiological indicators that characterize mental fatigue on

EEG signals, its implementation in real world is at risk

especially for security purposes. Consequently, a virtual

indoor navigation implementation is needed in order to

control efficiently experimental parameters and identify

precisely P300 and SSVEP. Besides, the presented projects

didn’t present any model to fuse between P300 and SSVEP

features simultaneously in the same model.

The goal of this study is to set up a mental fatigue

estimation block based on the fusion between SSVEP and

P300 relevant features by the mean of evidential reasoning

that will be discussed later.

In the following, in ‘‘Introduction’’ section, we will

detail experimental environments setup for mental work-

load (and mental fatigue by varying time-on-task), P300

and SSVEP. In ‘‘P300, SSVEP and mental fatigue’’ section,

we report succinctly, the most correlated features from

P300 and SSVEP based BCI with mental fatigue levels. In

‘‘Materials and methods’’ section, Dempster–Shafer fusion

technique will be proposed to assess its efficiency in

comparison with multi layer perception (MLP) and linear

discriminant analysis (LDA). Finally, the conclusion will

present the shortages and the next steps to take in order to

enhance the system.

Materials and methods

The mental fatigue detection system framework is illus-

trated in Fig. 2:

• Inputs are issued from the recordings of cerebral

activity during experimental tests.

• A very important layer is the features extraction. In fact,

one challenging problem is to consider the time zero to

start recording the signal of the P300 accurately and

localize the features (maximum, minimum, latency

and period). This is also the case for the SSVEP where

band wave signals ðd½0:5Hz�4Hz�; h½4Hz�8Hz�;
a½8Hz�13Hz�; b½13Hz�30Hz�; c½30Hz�64Hz�Þ must

be identified synchronously with the occurrence of the

SSVEP.

• All collected data will be treated through a correlation

layer. The aim of this step is to select relevant features

from P300 and SSVEP with mental fatigue using a

Fisher test. For 14 sensors and 4 features (maximum,

minimum, latency and period) per sensor, the overall

crossings will result in 56 features for P300 and 70

features for SSVEP (5 bandwaves in the frequency

domain per sensor).

• A fusion layer will be deployed in order to merge

between previously selected features based on eviden-

tial reasoning and the Dempster–Shafer theory.

• The output of the fusion layer will result in four states:

‘NF’: ‘No Fatigue’ or awaken. ‘LF’: ‘Low Fatigue’, in

this state the subject starts to feel tired. ‘MF’: ‘Medium

Cognitive Neurodynamics (2019) 13:271–285 275
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Fatigue’, where the fatigue level is slightly alarming.

The last is ‘HF’: ‘High Fatigue’ where the state is

alarming and high fatigue level is reached.

In this section, we will present the experimental envi-

ronments in order to induce mental workload and mental

fatigue, P300 and SSVEP responses. Further details of

these experiments are explained in Lamti et al. (2014a, b).

Materials

Hardware framework An Invacare Storm 3G Ranger X

branded wheelchair is used with joystick to control a vir-

tual world projected on a 180 degrees panoramic screen to

help the immersion of the user in the world (Fig. 3).

Virtual world The virtual world was developed using

Reality Factory engine (Queteschiner 2012). The use of

simulators allows to set up new cases that can induce

physiological phenomena such as P300, SSVEP, mental

workload by inserting special artifacts such as lights,

stimuli and varying parameters like obstacles amount, type

and velocity and mental fatigue by varying time-on-task.

Those can help us to assess correlations between different

parameters before proceeding to real world situations.

EEG sensors An Emotiv (Epoc model)1 with 16 sensors

and 128Hz sampling frequency headgear is used to record

brainwave activity. Sensors are placed according to the 10-

20 system (Ernst Niedermeyer 2004) over frontal

(AF3;AF4;F3;F4;F7;F8), fronto-central (FC5;FC6) pari-

etal (P7;P8), occipital (O1;O2) and temporal (T7; T8)

regions with a sampling frequency of 128 Hz.

NASA Task Load indeX scale In order to rate cognitive

workload among a range of load situations, the NASA Task

Load indeX scale (NASA-TLX) measures the workload in

six different scales, each of which is associated with a

different source (performance, effort, time pressure, mental

demand, physical demand and frustration) (Hart and

Staveland 1988). The overall weighed score reflects

simultaneously physical and mental workload. Subjects

have to rate the workload scales at the beginning, after each

trial and at the end of the experiment. In line with (Kota

et al. 2016) we assume that NASA-TLX has a strong

correlation with mental fatigue.

1 https://www.emotiv.com.

Fig. 2 The general fusion

scheme based on D–S theory
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Methods

The virtual world is composed of a corridor where, subjects

are asked to navigate from starting area A to target area B

placed respectively at the start and at the end of the hall.

Environmental artifacts addressed are ambient luminosity

(Low (50%), Normal (100%), High (150%) in local scale

unit), number of obstacles (Low (1), Medium(4), High(7))

and obstacles velocity (No velocity (0), Low (2), Medium

(4), High (7) in ms�1). In each trial, one of the environ-

mental parameters was manipulated (for example the trial

(L,L,L) corresponds to (50% luminosity, 1 obstacle, 2

ms�1)) (Fig. 4). The overall crossings result in a first block

of 36 trials.

The subject has to fulfill two missions; the first one is to

be able to navigate from start to target area. In the second

part, and in order to induce P300, each time the subject

reaches the area B, a set of flickering circles (with 80% red

and 20% green) are displayed. Inspired from crossing

lights, the goal is to reach the exit when green stimulus

appears. This constitutes the time zero of the P300 wave-

form recording. The onset of the target stimulus marks the

beginning of the measurement of P300. The different

combinations of environmental parameters are chosen

randomly. This will help to avoid bias with respect to the

difficulty of the task.

For SSVEP experiment (Fig. 5), only two parameters are

modified in each navigation scenario: number of obstacles

and obstacles velocity while keeping ambient luminosity to

normal level. To induce SSVEP, flashing lights were

placed in the corridor with a frequency of 10 Hz. This

makes the second block that contains 12 trials.

Ten subjects (with two suffering from cerebral palsy)

took part in the experiment. They signed a consent form

that explains the experiment goals and steps. After sitting

comfortably in the wheelchair, they were given a set of

instructions informing them of the experiment protocol and

the meaning of the different scales used for self-assess-

ment. An experimenter was also present there to answer

any questions. After sensors placement and checking, the

participants performed a practice trial to familiarize

themselves with the system. Next, the experimenter started

the physiological signals recording. The user is asked to

navigate from the starting point A to the ending point B

where a specific visual stimuli is displayed. At the end of

each trial, the subject rates the NASA-TLX scale and takes

a one minute break. The duration of each trial depends on

the performance of the subject. Yet, we assume that the

mental workload increases with the increase of the envi-

ronmental modification difficulty where the highest com-

bination corresponds to (H (150% luminosity), H (7

obstacles), H(7 ms�1Þ). At the end of the first block, the

subject takes a break of one minute to enchain with the

second block. Subjects repeated the same set of blocks

three times with the same procedure as detailed. We

assume that the repetition of P300 and SSVEP tasks as well

as the time needed to finish all trials (an average of one

hour and a half was recorded) impact the time-on-task and

induce mental fatigue.

Theory/calculation

Features extraction

P300 features The EEG data were aggregated in windows

of length 32 samples with an overlapping of 25%. They

were common average and referenced. Eyes artifacts were

removed with Independent Component Analysis (ICA) (Li

et al. 2003). The signal recorded from the first five seconds

of each trial constitute the baseline, from which, ampli-

tudes (maximum and minimum) were averaged separately

Fig. 3 Experimental platform:

the main goal of this platform is

to extract physiological indices

that can measure motor,

cognitive, ocular performance

of the user through virtual

navigation scenarios. In this

manuscript we focus mainly on

mental workload and fatigue
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yielding to minimum and maximum reference amplitudes

for each trial. Those were then automatically subtracted

from the trial amplitudes, conceding the change of ampli-

tudes. Latency and period are compared to the reference

mentioned by literature (300ms and 600ms).

SSVEP features The activated stimulus, has a flickering

frequency f (in Hz). Its corresponding SSVEP response is

estimated as follows (Valbuena et al. 2007):

Fig. 4 Experimental platform for P300 induction. The circles correspond to vertical pillars. Ellipses correspond to obstacles laying on the ground

Fig. 5 Experimental platform for SSVEP induction. The circles correspond to vertical pillars. Ellipses correspond to obstacles laying on the

ground. Yellow circles correspond to flashing lights
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yiðtÞ ¼
Xh¼H

h¼1

ðas;h sinð2phftÞ þ ws;hÞ þ nðtÞ ð1Þ

where H is the number of harmonics, as;h and ws;h are

respectively the amplitude and the phase of the sinusoid in

each electrode. n represents the noise of the signal. It can

be caused by muscular disturbance or electrode noise. The

goal is to minimize the noise in order to improve detection

process. As it was stated in several studies (Mandel et al.

2009), a channel c can be considered as a linear combi-

nation of signals measured by electrodes. This means that

at a time t, the channel c is calculated as follows :

cðtÞ ¼
Xi¼C

i¼1

wiyiðtÞ ð2Þ

where C is the number of channels, wi is the optimal set

that ensures minimum energy combination and minimum

noise occurrence (Friman et al. 2007a). Thanks to its good

performance which was validated in several studies, the

minimum energy combination technique is implemented in

this work.

The PSD for an harmonic h and an SSVEP model S can

be obtained as follows (Friman et al. 2007b):

PSDh ¼ jjShcijj2 ð3Þ

In order to extract features and classify frequency, the

power spectral density (PSD) is calculated using Discrete

Fourier Transform (DFT). The detection is ensured by

thresholding i.e. SSVEP is detected if its frequency around

the preset target (10Hz) is above a certain threshold which

is calculated from the distribution of spectral EEG.

Results

Mental fatigue levels, subjective ratings
and navigation performance

The ratings and navigation performance (i.e. obstacles

collision and navigation time) were collected from exper-

iment and averaged on chunks of 30 minutes length

(Fig. 6). An overall increase is noticed in the three

parameters: subjective ratings changed from 1.91(0.5) in

the first chunk to 9.38(0.34) in the last one. This is

accompanied by an increase in obstacles collisions: 4.8(3)

to 13.76(5.1) and in navigation time: 56.2(8.2) to 132.35

(25.3). The reported ratings are correlated with environ-

mental performance (p\0:001). Even though the repeated

trials are with the same difficulty and assuming that sub-

jects can develop more skills as they spend more time with

the simulator, they weren’t able to hold the same perfor-

mance during the three phases of the experiment. Finer

investigations showed that the two palsied users were even

worse in term of performance and feelings. An average of

twelve minutes was enough to notice the transition from

low to high rating scores. However, we cannot emit con-

clusions due to the lack of sufficient number of palsied

subjects. This also corroborates the assumption that mental

fatigue was successfully induced and impacts navigation

performance and subjective ratings for healthy and patho-

logical subjects.

Mental fatigue levels, P300 and SSVEP features

Figure 7 summarizes the reported results which are dis-

cussed in more details in Lamti et al. (2014a, 2016). Due to

Fig. 6 The average of

navigation performance

(obstacles collisions, navigation

time) and subjective ratings for

each 30 min chunk
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its visual nature, occipital regions over the visual cortex

showed a predominant correlation scores from P300 fea-

tures especially maximum peak and latency and SSVEP

where a and b band waves have significant correlations.

Yet, other regions were sensitive to the experiment

manipulations especially frontal, fronto-central and tem-

poral regions. To recall, 8 sensors are selected: O1, O2

(maximum and period from P300 features and a and b
waves from SSVEP), T8 (maximum peak from P300), F3,

F4, FC6 (period from P300) and P7, and P8 (a waves from

SSVEP) which concludes the overall 14 features.

Fusion of data using evidential theory

Dempster’s work sets the origins of the theory of belief

functions (Dempster 2008). Dempster–Shafer theory

introduces the notion of beliefs and plausibility assigned to

possible measurements hypothesis which extends several

mathematical models such as (Khajanchi 2017; Banerjee

et al. 2015; Ghosh et al. 2017) and (Khajanchi et al. 2018).

Most of these models consider probabilistic as the evolu-

tion of mental fatigue level depends on the geometry cor-

relation coefficients. However, they don’t account for the

imprecision and uncertainties of the incoming information

from each feature. Formally, the evidence theory concerns

the following notations:

• Frame of discernment: let h be a finite set of elements;

an element can be a hypothesis, an object, or in our case

a level of fatigue. A subset of h can be denoted by xðhÞ.

Suppose that the subject can be one of the three levels

of fatigue LF, MF and HF where LF is Low Fatigue,

MF is Medium Fatigue and HF is High Fatigue. In this

case, our frame of discernment can be set as:

h ¼ fLF;MF;HFgand
xðhÞ ¼ f;; fLFg; fMFg; fHFg; fLF;MFg; fLF;HFg;
fMF;HFg; fLF;MF;HFgg

where ; signifies ‘‘No Fatigue’’ condition. If F ¼
fLF;MFg is a subset of h, this implies that fatigue is

either LF or MF.

• Mass functions: the mass function m is the mapping of

the power set xðhÞ to the number t 2 ½0; 1�. The mass

function can be expressed as follows:

m : xðhÞ ! ½0; 1�

mð;Þ ¼ 0;
X

F2xðhÞ
mðFÞ ¼ 1 ð4Þ

The mass function m is a basic probability assignment.

m(F) expresses the proportion of relevant evidence

which supports the assumption that an element of h
belongs to the set F but to no subset of F. In our case,

m(F) can be considered as the belief degree regarding a

certain level of fatigue. In general, any subset F of h
that verifies mðFÞ[ 0 is called a focal element. In the

same way, C ¼
S

mðFÞ6¼0, F is the kernel element of

mass m in h.
• Belief and plausibility functions: the belief function Bel

is defined as follows:

Bel : xðhÞ ! ½0; 1� and ð5Þ

BelðFÞ ¼
X

A2F
mðAÞ ð6Þ

While the plausibility function is defined as:

Pls : xðhÞ ! ½0; 1� and

PlsðFÞ ¼ 1� Belð �FÞ ¼
X

A\F 6¼;
mðAÞ ð7Þ

The belief function Bel(F) defines the total amount of

probability that must be distributed among elements of

F and is a lower limit function on the probability of

F. Plausibility function Pls(F) measures the maximum

amount of probability that can be distributed among the

elements in F.

• Belief interval [Bel(F), Pls(F)] is the belief interval that

reflects uncertainty. Consequently, the interval span

½PlsðFÞ � BelðFÞ� describes the unknown with respect

to F.

• Properties of the belief function and plausibility are

formulated as follows:

Fig. 7 EEG correlation illustrated by feature, band-wave,sensor and

region
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Belð;Þ ¼ Plsð;Þ ¼ 0;PlsðFÞ�BelðFÞ
BelðFÞ þ Belð �FÞ� 1;PlsðFÞ þ Plsð �FÞ� 1

if A\F;BelðAÞ\BelðFÞ and PlsðAÞ\PlsðFÞ

• Rules of evidence combination: if we suppose that m1

and m2 are two mass functions from two different

sources, we have:

mð;Þ ¼ 0;mðFÞ ¼ 1

1� K

X

A\B¼F

m1ðAÞm2ðBÞ

where K ¼
X

A\B¼;
m1ðAÞm2ðBÞ[ 0

ð8Þ

K is interpreted as the measure of the conflict between

sources. Large K corresponds to more conflicting

sources. The combination of m1 and m2 results in a

mass function m which carries the joint information of

the two sources:

m ¼ m1 � m2 ¼ m2 � m1

In general, for n mass functions m1;m2; . . .;mn in h, the
measure of the conflict K is given by:

K ¼
X

Tn

i¼1
Ei¼F

m1ðE1Þm2ðE2Þ. . .mnðEnÞ[ 0 ð9Þ

One of the most important steps in evidential reasoning is

the calculation of the mass function based on information

provided by sensors. Let :

f ¼ ½x1; x2; . . .; x14� ð10Þ

f represents the fatigue level. xi is the ith feature given

according to the corresponding fatigue level. For all fatigue

levels F, the matrix could be expressed as follows:

F ¼

f1

..

.

f4

0
BB@

1
CCA ¼

x1;1 x1;2 . . . x1;14

..

. . .
. ..

.

x4;1 x4;2 . . . x4;14

0
BB@

1
CCA ð11Þ

fi is the feature vector describing the ith fatigue level. xi;j is

the jth feature of the ith fatigue level. Let Sk represent the

measurement vector obtained from kth sensor:

Sk ¼ ½Sk1; Sk2; . . .; Skek � with k ¼ 1; 2; . . .; 8 ð12Þ

Ski is the ith element of sensor Sk. i ¼ 1; 2; . . .; ek where ek
is the number of elements provided by the kth sensor. For

example, for the sensor O1, ek ¼ 4 as 4 parameters are

extracted from this sensor: maximum amplitude, period, a
and b. The next step consists of calculating the distance

between the measured features and the feature that

describes each fatigue level. One of the best known dis-

tance measure is Minkowski one (Lazar et al. 2002). This

could be defined as:

dki ¼

Pek
j¼1ðSkj � xijÞa

h i1
a

if k ¼ 1

i ¼ 1; 2; 3; 4; k ¼ 1; 2; . . .; 8

Pek
j¼1ðSkj � xiðjþek�1ÞÞ

a
h i1

a
if k[ 1

8
>>>><

>>>>:

ð13Þ

dki is the distance between Sk and fi.a is the parameter that

defines the type of the distance. If the latter is equal to 2,

than the distance converges to an Euclidian one. On the

other hand, if a ¼ 1 this means that the distance converges

to a corner distance. Consequently, a distance matrix could

be established in the following form:

D ¼

d1;1 d1;2 . . . d1;4

..

. . .
. ..

.

d8;1 d8;2 . . . d8;4

0
BB@

1
CCA ð14Þ

where each row in the matrix D, is the distance between the

measurements issued from one sensor and all fatigue

levels. While each column is the distance of one fatigue

level to all sensors measurements. dki is inversely propor-

tional to the ith fatigue level. In order to normalize data, we

define pki ¼ e�
d2
ki
2 . This results in the following matrix:

P ¼

p1;1 p1;2 . . . p1;4

..

. . .
. ..

.

p8;1 p8;2 . . . p8;4

0
BB@

1
CCA ¼

p1

..

.

p8

0
BB@

1
CCA ð15Þ

pk ¼ ½pk1; pk2; . . .; pk4� with k ¼ 1; 2; . . .; 8 is termed as the

mass function assigned by the kth sensor to the 4 levels of

fatigue. Once the basic probability or the mass function is

obtained, the final mass function can be formed as follows:

m ¼ p1 � p2 � . . .� p8 ¼ ðm1m2. . .m4Þ

where mi is calculated as follows:

mi ¼
Q8

k¼1 pki

1�
P4

i¼1

Q8
k¼1 pki

ð16Þ

In this method, two conditions are to be considered

carefully:

• Mutual exclusion: mental fatigue levels should be

independent from one to another. Only one fatigue level

could be expected to occur at a given instance. This

means that for example mðfLF;MFgÞ or mðfLF;HFgÞ
or mðfMF;HFgÞ is zero.

• Sensor weighting: the information detected from each

sensor could vary depending on the sensitivity of the

latter due to its placement. For example sensitivity of T8
and P8 differs in a way that the first is more sensitive in

the case of P300 detection while the second is more
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sensitive in SSVEP one. This aspect could be accounted

for by adding a weight factor to the pki:

p0ki ¼ wki pki ð17Þ

where: wki is the weight associated with each sensor

capability.

Finally the rules are very important as it can inform

about the decision we have to carry. In this context,

many rules were presented. But we give here the most

commonly used:

• Maximum support rule; hypothesis with maximum

belief function is selected

• Maximum plausibility rule; hypothesis with maximum

plausibility function is selected

• Absolute supporting rule; hypothesis with maximum

belief function is selected; it will not give a decision if

the width of evidence interval is larger than the

difference between the two largest supports.

• Maximum support and plausibility rule; hypothesis with

maximum belief and plausibility functions is selected.

Tested with different rules, the maximum support and

plausibility rule gave the best performance for mental

fatigue estimation.

Each used sensor for classification can be considered as

a piece of the whole information. Thus, each sensor can

represent a belief structure. In the Table 1, the features

extracted from sensors O1;O2; T8;F3;F4;FC6;P7; and P8

are presented for each fatigue level.

The matrix F (18) depicts fatigue levels according to the

calculated features. Applying Eqs. 13 and 14 results in the

distances matrix denoted by D and expressed using

Minkowski distance with (a ¼ 2). Once F is determined, the

evidence theory could be carried out. To be noticed, the

weights used for each sensor is 1/3 as they are considered

sensitive with the same capacity to the fatigue level. Per-

formance and decision classification aremade using distance

measures, combination of all mentioned information of all

sensors and applying the rationality rules. We report the

combined F-score (in percentage) based on the precision and

recall measures (Table 2). This measure takes into consid-

eration the class balance and is commonly employed in

information retrieval (Koelstra et al. 2012).

In order to make finer interpretation of the classification

results, subjects were divided into two groups: healthy (8

subjects) and pathological (2 subjects). The reported results

consider overall and individual differences between

groups. The results showed that the joint information of

SSVEP and P300 performed better than the individual

trials of each modality. This could be explained by the fact

that in our former studies (Lamti et al. 2014a, 2016), the

correlation methods applied in feature selection helped to

enhance features discriminability and consequently reach

better results than individual modalities. The fusion of data

using D–S theory is very efficient as it improves the clas-

sification rate among the other techniques. Although the

classification rate for pathological group is not so good as

healthy, D–S theory outperforms LDA and MLP. It is very

well understood that the fusion of data could be very

important; actually, information issued from different

sensors are highly conflicting as for the same sensor we can

extract different features (in some cases from temporal and

frequency domains). Example: for sensor O1 or O2, fea-

tures extracted are: O1max, O2max, O1per and O2per when

Table 1 Features extracted from sensors O1;O2; T8;F3;F4;FC6;P7; and P8 under NF, LF, MF and HF levels

Level O1 O2 T8 F3 F4 FC6 P7 P8

Max Per a b Max Per a b Max Per Per Per a a

NF 4655.4 495.1 19.2 11.1 164.7 305.7 8.9 5.0 119.7 392.7 505.8 562.6 6 5.6

LF 4709.5 239.751 20.3 14 166.2 233.59 12 8.66 79.6995 549.82 350.058 323.097 6.89 7.51

MF 4623.8 321.725 15.1 8.85 164.83 198.54 9.1 4.97 45.2407 313.76 194.4581 174.2632 8.65 8.11

HF 4572.7 133.36 11.6 8.94 169.5 157.88 8 5 39.9812 192.15 161.3171 166.9076 8.5 4.5

F ¼

f1

f2

f3

f4

0
BBB@

1
CCCA ¼

4655:4 495:1 19:2 11:1 164:7 305:7 8:9 5 119:7 392:7 505:8 562:6 6 5:6

4709:5 239:7 20:3 14 166:2 233:6 12 8:6 79:7 549:8 350 323:1 6:9 7:5

4623:8 321:7 15:1 8:85 164:8 198:5 9:1 5 45:2 313:8 194:5 174:3 8:6 8:1

4572:7 133:3 11:6 8:94 169:5 157:9 8 5 40 192:2 161:3 166:9 8:5 4:5

0
BBB@

1
CCCA

ð18Þ
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assessing P300 and at the same time O1a, O2a, O1b, and O2b

are extracted as to assess SSVEP. This could lead to a

critical problem if this aspect is not very well addressed

and defined. The use of fusion technique could handle this

issue. The definition of belief intervals for each sensor and

feature proves to be very helpful to improve the classifi-

cation of fatigue levels.

Conclusion and perspectives

In this paper, a pilot study was proposed in order to assess

the influence of mental fatigue on P300 and SSVEP. The

best correlated features were then used as inputs for a

fusion technique which was proposed based on evidential

reasoning. It showed better classification performance

compared to MLP and LDA. The limited number of palsy

group make it difficult to give conclusions about the effi-

ciency of such an approach for severely disabled. However,

it was persistent for healthy users and can be more

enhanced if we consider enlarging the sample database.

Another point which can be discussed, is the reliability of

EEG in this context: in fact, the study of mental fatigue is

very complex and can hold some effects on many scales:

temporal, spatial and frequency. This emphasizes that more

EEG sensors are needed to depict better information. Yet,

this would increase the bulkiness of the headgear and rise

the issue of its applicability in a real wheelchair system.

Last, P300 and SSVEP were studied according to the scale

given by the subject for fatigue level which tends to be

subjective and EEG should be compared with other phys-

iological sensors such as Electromyographic (EMG),

Electrocardiographic (ECG) that would give richer infor-

mation to assess fatigue levels.
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