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Abstract: The potential anticancer effects of statins—a widely used class of cholesterol lowering
drugs—has generated significant interest, as has the use of epigenetic modifying drugs such as
HDAC and DNMT inhibitors. We set out to investigate the effect of statin drugs on epigenetic
modifications in multiple cell lines, including hepatocellular carcinoma, breast carcinoma, leukemic
macrophages, cervical adenocarcinoma, and insulin-secreting cells, as well as liver extracts from
statin-treated C57B1/6] mice. Cells or cell extracts were treated with statins and with established
epigenetic modulators, and HDAC, HAT, and DNMT activities were quantified. We also examined
histone acetylation by immunoblotting. Statins altered neither HDAC nor HAT activity. Accordingly,
acetylation of histones H3 and H4 was unchanged with statin treatment. However, statins tended to
increase DNMT activity. These results indicate that direct inhibition of the major classes of epigenetic
modifying enzymes, as previously reported elsewhere, is unlikely to contribute to any anticancer
effects of statins. This study concerned global effects on epigenetic enzyme activities and histone
acetylation; whether statins influence epigenetic modifications in certain genomic regions, cannot be
ruled out and remains to be investigated.

Keywords: HMG-CoA reductase inhibitors; epigenetics; histone acetylation; DNA methylation;
HDAC inhibitors; DNMT inhibitors

1. Introduction

HMG-CoA reductase inhibitors, commonly known as statins, are widely used to reduce
low-density lipoprotein (LDL) cholesterol, with an estimated >30 million statin users in the
United States alone [1]. By inhibiting HMG-CoA reductase, the key rate-determining step in
the mevalonate pathway of cholesterol biosynthesis, statins increase the uptake of LDL from the
bloodstream into cells, primarily hepatocytes, thus lowering plasma LDL. Multiple large-scale clinical
trials have established the efficacy of statins in reducing morbidity and mortality from cardiovascular
disease (CVD). A meta-analysis of 59 placebo-controlled trials encompassing 157,217 participants
found statins reduced major coronary events by 31% and overall mortality by 13% [2]. In addition to
lipid-lowering effects, statins have also been reported to have beneficial pleiotropic effects, including
anti-inflammatory, anti-proliferative, and immunomodulatory activities, which may protect against
cancer [3]. Meta-analyses of cohort and case—control studies found statin use is associated with a
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reduced risk of multiple types of cancers, including liver, colorectal, gastric, ovarian, hematological,
and esophageal cancers [4], although no such association was found in a meta-analysis restricted to
randomized controlled trials [5]. Furthermore, a meta-analysis of 95 cohort studies found that amongst
cancer patients, statin use decreased all-cause and cancer-specific mortality, including amongst prostate,
colorectal, and breast cancer patients [6]. In a recent review, we described the evidence that statins
have epigenetic effects which may contribute to anticancer activity [7].

In recent years, there has been a plethora of research on epigenetic modifications and
their association with cancer and other common disorders such as CVD and diabetes [8-10].
Epigenetic modifications are changes to DNA that may alter gene expression without altering the
base nucleotide code. The two major classes of epigenetic modifications are histone modifications,
of which the most studied and best understood is histone acetylation, and DNA methylation.
These modifications are carried out by epigenetic modifying enzymes. Histone acetylation, generally
associated with increased gene expression, is controlled by two opposing classes of enzymes: histone
acetyltransferases (HATs) and histone deacetylases (HDACs). DNA methyltransferases (DNMTs)
transfer methyl groups from S-adenosyl methionine to nucleotides, primarily cytosines in CpG
dinucleotides, in a process usually associated with transcriptional silencing. There are several reports
of statins inhibiting HDAC enzyme activity [11-13] and a single report of DNMT inhibition [14],
with the majority of these studies linking such effects to anticancer activity. However, notable gaps
remain in the literature. For example, previous reports of an inhibitory effect on HDACs were based
on direct enzymatic inhibition of recombinant HDACs or on nuclear extracts, and findings on histone
acetylation have been mixed [12,13]. Importantly, the effect of statins on HDAC activity in live cells
has not been reported, despite being more relevant to in vivo and treatment models, nor has the effect
of statins on HAT activity.

We therefore conducted a comprehensive investigation of the effects of statins on HDAC
activity in both live cells and nuclear extracts, using a variety of different cell lines, including
HepG2 hepatocellular carcinoma cells, MDA-MB-231 breast carcinoma cells, and HeLa cervical
adenocarcinoma extracts. Since statin use has also been associated with diabetes [15], we also used
BRIN-BD11 cells, a model of insulin-secreting rat pancreatic 3-cells, and the livers of statin-treated
mice, both on a control diet and on a high-fat diet. By using a variety of different cell types, we consider
our findings are generally applicable, and there is little evidence to suggest that enzymatic properties
of HDAC:s differ between different cell types. By applying statins directly to cell extracts we could
determine if statins inhibit activity through direct interaction with the enzyme, as previously reported
for HDAC activity by Lin et al. [12]. On the other hand, by measuring enzymatic activity in treated
cells, as previously reported with DNMT activity by Kodach et al. [14], we could determine if statins
alter activity either directly or through altered expression of enzymes or other indirect phenotypic
changes. For example, the established HDAC inhibitor trichostatin A (TSA) directly inhibits HDAC
enzymes through interaction with the active site of HDAC enzymes [16], while the antidiabetic drug
metformin is thought to reduce HDAC activity not through direct inhibition, but indirectly through
activation of AMP kinase, which subsequently phosphorylates HDAC proteins and thus reduces their
enzymatic activity [17]. We also investigated effects on global histone acetylation in treated cells and
HAT and DNMT activity in cell extracts.

2. Results

2.1. The Effect of Statins on Cell Viability and Cholesterol

Dose-response curves for viability and measurement of cellular cholesterol reduction were
first conducted to ensure use of appropriate statin doses for later epigenetic studies in live cells.
Statins decreased HepG2 cell viability, as assessed by the alamarBlue® assay, in a dose-dependent
manner (Figure 1a). This was most apparent for the lipophilic atorvastatin and simvastatin, reducing
viability to 13% (£5% SEM) and 3% (£5% SEM), respectively, at 500 uM after 24 h. The hydrophilic
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pravastatin and rosuvastatin were less toxic, with viability remaining at 70% (£6% SEM) and 83%
(£17% SEM), respectively, at 500 uM. Simvastatin reduced viability at all tested concentrations,
however no other statin affected viability at 10 uM in HepG2 cells, and no statin affected viability
in MDA-MB-231 breast carcinoma cells at 10 pM (Figure S1). Furthermore, all statins significantly
lowered HepG2 cellular cholesterol at 10 uM after 24 h treatment (Figure 1b), ranging from 33% (+14%
SEM) lower cholesterol by pravastatin to 53% (+8 SEM) by simvastatin, demonstrating that 10 uM is a
sufficient concentration for HMG-CoA reductase inhibition by statins. As such this concentration was
used for subsequent experiments.
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Figure 1. (a) HepG2 cell viability following 24 h statin treatment; (b) HepG2 cellular cholesterol
following 24 h statin treatment. ** p < 0.01, *** p < 0.001, **** p < 0.0001 compared to control.
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2.2. The Effect of Statins on HDAC Activity in Cultured Cells

No statin (at 10 uM) inhibited HDAC activity in live HepG2 cells after 24 h treatment (Figure 2a).
Conversely, sodium butyrate and trichostatin A (TSA), both established HDAC inhibitors, significantly
inhibited HDAC activity (p < 0.0001). Atorvastatin, chosen as a model statin due to its potency and
widespread use, was tested at a range of concentrations and did not inhibit HDAC activity at up to
and including 50 uM (Figure S2), a concentration sufficiently high to impact cell viability, and more
than sufficient to reduce cellular cholesterol content. Statins similarly failed to inhibit HDAC activity
in MDA-MB-231 breast carcinoma cells and BRIN-BD11 insulin-secreting cells, while sodium butyrate
and TSA showed significant inhibition (p < 0.0001) (Figure 2b,c).

Since statins were reported to directly inhibit HDAC activity in A549 lung carcinoma nuclear
extracts [12], we examined the direct effect of statins on HDAC activity in HepG2 nuclear extracts.
As in live cells, atorvastatin and pravastatin did not inhibit HDAC activity at 100 uM (Figure 2d),
a dose significantly higher than the 10 uM used by Lin et al. [12]. By contrast, and as in live cells,
TSA strongly inhibited HDAC activity (p < 0.0001). A similar lack of effect was found with statins in
MDA-MB-231 nuclear extracts (Figure S3).

Additionally, experiments were conducted using the Fluor De Lys® HDAC fluorometric activity
assay kit, also used in previous studies by Lin et al. [12], Chen et al. [13], and Singh et al. [11].
HDAC inhibition was observed with TSA (p < 0.0001) and sodium butyrate (p < 0.0001) but not
with statins in either HepG2 nuclear extracts or in the HeLa cervical adenocarcinoma nuclear extract
provided with the kit (Figure 3).

2.3. HDAC Activity in the Liver of Statin-Treated Mice

We next utilized liver samples from a previous animal study by our group in which male C57B1/6]
mice were fed normal chow or a high-fat diet and treated with atorvastatin for 12 weeks. HDAC activity
was measured in nuclear extracts isolated from the liver of control animals fed a normal or high-fat
diet and from atorvastatin-treated animals fed a normal or high-fat diet. As for studies on live cells
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and nuclear extracts, we found no effect with statin treatment on HDAC activity compared to the
control (Figure 4). Furthermore, there was no effect of diet on HDAC activity.
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Figure 2. HDAC activity using the Sigma-Aldrich In Situ HDAC activity kit. (a) HDAC activity of live
HepG2 cells following 24 h treatment with 10 uM statins; (b) HDAC activity of live MDA-MB-231 cells
following 24 h treatment with 10 uM statins; (¢) HDAC activity of live BRIN-BD11 cells following 24 h
treatment with 10 uM statins; and (d) HDAC activity following direct application of 100 uM statins to
HepG2 nuclear extracts. **** p < 0.0001 compared to control.
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Figure 3. HDAC activity of HepG2 and HeLa nuclear extracts treated with 200 uM statins, 1 mM sodium
butyrate, or 4 uM TSA using the Fluor De Lys® HDAC activity kit. **** p < 0.0001 compared to control.
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Figure 4. HDAC activity in nuclear extracts from livers of mice on a normal diet (ND) or high-fat diet
(HFD) treated with atorvastatin (A) or water (V) for 12 weeks. n = 3 per group.

2.4. The Effect of Atorvastatin on HAT Activity in HepG2 Nuclear Extracts

In addition to HDAC inhibition, compounds may alter histone acetylation levels through
influences on HATs. However, a 100 uM dose of atorvastatin had no effect on HAT activity when
applied directly to HepG2 nuclear extracts (Figure 5). Conversely, and as expected, the control HAT
inhibitor curcumin reduced the HAT activity of HepG2 nuclear extracts by 70% (£6% SEM).

1.57

HAT activity compared to control

Figure 5. HAT activity of HepG2 nuclear extracts treated with 100 pM atorvastatin or curcumin.
* p < 0.05 compared to control.

2.5. The Effects of Atorvastatin Treatment on Global Histone Modifications

Baseline levels of histone H3K9 and H4 acetylation were low in HepG2 cells (Figure 6a,b).
As expected, acetylation was increased in a dose-dependent manner by sodium butyrate treatment.
Conversely, acetylation levels remained at a low baseline level in cells treated with atorvastatin.
Similar results were seen in BRIN-BD11 cells (Figure S4). Baseline levels of histone acetylation
were higher in THP-1 leukemic macrophages and were further increased by 5 mM sodium butyrate
treatment, but atorvastatin had no effect (Figure 6¢,d).

In order to ascertain if the lack of lipoproteins in the media affected results, experiments were
also conducted in HepG2 cells treated in high-lipoprotein serum (HLPS). The results obtained in HLPS
were almost identical to those in lipoprotein-deficient serum (LPDS), with sodium butyrate drastically
increasing H3K9 acetylation, and atorvastatin having no effect (Figure S5).
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Figure 6. Influence of atorvastatin on histone acetylation in HepG2 and THP-1 cell extracts by Western
blot analysis. (a) Relative level of acetylated histone H3K9 in HepG2 cells; (b) relative level of acetylated
histone H4 in HepG2 cells; (c) relative level of acetylated histone H3K9 in THP-1 cells; and (d) relative
level of acetylated histone H4 in THP-1 cells. Cells were treated for 24 h with 1 mM or 5 mM sodium
butyrate (SB), 10 uM atorvastatin, or equivalent DMSO vehicle control. The graphs illustrate combined
density readings normalized to GAPDH from three independent experiments. * p < 0.05, *** p < 0.001,
4 p < 0.0001.

2.6. The Effect of Atorvastatin on DNMT Activity

Statins have also been reported to inhibit DNMT activity [14]. When applied directly to HepG2
whole cell extracts, 200 uM atorvastatin did not significantly inhibit, and in fact tended to increase,
DNMT activity (Figure 7a). Conversely, curcumin, a known DNMT inhibitor, decreased DNMT activity
by 65% (£8% SEM). This was significantly greater than equal dose of the rationally designed DNMT
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inhibitor RG108, which inhibited DNMT activity by 25% (£9% SEM) and was just above the threshold
for significance (p = 0.057). Similar results were obtained with BRIN-BD11 cell extracts (Figure S6).

DNMT activity was also measured in the extracts of cells that had been treated for 24 h with
atorvastatin or curcumin. DNMT activity was quite variable in these experiments but DNMT activity
of cells treated with atorvastatin was in fact higher than the DMSO vehicle control (p < 0.01) (Figure 7b).
In extracts of curcumin treated cells, DNMT activity was not significantly different than that of the
control, possibly due to the rapid degradation of curcumin in media [18].
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Figure 7. DNMT activity in HepG2 whole cell extracts. (a) DNMT activity in whole cell extracts treated
directly with 200 uM atorvastatin, RG-108 or curcumin. (b) DNMT activity in whole cell extracts from
cells treated for 24 h with 10 uM atorvastatin or curcumin. ** p < 0.01, *** p < 0.001

3. Discussion

In view of their widespread use and tolerability, the potential anticancer effects of statins held
considerable appeal. In vitro studies on cancer cell lines have revealed potential mechanisms for
anticancer activity, including cell cycle arrest, induction of apoptosis and prevention of metastasis [19].
It had also been suggested that inhibition of epigenetic modifying enzymes, such as HDACs
and DNMTs, may contribute to the anticancer activity of statins, as we reviewed previously [7].
Epigenetic modifications are often altered in cancer cells and upregulation of HDACs and DNMTs
have been associated with numerous cancers [10]. As a result, multiple epigenetic modifying drugs
have been approved for cancer treatment, including the HDAC inhibitors vorinostat, romidepsin,
belinostat, panobinostat, and chidamide, and the DNMT inhibitors azacytidine and decitabine [20].
However, these are associated with severe side effects and treatment-related deaths have been reported
in clinical trials [21]. Thus, based on previous studies, statins offered potential benefits over current
epigenetic drugs for cancer. However, our results indicate that direct inhibition of major epigenetic
enzymes is unlikely to contribute to any anticancer effects of statins.

Studies of various cancer cell lines [12,22], a macrophage line [23], and a rabbit model of
atherosclerosis [24] reported that statin treatment can cause hyperacetylation of histones H3 and
H4, either globally or in certain genomic regions, or inhibition of HDAC activity and expression.
Our extensive results on HDAC activity in live cells are in complete contrast to these previous
studies. This was demonstrated on a variety of different cells lines, namely HepG2, MDA-MB-231,
and BRIN-BD11 cells, in addition to livers of mice treated with statins for 12 weeks, leading us to
conclude that neither short nor long term statin treatment alters cellular HDAC activity. We therefore
considered the possibility that in live cells the statins may be unable to enter the nucleus, or that some
other element of cellular activity may prevent them from interacting with HDAC proteins, as the
studies by other groups were conducted either using recombinant HDAC proteins [13] or nuclear
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extracts [11,12]. To address this possibility, we conducted experiments using nuclear extracts, and yet
again failed to find any HDAC inhibition by statins. The negative outcome of these experiments is
unlikely to be due to inappropriately low statin concentration, as concentrations of up to 200 uM statins
were used in the nuclear extract experiments. This concentration is significantly higher than the 10 uM
doses reported to inhibit HDAC activity by Lin et al. [12] and well above the 1-15 nM mean serum
concentration of statin users [25]. Furthermore, measurement of cellular cholesterol demonstrated that
the statins did lower cellular cholesterol, indicating that the statins successfully entered the cells and
inhibited HMG-CoA reductase. The contrast in results could also be due to the different cell types or
the use of different HDAC substrates; previous studies used A549 lung carcinoma cells and primary
glomerular mesangial cells, and all reported studies used the Fluor-De-Lys® HDAC Activity Assay Kit.
Concerning the latter, we also utilized the Fluor-De-Lys® assay kit and found no effect with statins on
HDAC activity in HepG2 or HeLa nuclear extracts. Concerning the former, we did not use the exact
cell types previously used in the literature; however, we used a wider range of cell types than previous
studies, and also examined liver tissue extracts; all cell lines responded as expected to established
HDAC inhibitors.

It could be argued that focusing on other specific cell or cancer types may have been a better
approach, but in those circumstances, failure to find an effect would not preclude an effect in other
cell types. Our initial studies were conducted in one cell type, namely HepG2 cells; once those
studies were found to be negative, we took the approach of examining for effects in a range of cell
types. We considered this to be appropriate on the basis of the mechanisms involved for agents with
well-established effects such as butyrate and curcumin which mediate their effects by direct interaction
with epigenetic enzymes and which are thus efficacious in most cell types. We reason that by using a
variety of different cell types, we have shown there is a general lack of effect of statins on the enzymes
examined. Furthermore, by conducting experiments using nuclear extracts we can deduce that statins
do not inhibit activity through direct interaction with the HDAC enzyme, as posited by Lin et al. [12],
while experiments with live cells and animal tissue suggest that statins do not alter HDAC activity
indirectly through phenotypic or metabolic changes, although we concede that this cannot be ruled
out in all circumstances.

In contrast to studies on HDAC S, the effect of statins on HAT activity has not been previously
reported. However, as with HDAC activity, our results were unable to demonstrate a direct effect of
atorvastatin on HAT activity in HepG2 nuclear extracts.

There are some limitations to the use of fluorogenic HDAC substrates in activity assays.
In particular, the Fluor-de-Lys™ substrate has been shown to interfere with HDAC activity and tends
to overestimate inhibition of HDAC1 and HDACS6, while failing to detect inhibition of HDACS [26].
Similar experiments have not been reported for the cell permeable substrate used in the Sigma-Aldrich
assay kit which we also used in our studies. However, the lack of HDAC and HAT inhibition in these
assays is supported by the immunoassay results showing no increase in acetylation of histone H3K9
or multiple residues of histone H4. In fact, while Chen et al. [13] reported inhibition of recombinant
HDAC1, HDAC2, and HDACS6 proteins by lovastatin and atorvastatin, they did not find an increase in
histone H3 acetylation following 24 h treatment of A549 cells with 30-50 uM lovastatin. Conversely,
Lin et al. [12] did report increased H3 acetylation following 16 h of treatment in A549 cells with 30 uM
statins (lovastatin, simvastatin, pravastatin, fluvastatin, and atorvastatin).

Our results also showed that DNMT activity was not decreased by 24 h prior treatment with
atorvastatin. By contrast, the opposite was found with an increase in DNMT activity. There is a caveat,
since there a lack of an appropriate control inhibitor for this assay for studies on live cells and in the
context of a control for a prolonged 24 h exposure, as explained later. However, our finding of no
decreases in DNMT activity by statins in live cells is supported by a similar finding in cell extract
experiments, where statins were added directly to cell extracts, and where we had a well-established
DNMT inhibitor control, namely curcumin [27]. This enables us to conclude that statins do not directly
inhibit DNMT activity. That 24 h curcumin treatment of cells did not reduce DNMT activity in live
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cells, has been observed elsewhere and is possibly due to degradation of curcumin in cell media [18].
Indeed the most well-established DNMT inhibitor—5-azacytidine (as well as other established DNMT
inhibitors decitabine and zebularine)—does not interact with free DNMTs, instead inhibiting DNMT
activity through its incorporation into DNA, and hence does not show inhibition in DNMT activity
assays [28]. For this reason, combined with the marginal nonsignificance (p = 0.057) of the rationally
designed inhibitor RG108 on cell extracts, we consider that there is a lack of appropriate established
DNMT inhibitors to use in cell culture, which remains a challenge to be addressed in all such studies.
Our DNMT findings are in contrast with the results of Kodach et al. [14], who reported
reduced DNMT activity in nuclear extracts from lovastatin treated HCT116 colon cancer cells.
Several differences in design of our study and the latter study may account for the disparate results.
Firstly, they used lovastatin, whereas we chose to use atorvastatin as our exemplar statin given
the latter is the most commonly prescribed statin in numerous advanced economies including the
United States [29], England [30], and Australia [31], while lovastatin is not available for therapeutic
use in some regions. Additionally, Kodach et al. [14] used a different cell type and a longer treatment
time, 48 h versus 24 h. Since these authors did not investigate if lovastatin directly inhibited DNMT
enzyme activity, it cannot be ruled out that the observed decrease in activity is a result of changed
phenotype, as they did observe increased differentiation and reduced ‘stemness’ of the cancer cells.
Finally, different commercial kits were used, although both relied on similar principles based on use of
an unmethylated DNA substrate and Adomet (S-adenosyl methionine) as a methyl donor, followed by
measurement of methylation of the DNA of using a methylation specific antibody reporter system.

4. Materials and Methods

4.1. Preparation of Stock Solutions of Treatments

Atorvastatin calcium salt, rosuvastatin calcium salt, simvastatin sodium salt and pravastatin
sodium salt (Cayman Chemical, Ann Arbor, MI, USA), curcumin, and RG108 (Abcam, Cambridge, UK)
were dissolved in dimethyl sulfoxide (DMSO) (Sigma-Aldrich, St. Louis, MO, USA) to a concentration
of 10 mM and stored at —20 °C for short-term use or at —80 °C for long-term use. Sodium butyrate
(Selleck Chemicals, Houston, TX, USA) was dissolved in ultrapure distilled water to a concentration of
50 mM and stored at —20 °C.

4.2. Cell Culture and Treatments

HepG2 human hepatocellular carcinoma cells were obtained from ATCC and provided by Dr Ross
Graham (Curtin University, Perth, Australia). MDA-MB-231 human breast carcinoma cells were
obtained from ATCC and provided by Professor Arunasalam Dharmarajan (Curtin University, Bentley,
WA, Australia). BRIN-BD11 rat insulinoma cells were from Cell Bank Australia, deposited by Prof
PR Flatt, University of Ulster, via the European Tissue Culture Collection. THP-1 human leukemic
monocytes were obtained from Dr Hilary Warren (Canberra Hospital, Canberra, Australia) and
provided via Professor Deirdre Coombe’s team (Curtin University, Bentley, WA, Australia). HepG2 cells
were maintained in Dulbecco’s Modified Eagle’s medium: Ham’s F-12 Nutrient Mixture (DMEM:
F12 media) (Sigma-Aldrich) supplemented with 10% fetal bovine serum (FBS) (Serana, Bunbury,
WA, Australia). MDA-MB-231 cells, BRIN-BD11 cells, and THP-1 cells were maintained in Roswell
Park Memorial Institute (RPMI) media (Sigma-Aldrich) supplemented with 10% FBS. All cells were
maintained in 25-cm? or 75-cm? tissue culture flasks at 37 °C in a humidified incubator equilibrated
with 5% CO;. All cells tested negative for mycoplasma contamination. Cells were seeded in 96-well
plates or 25-cm? or 75-cm? tissue culture flasks and allowed to recover prior to treatment. Prior to
use, THP-1 cells were differentiated into macrophages by the addition of 50 nM phorbol 12-myristate
13-acetate (PMA) (Sigma-Aldrich) to the culture media. THP-1 cells were differentiated for 48 h,
then allowed to recover for 1 day before treatment. All cells were treated in media supplemented
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with 10% lipoprotein-deficient serum (LPDS) unless otherwise stated. Control cells were treated with
DMSO as a vehicle control unless otherwise stated.

4.3. Preparation of Lipoprotein-Deficient Serum and High-Lipoprotein Serum

The density of FBS was adjusted to 1.21 g/mL with sodium bromide. The solution was transferred
to 11.5 mL polyallomer ultracrimp tubes and centrifuged for 20 h at 70,000x g in a Sorvall WX
ultracentrifuge. The base of the tube was pierced with a butterfly needle and 1 mL aliquots collected.
The cholesterol and total protein of the aliquots was measured using the Amplex™ Red Cholesterol
Assay Kit (Life Technologies, Carlsbad, CA, USA) and the Pierce BCA Protein Assay Kit (ThermoFisher,
Waltham, MA, USA), respectively, to determine which aliquots were deficient in lipoproteins (LPDS)
and those enriched in lipoproteins (HLPS). Salt was removed from the serum by centrifugation with
Zeba™ desalting spin columns 7 K MWCO (ThermoFisher) and serum was sterilized with a Millex
0.22 um syringe filter prior to storage at —20 °C.

4.4. Animal Studies

Eight-week-old male C57B1/6] mice from the Animal Resource Centre, Murdoch,
Western Australia were delivered to the animal facility, Curtin University. Following acclimatization,
mice were randomly assigned to either normal diet (ND) or high-fat diet (HFD) (Specialty Feeds,
Glen Forrest, WA, Australia). From week 4, mice were further divided into treatment groups to
receive either 10 mg/kg/day of atorvastatin or vehicle (water) by gastric gavage for a further 12 weeks.
Following completion of the treatment period, mice were starved for 6 h and anesthetized in an
isoflurane chamber before being euthanized by cervical dislocation. Liver samples were removed
from the carcass and collected in prechilled microcentrifuge tubes and snap-frozen either in dry ice or
liquid nitrogen. Animal experiments were approved by Curtin University’s Animal Ethics Committee
(AEC_2016_17, approval date 14 April 2016).

4.5. Nuclear Extraction

Nuclear extraction was conducted using the Abcam Nuclear Extraction Kit according to the
manufacturer’s instructions. For experiments on cultured cells, confluent cells were scraped and
incubated on ice for 10 min in pre-extraction buffer containing dithiothreitol (DTT) and protease
inhibitor cocktail (PIC), then centrifuged at 12,000 rpm for 1 min. The cytoplasmic supernatant was
removed, and the pellets incubated on ice for 15 min in nuclear extraction buffer containing DTT and
PIC, then sonicated 3 times for 10 s. The extract was then centrifuged at 14,000 rpm for 10 min at 4 °C
and the supernatant removed for protein quantification using the Pierce Coomassie Protein Assay
Kit (ThermoFisher). For experiments on murine liver, samples were placed in a glass homogenizer
containing pre-extraction buffer with DTT and PIC and homogenized manually. Homogenized
samples were transferred to microcentrifuge tubes and incubated on ice for 15 min then centrifuged
at 10,000 rpm for 10 min at 4 °C. The cytoplasmic supernatant was removed, and nuclear extraction
continued as for cultured cells.

4.6. Whole Cell Protein Extraction

Whole cell extractions were only conducted on cultured cells. Confluent cells were scraped
then lysed on ice for 20 min in radioimmunoprecipitation assay (RIPA) lysis buffer (Sigma-Aldrich)
containing protease and phosphatase inhibitors (Sigma-Aldrich). The lysate was sonicated 10 times
for 10 s then centrifuged at 14,000 rpm for 10 min and the protein rich supernatant was removed for
protein quantification using the Pierce BCA Protein Assay Kit (ThermoFisher).
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4.7. Viability Assays

Viability was determined using alamarBlue® (ThermoFisher) as a measure of total cellular
metabolism. Following 22 h treatment, 10 pL of alamarBlue® was added to the treatment media and
cells were incubated for a further two hours. Fluorescence was then read by the EnSpire Multimode
Plate Reader (PerkinElmer, Waltham, MA, USA) with an excitation wavelength of 540 nm and an
emission wavelength of 590 nm.

4.8. Cellular Cholesterol Content

After 24 h of statin treatment, the culture medium was removed and lipids were extracted
using 3:2 hexane:isopropanol. Lipids were transferred to a 96 V well plate and allowed to dry at
room temperature. Cholesterol content was assessed using the Amplex Red Cholesterol Assay Kit
(Life Technologies). Samples were dissolved in a reaction buffer and isopropanol mixture (1:1) and
incubated with catalase for 15 min at 37 °C to eliminate endogenous peroxides which would otherwise
interfere in this assay [32]. Amplex Red working solution was added and following 30 min incubation,
fluorescence was read with an excitation wavelength of 540 nm and an emission wavelength of 590 nm.

4.9. HDAC Activity

The In Situ Histone Deacetylase (HDAC) Activity Fluorometric Assay Kit (Sigma-Aldrich) was
used to measure HDAC activity according to the manufacturer’s instructions. The HDAC substrate
was added to wells containing live cells directly to the treatment media after 23 h treatment. For HDAC
activity assays on the nuclear extracts, enzyme substrate was added concurrently with statin treatments
in phosphate-buffered saline. After 1-h incubation, the HDAC developer was added and the plate was
incubated for a further 30 min and fluorescence read with an excitation wavelength of 368 nm and an
emission wavelength of 442 nm.

Confirmatory experiments were carried out with the Fluor De Lys® HDAC fluorometric activity
assay kit (Enzo Life Sciences, Farmingdale, NY, USA) according to the manufacturer’s instructions.
HeLa nuclear extract provided with the kit and HepG2 nuclear extract prepared as above were
incubated with treatments and substrate for 30 min. Following incubation with developer for 10 min,
fluorescence was read with an excitation wavelength of 360 nm and an emission wavelength of 460 nm.

4.10. HAT Activity Assays

HAT activity was measured with the EpiQuik™ HAT Activity/Inhibition Assay Kit (Epigentek,
Farmingdale, NY, USA) according to the manufacturer’s instructions. The HAT substrate was captured
in strip wells for 45 min. Following washing, strip wells were incubated with acetyl-CoA, HepG2
nuclear extracts, and treatments for 90 min at 37 °C. Following washing, wells were incubated
sequentially with the capture antibody and detection antibody, followed by the addition of the
developer solution. Once the solution in the control wells changed to a medium blue, the enzymatic
reaction was stopped with the stop solution and the absorbance read at 450 nm.

4.11. DNMT Activity Assays

DNMT activity was measured with the Abcam DNMT Activity Assay Kit according to the
manufacturer’s instructions, with the following modification; whole cell extracts were used as opposed
to nuclear extracts since experiments with nuclear extracts were not successful. For direct DNMT
inhibition experiments cell extracts were incubated with 200 uM atorvastatin, curcumin or RG-108 and
the Adomet methyl donor at 37 °C for 2 h in strip wells coated with DNMT substrate. For treated cells,
equal amounts of total protein were incubated with Adomet. Following incubation and washing, wells
were incubated sequentially with the capture antibody, detection antibody, and enhancer solution,
followed by the addition of the developer solution. Once the solution in the control wells changed to a
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medium blue, the enzymatic reaction was stopped with the stop solution and the absorbance read at
450 nm with a reference wavelength of 655 nm.

4.12. Immunoblotting for Modified Histones

Equal amounts of protein were fractionated on Bolt™ 4-12% Bis-Tris Plus Gels (ThermoFisher)
following denaturing at 98 °C for 10 min. Proteins were transferred onto nitrocellulose membranes
using the iBlot Gel Transfer Device (Invitrogen, Carlsbad, CA, USA) and blocked with 3% bovine serum
albumin (Bovogen, Keilor East, VIC, Australia) in Tris-buffered saline with 0.1% Tween 20 (TBST) for
at least 1 h. Membranes were incubated overnight with primary antibodies against acetylated H3K9
and acetylated H4 (51, K5, K8, and K12) (Santa Cruz, Dallas, TX, USA) diluted in blocking buffer.
GAPDH (Abcam) was used as a housekeeping reference protein. Membranes were incubated with
goat anti-mouse IgG H&L horseradish peroxidase (HRP) (Abcam) in blocking buffer for at least one
hour, then washed 3 times with TBST. Immunodetection was performed with the Amersham ECL
Prime Western Blotting Detection Reagent (GE Healthcare, Chicago, IL, USA) in the Chemi-Doc™ Gel
Imaging System (Bio-Rad, Hercules, CA, USA). Band density was measured with Image Lab 6.0.1
software (Bio-Rad) and normalized to the density of housekeeping protein GAPDH or total protein as
determined by Coomassie Blue staining.

4.13. Statistical Analysis

At least three independent experiments were conducted. Statistical significance was determined
with analysis of variance (ANOVA) with results considered significant if p < 0.05 using GraphPad
Prism 8.0.1 software (GraphPad Software, San Diego, CA, USA).

5. Conclusions

There is substantial interest in inhibitors of epigenetic enzymes as anticancer agents:
that commonly prescribed drugs, such as statins, may confer anticancer activities via epigenetic
mechanisms is therefore an attractive proposition. However, our results indicate that statins are
unlikely to inhibit the three major classes of epigenetic modifying enzymes, namely HDACs, HATs,
and DNMTs, and in fact may increase DNMT activity. Our comprehensive studies of HDAC activity in
multiple cell types, in both live cells and nuclear extracts and using two different HDAC substrates
demonstrate no effect with statin treatment. While our in vitro studies indicate it is unlikely that statins
directly inhibit these epigenetic enzymes, it is feasible that through effects on cell metabolism and/or
phenotype, statins may have an indirect effect as described previously for metformin, particularly with
prolonged treatment. However, in the context of HDACs, our studies on the livers of statin treated
mice would also seem to rule out effects of prolonged treatment on HDAC activity, direct or otherwise.
It cannot be ruled out that statins may influence subclasses of these various enzymes or the recruitment
of enzymes to certain genomic regions without altering the overall activity. Thus, statins may influence
epigenetic modifications in the proximity of certain genes and thereby affect gene expression through
epigenetic means. To that end, targeted studies of specific genomic regions are warranted and are
currently under investigation.
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treated in HLPS, Figure S6: DNMT activity of BRIN-BD11 cell extracts.
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