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Abstract: Accumulation of reactive oxygen species (ROS) in response to excess alcohol exposure is a
major cause of gut barrier disruption and lipopolysaccharide (LPS)-induced hepatic inflammation, as
well as liver steatosis and apoptosis. This study was designed to investigate protective effects of the
cricket Gryllus bimaculatus, an edible insect recognized by the Korea Food and Drug Administration,
against acute alcoholic liver damage in mice. Administration of G. bimaculatus extracts (GBE)
attenuated alcohol-induced steatosis and apoptotic responses in the liver and intestinal permeability
to bacterial endotoxin. These protective effects were associated with suppression of ROS-mediated
oxidative stress in both the liver and small intestine. Furthermore, in vivo and in vitro studies
revealed that GBE inhibits LPS-induced Kupffer cell activation and subsequent inflammatory
signaling. Importantly, the protective effects of GBE were more potent than those of silymarin, a
known therapeutic agent for alcoholic liver diseases.
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1. Introduction

The benefits of edible insects as an alternative animal protein source have recently drawn
significant attention. Edible insects have great potential as highly nutritious, environmentally friendly,
and economically feasible alternatives for the food industry in the future [1]. Insects as food are more
sustainable compared with farm animals, in particular considering land use and global warming
potential (sum of CO2, CH4, and NO2 emissions) [2]. In addition, the global market size of edible
insects has been growing in and around South East Asia, showing that export and import of insects for
food plays a strong economic role [3]. With increasing attention on edible insects as a food resource,
there have been efforts to investigate their functional and pharmacological potential. Among various
edible insects, the cricket Gryllus bimaculatus has a long history of traditional use in oriental medicine.
It has been shown that it possesses anti-obesity, anti-aging, immunomodulatory, and hepato-protective
properties [4–7], although underlying mechanisms are poorly understood. Recently, Ahn et al. have
reported that glycosaminoglycan derived from G. bimaculatus has significant anti-inflammatory and
anti-obesity effects in rodent models [8,9]. These findings provide important information for the use of
G. bimaculatus as nutraceutical and/or pharmaceutical agent.
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Alcoholic liver disease (ALD) is becoming increasingly severe worldwide, with the highest
prevalence (around 12%) in Europe and the United States [10]. ALD is a multifaceted disorder that is
characterized by a complex spectrum of hepatic steatosis, hepatitis, cirrhosis and/or hepatocellular
carcinoma [11]. Multiple lines of evidence have suggested potential pathogenic mechanisms associated
with ALD: key mechanisms identified include oxidative stress and inflammatory responses in the
gut–liver axis, leading to the development and progression of ALD [12,13]. Reactive oxygen species
(ROS) generated during ethanol (EtOH) metabolism can directly affect the transcriptional network that
regulates gut permeability, hepatic lipogenesis, and apoptosis during liver injury [14], although there
is limited information regarding the key source of ROS found in the gut during EtOH metabolism.
In addition, ROS-induced oxidative stress promotes the release of pro-inflammatory cytokines that
contribute to a tightly interrelated network between hepatocytes and macrophages in ALD [12].

Since ROS plays critical roles in the deterioration of ALD, various dietary antioxidants have been
investigated for their potential use as adjuvants in the prevention and/or treatment of ALD [15]. The
majority of animal studies have reported that antioxidants supplementation protects the liver from
alcohol-induced injury by modulating cellular antioxidant system and inflammatory responses, as
well as simply scavenging ROS [15,16] Based on the antioxidant capacity of G. bimaculatus, the aim
of this study was to determine molecular mechanisms involved in the protection of G. bimaculatus
extracts against ALD in mice with acute alcohol treatment. Because females are at a greater risk of
ALD compared to males [17,18], here we used a female mouse model. With growing interest in the
benefit of edible insects as future food resources, this study may provide important scientific clues for
the utilization of G. bimaculatus.

2. Materials and Methods

2.1. Preparation of Edible Insect Extracts

Dried and ground G. bimaculatus was extracted with 10 volumes of distilled water at 60 ◦C or 70%
EtOH at room temperature for 12 h. The extracts were filtered, concentrated under reduced pressure
and then freeze-dried. Prepared samples were stored at 4 ◦C until future use.

2.2. ABTS and DPPH Radical Scavenging Assay

The ABTS radical solution was generated using 1 mM 2,2’-Azobis(2-amidinopropane)
dihydrochloride and 2.5 mM 2,2’-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) in 100 mL
of potassium phosphate buffer solution (pH 7.4). The solution was heated at 70 ◦C for 30 min and
then diluted with EtOH. The test was performed by adding 1470 µL of ABTS radical solution to 30 µL
of samples. The mixture was kept at 37 ◦C for 10 min in the dark before the absorbance at 734 nm
was measured.

For DPPH assay, 50 µL of samples with different dilutions was added to 1450 µL of 0.1 mM DPPH
in 95% EtOH. The mixture was shaken vigorously and left in the dark for 30 min at room temperature
then the absorbance of the mixture was measured at 517 nm using spectrophotometer. The results
were expressed as vitamin C equivalents of antioxidant capacity.

2.3. Animal Study

Female 7-week-old C57BL/6J mice (Central Lab. Animal Inc., Seoul, Korea) were maintained
under controlled conditions of temperature and humidity with 12-h light-dark cycles. All mice were
provided with a standard chow diet and water ad libitum. Based on previous reports with acute model
of ALD [19], liver damage was induced by three consecutive oral administrations of EtOH at a dose of
6 g/kg and 12 h intervals. The control group received the same volume of isocaloric maltose-dextrin.
The water extract powder of G. bimaculatus (GBE) and silymarin (positive control) were dissolved
in saline, and daily oral administration at 200 mg/kg was initiated 2 weeks before EtOH treatment,
along with administration of saline vehicle. At 6 h after the last EtOH dose, the mice were euthanized
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using an overdose of avertin, and blood was collected by cardiac puncture and centrifuged at 15,000 g
at 4 ◦C for 20 min, and then serum was collected. The liver and small intestine were isolated for
immunohistochemical staining and molecular analysis. All procedures were carried out in accordance
with the institutional guidelines for the use and care of laboratory animals and were approved by the
Ethical Committee of the Korea University (Protocol Number: KUIACUC-2018-0035).

2.4. Histological Analysis

The isolated liver and small intestine were fixed in 10% neutral buffered formalin, dehydrated
using a graded series of alcohol, and embedded in paraffin. The sections (3 µm) were deparaffinized,
rehydrated, and stained with hematoxylin and eosin (H&E). For immunofluorescence, the sections
were subjected to antigen-retrieval process with 50 mM tris-buffered saline (TBS) and 0.05% Tween-20
in 0.9% saline. Next, the slides were blocked with 1% bovine serum albumin (BSA), 0.3% Triton X-100,
and 0.05% sodium azide in phosphate-buffered saline (PBS) for 1 h and incubated overnight at 4 ◦C
with primary antibodies listed in Table S1. Terminal deoxynucleotidyl transferase dUTP nick end
labeling (TUNEL) assay was performed by using an in situ cell death detection kit (Roche Diagnostics,
Basel, Switzerland), as specified by the manufacturer. Images were acquired using a fluorescence
microscope (Carl Zeiss AG, Oberkochen, Germany).

2.5. Western Blot Analysis

Liver and small intestine tissues were homogenized in a lysis buffer containing a
phenylmethylsulfonyl fluoride (Roche, Mannheim, Germany) and protease inhibitor cocktail (Sigma,
Deisenhofen, Germany) to prepare protein lysates. Protein were separated in a 12% sodium
dodecyl sulfate (SDS)-polyacrylamide gel and transferred to nitrocellulose membranes (GE healthcare,
Piscataway, NJ, USA). The membranes were blocked with 5% BSA and 0.1% Tween-20 in PBS solution
for 1 h at room temperature with constant agitation. The membranes were then probed with the
primary antibodies listed in Table S1, followed by incubation with the corresponding horseradish
peroxidase-conjugated secondary antibodies (Sigma-Aldrich, St. Louis, MO, USA). The protein bands
were visualized using enhanced chemiluminescence reagents on an ImageQuant LAS-4000 imager
(General Electric, Pittsburgh, PA, USA) and quantified using the ImageJ software (NIH).

2.6. Cell Culture

RAW264.7 cells (a murine macrophage line) were obtained from Korea Research Institute of
Bioscience & Biotechnology (KRIBB, Seoul, Korea). Cells were grown in DMEM supplemented with
10% fetal bovine serum (Biowest, Salt Lake City, UT, USA) and 10% penicillin-streptomycin (Gibco,
Paisley, Scotland). Cultures were maintained at 37 ◦C in a 5% CO2 humidified atmosphere. When cell
treatments were conducted, the cells were incubated in serum-free medium for 6 h, then treated with
200 ng/mL of lipopolysaccharide (LPS) for 6–12 h. For immunoblotting, the cells were washed with
PBS, incubated in a lysis buffer at 4 ◦C for 30 min, and sonicated three times for 10 s. The lysate was
centrifuged at 15,000 g at 4 ◦C for 20 min, and the denatured proteins were analyzed.

2.7. Biochemical Assays

For hepatic triglyceride (TG) measurement, tissue saponification in ethanolic KOH and
neutralization with MgCl2 were performed as previously described [20]. Glycerol content was
determined by enzymatic colorimetric methods using a commercially available kit (Sigma-Aldrich).

For the study of cell culture, the levels of nitric oxide (NO) in the culture medium were measured
using a Griess reagent system kit (Promega, Madison, WI, USA) in accordance with the manufacturer’s
protocol. Interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) values were measured by an ELISA
kit (Invitrogen, Carlsbad, CA, USA) as specified by the manufacturer.
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2.8. Statistical Analysis

All statistical analyses were performed by one-way ANOVA using SAS software (SAS Institute
Inc., Cary, NC, USA). The least squares mean option using Tukey–Kramer adjustment was used for
multiple comparisons among the experimental groups. Results were expressed as the means ± SEM. A
value of p < 0.05 was considered statistically significant.

3. Results

3.1. GBE Restrains Alcohol-Induced Hepatic Steatosis

Because the use of antioxidants is considered as a rational strategy to prevent liver diseases
involving oxidative stress [16], we first tested antioxidant capacities of G. bimaculatus extracts prepared
with different extracting solvents. ABTS (for water extract) and DPPH (for 70% EtOH extract) assay
showed vitamin C equivalent antioxidant capacities of 47.1 and 25.4 mg/g sample, respectively (data
not shown). In this study, we used water extract to evaluate protective effects of G. bimaculatus against
ALD. The crude protein content of water extracts was 66.2% (data not shown).

In the present study, three-time administration of EtOH at 12 h intervals induced significant hepatic
lipid accumulation (Figure 1A,B), consistent with the observation of increased lipid accumulation in
rodent models of acute binge EtOH administration [19]. However, alcohol-induced microvesicular fat
infiltration in hepatocytes and hepatic TG accumulation were decreased by GBE administration. To
further explore the regulatory effect of GBE on fatty liver, we analyzed key enzymes involved in the de
novo synthesis of fatty acids. Control mice exposed to alcohol showed increased hepatic expression
levels of fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC), and cleaved sterol regulatory
element-binding protein 1 (SREBP-1) that were reduced by GBE (Figure 1C,D). The protective effects of
GBE were more potent than those of silymarin at the same dose of treatment. These data indicate that
GBE effectively restrains alcohol-induced hepatic steatosis in mice.
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Figure 1. Protective effects of GBE against alcohol-induced hepatic steatosis. (A) Representative
hematoxylin and eosin (H&E) staining of the liver, (B) Liver triglyceride (TG) contents, (C) Representative
immunohistochemical staining for hepatic cleaved sterol regulatory element-binding protein 1 (SREBP-1)
(red), (D) Western blot of hepatic fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC), phospho-ACC
(p-ACC), and cleaved SREBP-1 expression with quantitative data. CON, control; SIL, silymarin; GBE,
water extract of G. bimaculatus. Data are shown as means ± SEM (n = 4 for A and C and n = 8 for B and
D). * p < 0.05 vs. EtOH control group.
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3.2. GBE Attenuates Alcohol-Induced Hepatic Apoptosis by Suppressing Oxidative Stress

Progressive hepatocellular failure by apoptosis is central to the pathogenesis of ALD [21]. To assess
whether GBE prevents ALD by suppressing alcohol-induced hepatocellular apoptosis, we performed
TUNEL assay and examined levels of hallmark proteins of apoptosis in the liver tissue. In EtOH-control
mice, we observed a significant increase in hepatic apoptosis as indicated by elevated signals of
TUNEL and cleaved caspase-3 (Figure 2A,B). Immunoblotting showed increased protein expressions
of cleaved poly (ADP-ribose) polymerase (PARP), lamin B, and cleaved caspase-3 but decreased
B-cell lymphoma 2 (Bcl-2) expression in the liver of mice exposed to alcohol (Figure 2C). However,
GBE attenuated these apoptotic changes, indicating protective effects of GBE against alcohol-induced
hepatic apoptosis. Moreover, tumor suppressor p53, which is increased by DNA damage response and
induces transcriptional activation of pro-apoptotic factors [22], was up-regulated by alcohol treatment,
but not by alcohol with GBE (Figure 2C).
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Figure 2. Protective effects of GBE against alcohol-induced hepatic apoptosis and oxidative stress.
Representative immunohistochemical staining of liver for (A) terminal deoxynucleotidyl transferase
dUTP nick end labeling (TUNEL) (green) and (B) cleaved caspase-3 (red) with corresponding
quantitative data. (C) Western blot of hepatic cleaved poly (ADP-ribose) polymerase (PARP), lamin B,
cleaved caspase-3, B-cell lymphoma 2 (Bcl-2), and p53 expression with quantitative data. Representative
immunohistochemical staining of liver for (D) 8-hydroxy-2’-deoxyguanosine (8-OHdG) (green) and
(E) malondialdehyde (red) with corresponding quantitative data. CON, control; SIL, silymarin; GBE,
water extract of G. bimaculatus. Data are shown as means ± SEM (n = 4 for A, B, D and E and n = 8 for
C). * p < 0.05 vs. EtOH control group.

Since alcohol-induced overproduction of ROS leads to hepatic apoptosis via mechanism
of oxidative stress [23], we next measured the biomarkers of oxidative stress in the
liver. Immunostaining showed that formations of 8-hydroxy-2’-deoxyguanosine (8-OHdG) and
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malondialdehyde—representative products of oxidative DNA damage and lipid peroxidation,
respectively—were increased by alcohol exposure, but reversed by both silymarin and GBE treatments
(Figure 2D,E). However, in this study, we did not observe significant changes in serum activity of alanine
aminotransferase among all EtOH-treated groups (data not shown). Taken together, these results
indicate that GBE, in part by suppressing ROS-induced oxidative stress, inhibits hepatic apoptosis in
mice exposed to alcohol.

3.3. GBE Inhibits Kupffer Cell Activation In Vivo and Modulates Inflammatory Response in Macrophages

Accumulating evidences have demonstrated that the activation of Kupffer cells (KCs) and related
inflammatory cascade play critical roles in the pathogenesis of both chronic and acute ALD [24].
To investigate inflammatory responses in our model, we first observed F4/80-positive signal as a
representative marker to monitor KCs in the liver [25]. As shown in Figure 3A, F4/80+ KCs and IL-1β
were obviously found in the EtOH-control group, which were significantly reduced by both silymarin
and GBE treatments. In addition, alcohol treatment induced increased signals of LPS in the liver, but it
was attenuated by silymarin and GBE (Figure 3B).
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Figure 3. Effects of GBE on alcohol-induced Kupffer cells activation and lipopolysaccharide
(LPS)-stimulated inflammatory response in macrophages. Representative immunohistochemical
staining of liver for (A) F4/80 (red, Kupffer cells marker) and interleukin-1β (green) and (B)
lipopolysaccharide (green). The released levels of (C) nitrite, (D) interleukin-6, and tumor necrosis
factor-α from lipopolysaccharide-stimulated RAW 264.7 macrophage cells. (E) Western blot of
phospho-c-Jun N-terminal kinase (p-JNK), total JNK, p-p38, total p38 and toll-like receptor 4 (TLR4)
from macrophage cell extracts with quantitative data. CON, control; SIL, silymarin; GBE, water extract
of G. bimaculatus. Data are shown as means ± SEM (n = 4 for A–C and n = 6 for D–F). * p < 0.05 vs.
EtOH control group or LPS control group.
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Since hepatic translocation of gut-derived endotoxin acts as an inducer of KC activation through
toll-like receptor 4 (TLR4) signaling [24], we next studied LPS-stimulated RAW 264.7 macrophage cells
as a surrogate model of KCs activation in ALD [26]. GBE treatment significantly reduced the release of
NO and IL-6, which were increased by LPS stimulation in macrophages (Figure 3C,D). Moreover, GBE
reduced LPS-induced increase in TLR4 expression and phosphorylation of JNK and p38 (Figure 3E),
suggesting that GBE inhibits KC activation by suppressing hepatic translocation of endotoxin and
TLR4-mediated mitogen-activated protein kinase (MAPK) signaling.

3.4. GBE Protects the Intestine against Alcohol-Induced Hyperpermeability and Oxidative Stress

Alcohol exposure increases intestinal permeability to bacterial endotoxin by promoting
phosphorylations of tight and adherens junction proteins, resulting in increased hepatic inflammation
via KCs activation [27]. Because GBE suppressed hepatic translocation of LPS in this study (Figure 3B),
we next examined effects of GBE on alcohol-induced intestinal damage. EtOH exposure caused
significant injury to the small intestine, as shown by loss of epithelial cells of the villi and submucosal
blebbing (Figure 4A). In contrast, GBE- or silymarin-administered mice showed no observable alterations
in the small intestine after EtOH treatment. Importantly, GBE attenuated EtOH-induced intestinal
phosphorylation of myosin light chain kinase, Rho-associated protein kinase, and Src-family kinase
(Figure 4B), which are major regulators of tight and adherent junctions [28,29]. Consistent with the
reduction of hepatic oxidative stress (Figure 2), GBE also reduced intestinal 8-OHdG increased by alcohol
exposure (Figure 4C). Thus, these findings indicate that GBE counteracts oxidative stress-induced
tight junction remodeling and hyperpermeability in the small intestine, thereby protecting against
alcohol-stimulated intestinal damage in mice.
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Figure 4. Protective effects of GBE against alcohol-induced intestinal hyperpermeability and oxidative
stress. (A) Representative H&E staining of the small intestine, (B) Western blot of intestinal
phospho-myosin light chain kinase (p-MLCK), phospho-Rho-associated protein kinase (p-ROCK), and
phospho-Src-family kinase (p-srcFK) with quantitative data, (C) Representative immunohistochemical
staining for intestinal 8-OHdG with quantitative data. CON, control; SIL, silymarin; GBE, water extract
of G. bimaculatus. Data are shown as means ± SEM (n = 4 for A and C and n = 8 for B). * p < 0.05 vs.
EtOH control group.
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4. Discussion

With growing interest in the use of edible insects as a functional food resource, here we
demonstrated that GBE counteracts acute ALD in mice via suppression of EtOH-associated oxidative
stress and inflammatory responses in the liver and small intestine. Figure 5 shows proposed action
mechanisms of GBE. The first finding of this study was that GBE attenuated alcohol-induced hepatic
steatosis and apoptosis. Its effects were comparable to or more potent than silymarin, a known
therapeutic agent for ALD [30]. Of note, these protective effects of GBE were associated with inhibition
of ROS-induced oxidative damage. Ethanol and its metabolites induce the overproduction of ROS
in liver cells, and ROS directly affects the transcriptional network that controls lipid metabolism and
apoptotic response during liver injury [14,31]. Along with the significance of ROS and oxidative stress
in the pathogenesis of ALD, a number of studies have demonstrated that natural antioxidants have
preventive effects on ALD in different model systems [16]. In line with previous evidence supporting
the use of antioxidants as a rational strategy to prevent and/or treat ALD, our current data suggest the
use of edible insect Gryllus bimaculatus as an effective option.
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Alcohol-induced reactive oxygen species (ROS) and oxidative stress induce hepatic steatosis and
apoptosis through lipogenic pathway and DNA damage response, respectively. In addition, ROS
promote gut barrier disruption and subsequent LPS infiltration into the liver, resulting in inflammatory
responses via Kupffer cells activation during alcoholic liver injury. GBE may protect the liver from
alcoholic damage by suppressing ROS-induced oxidative stress in both intestine and liver and Kupffer
cell activation. Black and red lines indicate stimulatory and inhibitory actions, respectively.

The second observation was that GBE protected against alcohol-induced intestinal barrier
dysfunction and subsequent KC activation. Accumulating evidence suggests that gut-derived bacterial
endotoxins (LPS) play a critical role in the development of ALD [27,32]. Alcohol and its metabolites
disrupt intestinal epithelial barrier by altering expression and/or phosphorylation of tight junction
proteins, leading to increased release of endotoxin into portal circulation. Afterward, excess amounts of
endotoxin reaching the liver act as an inflammatory signal that activates KCs through TLR4-mediated
pathways [27,33]. Therefore, preserving intestinal integrity and suppressing the transfer of endotoxin
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in the gut–liver axis have been suggested as logical strategies for the protection of liver from alcoholic
injury [32]. In this study, we observed that GBE reversed alterations of tight and adherens junction
proteins in the intestine by alcohol and consequently blocked LPS-stimulated inflammatory responses
in the liver. Moreover, GBE suppressed intestinal oxidative stress as shown by reduced 8-OHdG
formations, and this may be an important initial point to explain the hepatoprotective effects of GBE.
Indeed, it is well-established that excess ROS generated from alcohol metabolism and oxidative stress
in the intestine promote changes in tight junction proteins and related cellular signaling, thereby
contributing to development of gut leakiness in ALD [33,34]. Taken together, our data suggest that GBE
effectively counteracts alcohol-induced hepatic failures in mice, in part by suppressing ROS-induced
oxidative stress in both small intestine and liver tissues.

It has been previously reported that glycosaminoglycans derived from G. bimaculatus exert
anti-inflammatory and anti-lipidemic properties in rodent models [8,9], although their underlying
mechanisms remain unclear. In addition, in carbon tetrachloride-induced liver fibrogenic rat
models, glycosaminoglycans hyaluronic acid and chondroitin-4-sulphate restored hepatic injury,
concomitant with enhanced antioxidant enzyme activity in the liver [35]. These reports suggest
the role of glycosaminoglycans as one of possible bioactive compounds in G. bimaculatus. Indeed,
glycosaminoglycans are main components of the hepatic extracellular matrix, and several researches
have suggested the important roles of glycosaminoglycans in liver regeneration, along with observations
of significant increases in their physiological levels during the progression of liver injury [36,37]. In
the GBE used in this study, chondroitin-4-sulphate content was 2.38%, but hyaluronic acid was not
detected (data not shown). However, further studies are needed to investigate bioactive compounds
responsible for the protective effects of GBE in ALD.

In summary, this study showed that GBE administration ameliorated acute alcohol-induced liver
injury in mice via inhibition of hepatic steatosis, apoptosis, and gut-derived inflammatory responses,
possibly by suppressing oxidative stress. These findings provide mechanistic insight into the protective
effects of GBE against ALD, and further studies are needed to investigate the long-term effects of GBE
in chronic ALD model for its utilization as a promising hepatoprotective agent. The animal model used
in this study is limited to alcohol-related damage and may not reflect other types of hepatotoxicity.
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