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Abstract

Background: In the past decade, systematic and comprehensive analyses of cancer genomes have identified
cancer driver genes and revealed unprecedented insight into the molecular mechanisms underlying the initiation
and progression of cancer. These studies illustrate that although every cancer has a unique genetic make-up, there
are only a limited number of mechanisms that shape the mutational landscapes of cancer genomes, as reflected by
characteristic computationally-derived mutational signatures. Importantly, the molecular mechanisms underlying
specific signatures can now be dissected and coupled to treatment strategies. Systematic characterization of
mutational signatures in a cancer patient’s genome may thus be a promising new tool for molecular tumor
diagnosis and classification.

Results: In this review, we describe the status of mutational signature analysis in cancer genomes and discuss the
opportunities and relevance, as well as future challenges, for further implementation of mutational signatures in
clinical tumor diagnostics and therapy guidance.

Conclusions: Scientific studies have illustrated the potential of mutational signature analysis in cancer research. As
such, we believe that the implementation of mutational signature analysis within the diagnostic workflow will
improve cancer diagnosis in the future.

Keywords: Mutational signature, Cancer diagnosis, Cancer biomarkers, Cancer genomics, Molecular
medicine, Whole genome sequencing

Background
Historically, cancer diagnostic and treatment decisions
were predominantly based on tumor morphology, clin-
ical symptoms, and the cancer site of origin. In the past
decade, systematic analyses of cancer genomes have
changed this paradigm [1], and the term ‘cancer’ now
encompasses more than a hundred different diseases dif-
ferentiated on the basis of varying combinations of can-
cer gene mutations [2, 3]. This development, together
with the emergence of molecularly targeted drugs, re-
sulted in an increase in molecular testing to support de-
cision making in cancer diagnostics and treatment.
Thus far, the development of cancer diagnostics has

mainly focused on identifying driver mutations that pro-
vide growth advantages to cancer cells and thereby

promote tumorigenesis [2]. Genetic testing for driver
genes can identify the biological characteristics of tu-
mors. These genes can also act as direct targets for ef-
fective treatment. The rapidly growing number of drugs
directly targeting proteins encoded by mutated driver
genes has fueled the development of assays for the ac-
curate detection of mutations for cancer diagnosis [4].
Although this knowledge has contributed significantly

to drug development and improved cancer care, a sub-
stantial portion of patients do not benefit from this strat-
egy because of poor response rates to targeted drugs and a
lack of adequate biomarkers. Therefore, cancer diagnostics
require better molecular characterization of tumors, as
well as reliable biomarkers for patient stratification.
Next-generation sequencing (NGS) technologies have
emerged as an important tool to fulfill this unmet need.
The capacity of NGS to analyze large panels of genes, up
to complete cancer genomes, has enabled the generation
of comprehensive catalogues of somatic mutations in can-
cer patients [5–7]. However, only a very small fraction of

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

* Correspondence: A.VanHoeck@umcutrecht.nl
1Center for Molecular Medicine and Oncode Institute, University Medical
Centre Utrecht, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
Full list of author information is available at the end of the article

Hoeck et al. BMC Cancer          (2019) 19:457 
https://doi.org/10.1186/s12885-019-5677-2

http://crossmark.crossref.org/dialog/?doi=10.1186/s12885-019-5677-2&domain=pdf
http://orcid.org/0000-0002-6570-1452
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:A.VanHoeck@umcutrecht.nl


the identified variants are tumor drivers or actionable bio-
markers. The vast majority of somatic mutations in a can-
cer genome are passenger mutations, which are not
believed to be involved in cancer development. Neverthe-
less, it has recently been shown that these alterations can
be used to provide insight into the history of the tumor
and identify mutational processes that have occurred be-
fore and during tumorigenesis [8]. Somatic mutations can
originate from exogenous factors, such as environmental
carcinogens or UV radiation, or endogenous processes,
such as normal mutational decay due to spontaneous de-
amination of methylated nucleotides, base misincorpora-
tion by error-prone polymerases, and unrepaired or
incorrectly repaired DNA damage due to impaired DNA
damage response (DDR) gene function (reviewed by Hel-
leday et al. [9]). Interestingly, each of these leave a charac-
teristic pattern of mutations, which have been dubbed
‘mutational signatures’ [8]. For instance, cells defective in
homologous recombination repair (HRR) machinery or
non-dividing cells must rely on alternatives to repair DNA
breaks, such as non-homologous end-joining and alterna-
tive end-joining to repair double-stranded DNA breaks
[10]. These repair processes are not error free and leave a
characteristic mutational pattern, which has been shown
to be useful for the identification of tumors deficient in
HRR [11, 12]. Mutational signatures can therefore reflect
the presence or absence of cellular processes in cancer
cells. Because multiple endogenous or exogenous muta-
tional forces can operate simultaneously or successively
on the genome during a cell’s life span, the mutational
catalogue of a cancer genome harbors a mixture of signa-
tures shaped by different mutational processes. Some of
these mutational processes are active continuously
throughout the lifetime of the cancer cell (clock signa-
tures) [13], whereas others are active periodically, some of
which are influenced by the patient’s lifestyle [14].
It has recently been shown that mutational signatures

can be biomarkers for specific characteristics of a cancer
[8, 15]. As such, they bear potential clinical value as pre-
dictors of the therapy response in cancer [11]. An import-
ant prerequisite for mutational signature analysis is the
availability of genome-wide mutational data across many
independent cancers. As the cost of whole-genome se-
quencing decreases and the amount of available cancer
mutation data grows, it is timely to consider mutational
signature analysis a novel opportunity for biomarker dis-
covery, tumor diagnostics, and treatment guidance.

Signatures reveal mutation etiology
The first mutational signatures introduced were base
substitutions. For these mutation types, a signature is
characterized by the specific base change and its direct
5′ and 3′ flanking base. Because there are six classes of
base substitution and 16 possible sequence contexts,

there are 96 distinguishable trinucleotide changes.
Therefore, mutational signatures can be distilled from
large cohorts of sequenced cancer patients by a compu-
tational framework that attempts to decompose distin-
guishable recurrent patterns from the cohort’s
96-mutation matrix. Ultimately, each pattern represents
the relative proportion of each trinucleotide mutation,
which reflects a mutational signature. More theoretical
details about the framework can be found in Alexandrov
et al. [16], and Serena et al. [17] provides a chronological
overview on mutational signature analysis in cancer.
Although mutational signatures are a relatively recent

concept in cancer biology, the idea of linking mutational
processes with mutational patterns is not new. The first
studies linking specific mutation characteristics to vari-
ous environmental mutagens, such as UV-radiation [18],
smoking [19], and aristolochic acid [20], were focused
on single cancer genes that were recurrently mutated in
a wide range of cancers, such as TP53 and BRAF. These
studies provided the first evidence that mutational pro-
cesses can leave characteristic patterns in the DNA that
are visible and analyzable in tumor samples via the de-
tection of distinct signatures [21]. In 2013, Stratton and
his team introduced a computational framework that
used nonnegative matrix factorization (NMF) to
recognize multiple base substitution patterns in human
cancers [15, 22]. Moreover, some of these patterns corre-
lated with known mutagenic processes, indicating that
this mathematical concept can extract biologically rele-
vant information to unravel mechanisms underlying
tumorigenesis [16]. Since this seminal study by Stratton’s
group, the field of mutational signature analysis has
grown rapidly in cancer biology. Currently, there are 30
different reference signatures described in primary can-
cer that are categorized in the COSMIC database
(http://cancer.sanger.ac.uk/cosmic/signatures) [22].
However, additional signatures continue to be identified
by various research groups [23–26], and methods to
characterize cancer genomes in a similar way based on
indels, structural variants, and copy-number changes are
currently under development [27].
Comparing these signatures with the scientific litera-

ture, as well as statistically associating them with patient
phenotypes, provided the first mechanistic insights into
the etiology of a number of mutational processes. Mech-
anisms underpinning mutational signatures have been
suggested for roughly half of the 30 COSMIC signatures.
The establishment of large pan-cancer genomic datasets,
such as The Cancer Genome Atlas (TCGA) [28], Wel-
come Trust Sanger Institute’s Cancer Genome Project
[29] and the International Cancer Genome Consortium
(ICGC) [1], were vital for these analyses. By doing so,
exogenous processes (e.g., tobacco smoking and
UV-exposure) and endogenous processes (e.g., APOBEC
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overactivity, deficiency in double strand break repair,
and polymerase slippage) could be attributed to specific
signatures. However, obtaining evidence that the pro-
posed etiology of a signatures is a specific mutational
process, based solely on data derived from cancer pa-
tients, is not straightforward. It is complicated by the
lack of complete catalogues of true pathogenic driver
variants and missing information on the environmental
exposure history of the patient cohort. Additional com-
plexities can be found in the heterogeneous landscape of
mutational processes that is typically identified in indi-
vidual cancers. Furthermore, the detected somatic muta-
tions are the result of a balance between mutation-
inducing and DNA repair processes, which are not fully
independent, and mechanisms may vary between tissues.
Therefore, more controlled experimental approaches are
needed to determine the origin of a signature. We re-
cently showed that the application of CRISPR-Cas9 tech-
nology in human colon organoids to delete key genes
involved in specific DNA repair pathways, followed by
genome-wide characterization of the resulting mutation
patterns, is a powerful approach because it can link the
observed signatures of the accumulated mutations dir-
ectly to the biological functionality of the inactivated
gene [30].

Diagnostic mutational signatures
Currently, the most notable advances in mutational sig-
nature analysis-based diagnosis are in the field of breast
cancer. Tumors with mutations in BRCA1/2 are defect-
ive in the HRR process. These tumors show promising
responses to treatment with a PARP inhibitor (olaparib),
a drug that decreases the DDR in cancer cells to a fatally
low level [31–33]. DNA-damaging agents that directly
induce double strand breaks, such as chemotherapy
based on platinum salts, prove therapeutically efficient
in these cancers as well [34–36]. Recently, a model that
can accurately predict HRR deficiency (HRDetect) was
developed for breast cancers [11]. This computational
tool uses HRR-deficiency features from the complete
mutation catalogue of base substitutions, indels, and
structural rearrangements. The use of this tool revealed
that microhomology-mediated indels, two COSMIC sig-
natures (further referred to as CS) and two rearrange-
ment signatures (further referred to as RS) correlated
with HRR deficiency (Fig. 1). By accounting for their
mutational contribution, HRDetect could predict BRCA-
ness (i.e., a BRCA1/2-associated phenotype) with a sensi-
tivity of almost 100%, which is an improvement on the
sensitivity obtained by more traditional copy number
based tests (~ 60%) [37] and functional assays of HRR
deficiency (~ 80%) [38]. HRDetect identified 44 cancers
that carried a germline or a somatic BRCA1/2 variant in
a cohort of 560 breast cancer patients and, interestingly,

in 47 cancers demonstrating BRCAness in which no
pathogenic variant in BRCA1/2 was detected. The latter
category can possibly be explained by the epigenetic in-
activation of BRCA1/2 or the inactivation of other com-
ponents involved in HRR.
The HRDetect tool demonstrates that signature ana-

lysis can be deployed to successfully identify BRCAness
in patients without the need for prior knowledge of
BRCA mutations. Polak et al. [12] found similar results
in a different breast cancer cohort, and pointed out that
cancers carrying a somatic event in BRCA1 (n = 36, co-
hort size = 995) or BRCA2 (n = 34, 995) had a stronger
contribution from CS-3. Interestingly, cancers that
showed epigenetic silencing of BRCA1 (n = 32, 995) or
RAD51C (n = 23, 995), or that carried germline PALB2
(n = 3, 995) or RAD51C (n = 1, 995) mutations, also dis-
played an increased contribution from CS-3. Because
epigenetic modifications cannot be directly verified by
traditional diagnostic methods, identifying mutational
signatures associated with HRR defects can increase the
number of patients who would benefit from treatment
with PARPi and platinum-based drugs [11]. Recently, we
validated this strategy in breast cancer organoids by sub-
jecting organoids derived from a patient who displayed a
high contribution from CS-3 mutations to two different
PARPi drugs [39]. These organoids were sensitive to
PARPi, whereas breast cancer organoids negative for
CS-3 did not show any response, illustrating the
principle that CS-3 can act as a useful marker for PARPi
sensitivity in cancer. A recent retrospective study com-
puted HRDetect scores for 93 advanced breast cancer
patients, 33 of which were treated with platinum chemo-
therapy [34]. All patients scoring high for HRR defi-
ciency showed a significantly association with clinical
improvement on platinum-based therapy. These findings
provide evidence for the use of mutational signatures as
sensitive biomarkers for HRR defects, and can inspire
the design of therapeutic trials.
Moreover, mutational signature analysis to detect HRR

deficiency could be applied to many different cancer
types beyond breast cancer. Germline mutations in
BRCA1/2 have long been known to affect the risk of
ovarian cancer [40] and pancreatic cancer [41]. Bio-
markers for HRR deficiency were found in 24 additional
cancer classes or cancer-associated syndromes [8, 42–
44]. These findings suggest that HRR deficiency and the
associated therapeutic benefits may apply to a greater
number of patients than is currently appreciated. Indeed,
in a study on pancreatic cancer, all patients that
responded to platinum-based chemotherapy harbored
the BRCA-associated CS-3 [45]. These examples indicate
that an effective response to specific anti-cancer drugs is
more dependent on specific functional defects in a
tumor than by the organ in which this tumor is located.
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Nevertheless, the efficacy of HRDetect in selecting pa-
tients of all cancer types for PARPi, platinum-based,
and/or immune-based therapy needs testing in (pre)clin-
ical trials.
Similar tactics could be employed for other mutational

process signatures as well. DNA mismatch repair
(MMR) corrects stochastic errors by polymerases that
arise during DNA replication [46]. A deficiency in MMR
and DNA proofreading results in increased mutational
load of base substitutions and instability at tandem re-
peats of short nucleotide sequences (a feature called
microsatellite instability [MSI]) [47] (Fig. 1). Colorectal
cancers with MMR deficiency are sensitive to pembroli-
zumab [48] and nivolumab [49], which are both inhibi-
tors of the programmed death 1 (PD1) immune
checkpoint. In 2015, the Consensus Molecular Subtypes
(CMS) Consortium subcategorized all hypermutated
MSI cancers in one CMS group (CMS1, 14% of colorec-
tal cancers) based on gene expression data. Mutational
signature analysis demonstrated that MSI colorectal can-
cers leave specific mutational signatures (CS-6, CS-15,
CS-10, CS-20, and CS-26) [8, 9], which can be used to

identify MMR deficiency in cancers [26, 30]. Recently,
we validated the association between MMR deficiency
and a CS-20-like signature in colon organoids that lack
the essential MMR gene MLH1 [30]. These organoids
were exclusively characterized by this base substitution
signature accompanied by small indels (< 3 bp) within a
tandem repeat context (Fig. 1). These mutation charac-
teristics could be used to identify colon cancer patients
with MMR deficiency even when that deficiency is
caused by epigenetic mechanisms such as the well-stud-
ied MLH1 promotor methylation. Although MRR-defi-
cient cancers dominate in colorectal cancers [50],
signature analysis revealed MMR-deficient pancreatic
cancer as well (n = 3, 180) [51]. Thus, as in the case of
HRR deficiency, signature analysis might be a convenient
approach to simultaneously screen for MMR deficiency
to identify patients who would benefit from immuno-
therapy, regardless of the cancer’s tissue of origin [52].
Indeed, in a follow up study, Le et al. showed that PD1
inhibition is not just successful in treating colon cancer
with MSI but also in treating 11 other cancer types with
MMR-deficiency [53].

A B C D E

Fig. 1 Mutational processes linked to treatment selection via mutational signatures. Mutational signatures in tumor genomes can reflect the
activity of specific mutational processes and thereby provide support for therapy selection. Different types of mutational signatures (a) can be
considered: base substitution signatures (orange), indel signatures (green), rearrangement signatures (yellow), geographically localized mutational
phenomena (blue) or other signatures characterized by copy-number variations (grey). Diagnostic interpretation of characteristic signatures can
contribute to therapy choice (e) and include (green) or exclude (red) patients from a treatment. Actionable pathways that can be identified by
mutational signatures (a) mainly include DNA repair defects (b), which was confirmed by the presence of pathogenic mutations in the indicated
genes in these pathways (c). The prevalence of germline pathogenic mutations in these genes is typically linked to a cancer predisposition
syndrome (d). Abbreviations: CS-[number], COSMIC signature; RS-[number], rearrangement signature; MH-indels, indels at microhomologies; STR-indels,
short tandem repeat-mediated indels; TSB sigs, signatures showing transcriptional strand bias. APOBEC, apolipoprotein B DNA-editing complex; MAP,
MUTYH-associated polyposis; NAP, NTHL1-associated polyposis; PARP, poly(ADP-ribose) polymerase; PPAP, polymerase proofreading associated polyposis.
* defects in base excision repair have been associated with these characteristic substitutions
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Base excision repair (BER) is a third category of DNA
repair that could potentially be discerned by mutational
signatures. Defects in BER components SMUG1, OGG1,
and NTHL1 result in higher rates of C > A transversions
(SMUG1 and OGG1) [54, 55] and C > T transitions
(SMUG1 and NTHL1) [56, 57]. These findings indicate
that the failure of BER processes might also leave spe-
cific predictive marks. Indeed, using CRISPR/Cas9-me-
diated knockout of NTHL1 in colon organoids, we have
shown that NTHL1 deficiency results in increased muta-
tions, which can be attributed to CS-30 [30]. This signa-
ture had been identified in only a single cancer patient
within a breast cancer cohort [22]. Upon examining the
germline of this patient, we identified a heterozygous
mutation causing a premature stop codon in NTHL1,
with loss of heterozygosity in the tumor. Mutations in
MUTYH, a BER- and nucleotide excision repair (NER)--
associated protein, are specifically associated with CS-18
[58] and a CS-18-like signature [26, 59]. Because BER
and NER can both be coupled to transcription [60, 61],
more specific mutational signatures could possibly be
dissected when such genomic features are taken into ac-
count (including CS-4, CS-5, CS-8, CS-12, CS-16, and
CS-22 – see Fig. 1) [8]. For example, a specific muta-
tional signature that closely resembles CS-5 has been as-
sociated with defects in ERCC2, a core protein of the
NER pathway [62]. Importantly, this signature was sig-
nificantly increased in responders to cisplatin compared
to non-responders, and other studies have also con-
firmed a positive response to cisplatin in NER-deficient
patients [63–65]. However, the studies of CS-5 also illus-
trate one of the limitations of the use of mutational sig-
natures. It is now considered that this siganture
represents a universal ageing signature, as does CS-1
[13, 30], since both signatures have been observed in
healthy cells. CS-5 therefore has little diagnostic value,
but it remains to be shown whether quantitative analyses
reveal a robust association of NER deficiency with in-
creased levels of CS-5 mutations. Furthermore, not all
NER-deficient tumors show the same signature contri-
bution, suggesting that distinct mutational processes re-
lated to NER deficiency might be active. Indeed, recent
findings from our laboratory indicate that deficiency in
global genome NER results in a tissue-specific increase
in mutations, which can be attributed to CS-8 [66].
In addition to DNA repair deficiencies, other cellular

processes can leave informative signatures in tumors.
Activation of the RNA-editing enzyme APOBEC consti-
tutes part of the cellular immune response to viruses
and retrotransposons, but overactivity of APOBEC is a
driving force of somatic hypermutation [67]. This im-
plies that tumors with APOBEC overactivity could be
treated by lethal mutagenesis, which consists of adminis-
tration of drugs stimulating mutation rates past a lethal

threshold, thereby stimulating programmed cell death
[68]. APOBEC enzymes have also been proposed to
drive cancer evolution, heterogeneity, and therapy resis-
tence [69]. APOBEC overactivity has been shown to pro-
mote drug resistance to the cancer drug Tamoxifen [70,
71], perhaps due to APOBEC-driven intratumor hetero-
geneity. The APOBEC-associated signatures CS-2 and
CS-8, as well as an associated phenomenon of clustered
mutagenesis called kataegis (Fig. 1), have been found in
more than half of the investigated cancer types [6]. Add-
itionally, later studies found these signatures in in a
range of cancer types [24, 72–74] and directly linked them
to an APOBEC3A/3B germline deletion allele in breast
cancer [75]. Detection of APOBEC overactivity could
therefore be useful in a wide range of cancer types. More-
over, mutational signature analysis allows discrimination
between the signatures of different APOBEC-subtypes
[76]; the APOBEC3B subtype could be further subdivided
with clustered mutational signatures [77], which means
even more specific targeting could be possible. For ex-
ample, APOBEC stimulators might be used to stimulate
lethal mutagenesis.

Stratification of cancer patients
In addition to using mutational signatures as a genomic
biomarker for targeted therapeutics, mutational signa-
ture analysis presents possibilities in the stratification of
patients (Fig. 2). For instance, breast cancer is among
the most common types of cancer worldwide, with an
estimated incidence of 1.7 million cases in 2012 [78].
Around 5–10% of all breast cancers are attributed to
somatic or germline mutations in the genes BRCA1 and
BRCA2 [79]. However, HRR deficiency is currently not
an intrinsic subclass in breast cancer diagnostics, al-
though this cohort may have a better prognosis when
treated with specific drugs. A few recent studies have ap-
plied mutational signature analysis to identify which pa-
tients are most likely to respond to certain therapies,
including studies of patients with esophageal adenocar-
cinoma (EAC) [43], pancreatic ductal adenocarcinoma
(PDAC) [44], oral squamous cell carcinoma (OSCC)
[80], gastric cancer [25], and prostate cancer [81].
EAC is an illustrative example. Highly heterogeneous

mutational landscapes and a current lack of efficient
stratification methods has led to the generally poor per-
formance of targeted therapeutic approaches [43, 82].
However, in a cohort of 129 EAC patients, Secrier et al.
[43] were able to define each patient’s tumor by its dom-
inant mutational signature and performed hierarchical
clustering to stratify tumors into three subgroups with
distinct etiologies. The first subgroup exhibited faults in
the HRR pathway and was characterized by CS-3, and
could therefore benefit from PARP inhibitors or
platinum-based chemotherapy. The largest subgroup
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predominantly showed CS-17, a signature that does not
yet have a defined etiology but could be related to gas-
troesophageal reflux [83]. In this subgroup of cancers,
an increased response to WEE1/CHK1 inhibitors was
observed. In addition, CS-17 has been shown to correl-
ate with high neoantigen loads, which could implicate
these patients for immunotherapy [84–86]. The final
subgroup predominantly showed the signatures CS-1,
which is age-related, and CS-18, which has no consensus
etiology as yet but has been suggested to be associated
with damage from reactive oxygen species (ROS) [26,
59]. Although Secrier et al. suggested traditional chemo-
therapy for these patients, the clinical meaningfulness of
this subgroup is questionable, because there is no other
obvious treatment alternative for these patients at this
time. Uncovering the mechanisms underlying CS-18 and
CS-1 will possibly energize the search for therapeutic
potential in this subgroup. Molecular stratification of
cancer patients based on mutational signatures is used
in a growing number of studies, although in variable
forms. Whereas EACs and gastric cancers were classified
using predominantly mutational signature analysis [25,
43], PDACs and OSCCs were stratified using mutational
signatures as part of an integrated genomics approach

[44, 80]. However, other tumor characteristics must
often contribute to a comprehensive tumor diagnosis
and treatment decision, because not all therapies are dir-
ectly related to the mutational processes driving cancer.
Nevertheless, mutational signatures already provide rele-
vant information for treatment selection in at least some
subgroups. In addition, evaluation of mutational signa-
tures is an interesting approach that could be explored
for the stratification of patients in clinical trials.

Revealing cancer predisposition
The majority of cancers are believed to result from som-
atic mutations [2]. Nevertheless, up to 10% of the cases
can be attributed to inherited variants present in the pa-
tient’s germline [87]. Exome sequencing studies in the
last decade have revealed many new predisposition gene
candidates, and whole-genome sequencing (WGS)
pan-cancer studies will likely unravel new predisposition
genes in the future, such as non-coding driver variants
[88]. Mutational signature analysis could potentially be
applied as a powerful screening tool to uncover new
pathogenic inherited mutations affecting mutation accu-
mulation, and as a validation method to accurately clas-
sify variants of uncertain significance (VUS) as either

Fig. 2 Mutational signature analysis as a tool in cancer diagnostics. A patient who is diagnosed with cancer will undergo biopsy of both the
tumor tissue and a healthy tissue sample (e.g. blood). The entire DNA of both specimens will then be read using whole-genome sequencing
(WGS), which allows the characterization of somatic mutations in the form of base substitutions, indels, rearrangements, copy-number variations
(CNVs) and variations thereof. The healthy sample can be used to characterize predisposition variants, and somatic events can identify potentially
actionable somatic tumor driver variants. Mutational signature analysis can provide additional evidence to support the interpretation of these
measurements, such as for the interpretation of Variants of Unknown Significance (horizontal arrows), but can also provide direct support for the
cancer diagnosis. The result of this workflow will influence clinical interventions such as treatment decisions and family counseling if a
predisposition variant has been identified, and allows for stratification of patients towards effective anti-cancer drugs (precision medicine) to
improve the patient’s outcome (prognosis)
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pathogenic or benign (Fig. 2). For instance, we have
identified a germline NTHL1 variant in a breast cancer
patient by screening for CS-30 conribution [30]. Polak et
al. revealed that nearly all samples showing a pathogenic
BRCA1/2 germline variant and loss of the intact allele
were positive for CS-3 in the TCGA breast cancer co-
hort, and accurately classified 12 BRCA1/2 VUSs [12].
The integration of indel and rearrangement signatures
can even segregate BRCA1 deficient tumors from
BRCA2 mutants [11]. It is worth mentioning that not all
heritable breast cancers harbor germline variants solely
in BRCA1/2, indicating that predisposing variants in
other genes likely exist and contribute to hereditary
breast cancer via altered mutation accumulation.
A more advanced approach could incorporate the evo-

lutionary dynamics of the signatures to identify
early-onset signatures which, together with true driver
detection, can be used to trace predisposition variants
from tumor-only sequencing data [89]. Such an ap-
proach has been tested in 15 ultrahypermutated cancer
patients (> 100 mutations per Mb) and in each individ-
ual, a germline MMR mutation was found. Moreover,
this analysis was performed on panel sequencing data,
which covers a sufficient number of nucleotides to iden-
tify early-onset signatures from highly mutated cancer
types but is likely not adequate for less mutated cancer
types. However, this strategy can be implemented in a
whole-genome/−exome framework to predict predispos-
ition variants in other cancer types.
The application of mutational signature analysis to re-

veal cancer predisposition could be an important step
forward in familial cancer diagnosis. For instance, many
colorectal cancer patients harbor mutated predisposition
genes that can be classified into distinct colorectal can-
cer subtypes including polymerase proofreading associ-
ated polyposis (PPAP), MUTYH-associated polyposis
(MAP), NTHL1-associated polyposis (NAP), and Lynch
syndrome. These subtypes are pathologically very similar
and therefore difficult to identify, requiring extensive
multifactorial testing [90, 91]. However, PPAP has been
associated with a distinct mutational signature, CS-10 [8];
MAP with two signatures, one CS-18-like [58] and a simi-
lar signature currently named signature 36 [26]; and NAP
with CS-30 [30, 57]. The clinical value of detecting these
predispositions is shown in Fig. 1. In addition, Lynch syn-
drome can be identified using the MMR-associated signa-
ture CS-6 [8] and indel signatures [30]. Indeed, a study
aiming to detect Lynch syndrome used the aforemen-
tioned two Lynch syndrome-associated signatures and the
PPAP-associated signature CS-10 to distinguish these two
groups of patients [89]. However, for most of these syn-
dromes, more research is required to validate the signa-
tures. Additional studies of larger, selected cohorts can
help unravel which syndromes are linked to which

signatures. In addition, it is important to study whether
other predisposition syndromes, not functionally linked
with DNA repair deficiency, can be associated with a spe-
cific mutational pattern. These studies might best focus
on hereditary cancer syndromes that are currently difficult
to identify with targeted gene panels, such as Cowden syn-
drome [92]. Furthermore, additional studies are necessary
to evaluate the efficacy of mutational signature analysis in
identifying different hereditary cancer types, particularly
because different syndromes may converge on the same
signature and be indistinguishable. Nevertheless, the as-
signment of germline mutations in cancer patients has
several important clinical implications, because these vari-
ants can serve as sentinels for identifying families with
high risk for cancer development. Family members carry-
ing pathogenic germline variants could be encouraged to
obtain genetic counseling, take preventive measures, or
enter increased surveillance programs (Fig. 2).

Identifying tumor tissue of origin
Roughly 3% of all new cancer cases are diagnosed as a
cancer of unknown primary (CUP) [93]. Furthermore,
substantial uncertainty about the tissue of origin re-
mains, especially when the cancer is metastatic or poorly
differentiated; this complicates treatment because most
targeted drugs are tumor type-specific. Mutational se-
quencing data could support histopathological examin-
ation in identifying the cancer site of origin.
Comprehensive mutational signature analyses have
shown that tumor types leave distinctive patterns of
somatic mutations. For example, CS-12 and CS-16 are
so far exclusively associated with liver cancer [94], and
ovarian cancer typically harbors a high number of struc-
tural variants [95]. Such tissue-specific patterns, or a
combination thereof, could be exploited to accurately
decipher the primary tissue type. The ICOMS [96] (in-
ferring cancer origins from mutation spectra) tool and
TumorTracer [97] are two examples of well-trained clas-
sifiers that utilize TCGA and COSMIC data to infer the
origin of distinct primary tumor sites. Although these
tools deliver performance scores that may be accurate
enough to aid in the clinical diagnosis of CUPs, the use
of pan-cancer WGS data and advanced signature extrac-
tion methods will likely lead to more accurate ap-
proaches [98].

Existing challenges
Thus far, we have discussed the current state and poten-
tial diagnostic value of mutational signature analysis, as
well as applications for the detection of germline predis-
position mutations and the determination of organ of
origin for CUPs. However, clinical integration of such
detection requires critical examination and further re-
finement of these signatures, and some obvious

Hoeck et al. BMC Cancer          (2019) 19:457 Page 7 of 14



weaknesses and limitations must be addressed. First, the
current 30 COSMIC signatures are derived from a mix
of whole-exome sequencing (WES) and WGS data
(10,952 whole exomes and 1048 whole genomes). This
has resulted in discrepancies between WES- and
WGS-derived signatures; for example, certain processes
specifically act on coding or non-coding elements, such
as transcription-coupled repair. This heterogeneity could
be removed by creating WES- and WGS-specific signa-
tures. This should ideally rely on the most comprehen-
sive inventories obtained by WGS, because this also
maximizes the ability to obtain insight into the under-
lying biological mechanisms. For clinical use, however,
refitting of predefined signatures on WES data is likely
feasible and more cost-efficient, which would make mu-
tational signature analysis more broadly applicable. Sec-
ond, a number of the current signatures are identified in
only a few genomes at low contributions [8]. Their rele-
vance should be substantiated before they are used in re-
fitting approaches, because such signatures may mask
the contributions of other signatures due to overlapping
features. Likewise, signatures observed in single cohorts
likely represent artifacts due to sequencing errors or
from inadequate somatic mutation calling pipelines [99].
Consequently, the identification of such artifactual signa-
tures makes it valid to question and optimize the sensi-
tivity and specificity of the mutation calling strategy.
Alternatively, artifactual signatures can be included to
capture predefined false positive mutations as for ex-
ample in single cell sequencing that generates numerous
T > C mutations [100]. Third, not all mutational signa-
tures will lead to targeting approaches or clinical advice.
It is arguably unlikely that age-related CS-1, which is
present in approximately 70% of all cancer types, can be
translated to any form of prevention or treatment.
Fourth, the accuracy of mutational signature extraction
decreases when a multitude of mutational processes are
or have been active in a sample, when low numbers of
mutations are present (e.g. pediatric cancers and adult
acute myeloid leukemia (AML) [101]), and when muta-
tional signatures are relatively similar. Fifth, it is prefera-
ble to distinguish historical mutational processes from
those that are presently ongoing to identify a
signature-based treatment. For example, targeting APO-
BEC overactivity, a process that is known to operate
transiently, solely on the presence of its signature will
not necessarily affect patient survival. Likewise, sub-
clones within tumors that have lost the activity of certain
mutational processes will still contain their characteristic
signatures within the genome. Moreover, subclones that
have become the dominant clone during cancer recur-
rence after the first stages of treatment will still show
their historic mutational signatures. In a diagnostic set-
ting, mutational processes may be classified as historical

or ongoing by analyzing samples from serial biopsies or
biopsies from different sites within the tumor. Alterna-
tively, active signatures can be characterized computa-
tionally by focusing on subclonal variants, because they
are considered to originate from recent processes in
local portions of the cancer. More sophisticated compu-
tational strategies also exist to assess the evolutionary
history of mutational processes [102, 103].
It is important to mention that signatures of muta-

tional classes other than base substitutions have enjoyed
less attention. This is partly due to the known lower sen-
sitivity and specificity of current algorithms used to call
indel and structural variant mutations, which results in
noisier data and more challenging extraction of biologic-
ally relevant signatures, as well as the higher complexity
of defining other signatures [9]. The context of these sig-
natures includes features beyond neighboring nucleo-
tides, such as length, location, repeat engagement,
copy-number changes, involvement of microhomology,
and other biologically relevant attributes. Regarding
indels, two distinct informative signatures were defined
by Stratton and colleagues in breast cancer [9, 15]. The
first indel signature is characterized by small indels (1–5
bp) flanked by short tandem repeats (STRs), and the sec-
ond is characterized by larger indels (up to 50 bp) present
in short stretches of identical sequences at the breakpoints
(microhomology). Regarding structural rearrangements,
six signatures (RS1-RS6) based on rearrangement type
(duplications, deletions, translocations, inversions), degree
of clustering, and size have been identified by analyzing
560 breast cancer genomes [22]. These indel and RS sig-
natures are also found in liver cancer [94], highlighting
the robustness of these preliminary indel and RS signa-
tures. More signatures are likely to be recognized in the
near future as techniques to identify indels and rearrange-
ments develop and as cancer genomes are more systemat-
ically analyzed [104]. Additional relevant parameters may
be incorporated into signatures in the future as well, in-
cluding genomic features such as transcriptional strand
bias [8, 105], replication timing [106, 107], genomic pos-
ition [77], chromatin organization [108, 109], and other
relevant genomic features [110]. For instance, heterogen-
eity in mutation rate has been observed within a single
gene that is associated with higher mismatch repair activ-
ity in exonic regions [111], and clustered mutation signa-
tures are related to variable APOBEC activity and tobacco
smoking [77]. The inclusion of such parameters into pat-
terns increases the resolution of mutational signatures to
distinguish different processes. These parameters could
also be clinically meaningful as stand-alone signatures,
such as indels in STRs to identify MMR deficiency [112].
Which parameters must be incorporated into signatures
and which can stand alone is a question that could poten-
tially be addressed by feature correlation analyses of very
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large cancer genomics datasets. Furthermore, incorporat-
ing biases into signatures enhances the power of muta-
tional signature analysis to detect underlying mutational
processes.
The algorithmic approach behind mutational signature

analysis still requires further development. A recent
study validated a number of peer-reviewed mutational
signature frameworks and found large variation in signa-
ture exposures, of which NMF gave on average the lar-
gest decomposition error [113]. Furthermore, NMF
relies upon large cohorts of cancer genomes to accur-
ately extract signatures and cannot efficiently analyze
samples with high mutational load. Hence, a growing
number of bioinformatics studies are attempting to ad-
dress the shortcomings of NMF [16] by proposing and
testing different mathematical approaches for problems
such as defining the optimal number of signatures in a
sample [114–120]. Alternatively, after a complete set of
mutational signatures has been verified, the contribution
of these predefined signatures (e.g., those currently re-
corded in the COSMIC database) could be refitted on
the genomic data of a single patient [117, 119]. The lat-
ter strategy might prove faster and more cost-effective
[43] and, most importantly, is applicable at the single pa-
tient level, which is a requirement for use in a clinical
diagnostic setup. Methods for refitting known signatures
to mutation inventories are still in their infancy, and are
faced with challenges due to the overlapping characteris-
tics of signatures, making it difficult to assign individual
mutations to specific signatures. Hence, additional spe-
cific genomic features (e.g. broader mutation context,
strand biases, association with functional elements) ex-
clusively linked to a signature might be crucial to accur-
ately asses the contribution of highly similar signatures
and could simultaneously make refitting approaches
more accurate.
Also, not all forces driving tumorigenesis might be de-

tectable by DNA mutation analyses. Epigenetic modifica-
tions are another important cancer driver mechanism,
but such alterations are not detected by routine WGS. It
has been suggested that epigenetic changes, as detected
by other targeted or genome-wide techniques, could be
integrated into mutational signature analysis if need be
[11]; however, no framework has been published yet.

Feasibility and costs
Despite the recent advances in DNA sequencing technol-
ogy and the consequent wave of studies using mutational
patterns, diagnostic application of mutational signatures is
still at an early stage of development. Certain mutational
signatures can be linked to mutational processes and, via
this route, to a treatment plan. To date, however, studies
on how mutational signature-based subtyping translates
to treatment response are largely absent. Studies using

HRDetect or stratifying studies on the basis of mutational
signatures do demonstrate a correlation with therapy re-
sponse [11, 43, 44], but these studies were performed
retrospectively. Therefore, the major challenge for muta-
tional signature analysis will be to predict treatment re-
sponse in a prospective study.
In addition, mutational signature analysis requires NGS

data to accurately identify somatic mutations, preferably
from WGS data with sufficient sequencing depth, accom-
panied by a matched healthy sample. WGS-derived data
contain 20–50 times more mutations than do data from
whole exomes [121, 122]. Hence, the decomposition of a
patient’s mutational profile into de novo signatures using
WES data may generate unstable signatures, as discussed
above. However, Polak et al. [12] successfully detected
BRCAness in the TCGA WES-derived dataset using an
optimal threshold of 37 CS-3 associated mutations (AUC
= 0.82). Therefore, refitting on robust mutational signa-
tures and optimizing threshold levels may well work with
only exome sequencing data of the diagnostic sample [98,
100]. Regarding sequencing depth, only a small drop in
sensitivity was observed in the WGS breast cancer analysis
when data with a 30-fold read depth was down-sampled
to a 10-fold read depth (r = 0.96), with a remaining sensi-
tivity of 86% for low-coverage sequencing data [12]. Simi-
larly, a simulated 10-fold read depth could be successfully
used to identify the dominant signature for EAC-patient
stratification [43], although the required read depths will
also strongly depend on the percentage of tumor cells in
the sample and the tumor heterogeneity. Furthermore, the
current somatic calling pipeline demands a matched
healthy DNA sequence to distinguish somatic mutations
from germline variants. However, the establishment of
comprehensive population resources and well-trained
computer models could potentially overcome this require-
ment without losing the detection power of mutational
signature analysis.
Studies presenting the feasibility of mutational signa-

ture analysis for cancer patients have mostly used
high-quality DNA extracted from fresh-frozen biopts.
However, in clinical practices, such specimens are rou-
tinely fixed in formalin and paraffin-embedded (FFPE)
for histopathological diagnosis, which lowers DNA qual-
ity [123]. Nevertheless, HRDetect (using 30-fold read
depth) sustained high probability using FFPE tissues, in-
dicating that mutational signature analysis may work in
the current framework of molecular pathology. However,
low-exposure signatures such as CS-3 and CS-5 might
be lost in FFPE-induced noise [11].
Overall, it is difficult to draw conclusions on the

cost-effectiveness of mutational signature analysis at this
moment, although it is clear that costs for WGS are still
clearly prohibitive for routine application in most clinical
studies. However, when the potential of WGS to replace
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the multifactorial testing of mutated genes and to allow
better patient stratification is met, cost-effectiveness
could likely be reached, because WGS costs are only a
fraction of total clinical study costs or the costs of
current novel targeted treatments. In addition, with the
decreasing costs of NGS, full commitment to WGS
might be less of an issue at some point in the future.

Clinical trials
Mutational signature analyses have been applied in re-
search, but not yet in the clinical setting. Currently, our
theoretical understanding of the mechanisms by which
mutational signatures accumulate is still relatively rudi-
mentary. However, the findings that are gained by WGS
analysis open up the question of when WGS analyses
will enter routine clinical cancer care. Therefore, exam-
ination of the mutational landscapes in clinical trials ex-
ploring the accuracy of this approach in a wide range of
cancer types are a pertinent next objective. So far, only a
very limited number of clinical trials (as reported on
clinicaltrials.gov) have been initiated to examine the clin-
ical relevance of mutational signatures.
The potential therapeutic efficacy of the PARP inhibitor

olaparib in BRCA-mutated tumors has been assessed in
clinical trials in breast cancer (NCT00494234 – com-
pleted), ovarian cancer (NCT00494442 – completed;
NCT00753545 – completed; NCT00679783 – completed),
prostate and pancreatic cancer (NCT01078662 – com-
pleted, NCT02677038 – recruiting; NCT02184195 –
recruiting) and has been approved by the FDA in 2014
[124]. Currently, other PARP inhibitors are being tested
for BRCA-deficient cancers in clinical settings, such as
veliparib (NCT01149083) and rucaparib (NCT02855944),
and platinum-based chemotherapy has been tested in
prostate cancer (NCT01289067). However, these patients
were mostly screened using targeted assays for germline
and somatic BRCA mutations. The development of a
companion diagnostic biomarker that relies on signatures
(such as HRDetect) could guide treatment of
HRR-deficient cancer types beyond those carrying BRCA
mutations in the cancer types discussed above, and thus
increase the target population. In this context, one trial
(NCT01042379) investigated a BRCA-signature from gene
expression data that was developed within the EU FP7
RATHER project, which showed promise in predicting the
response to PARP inhibitor veliparib in combination with
carboplatin [125]. However, the prognostic and diagnostic
value of BRCA-associated signatures from somatic muta-
tions remains to be assessed through a prospective clinical
trial, with participants being selected based on the muta-
tional signatures of their tumor.
One trial (NCT02710396) is currently recruiting pa-

tients to explore the mutational smoking signature as a
potential biomarker in advanced non-small cell lung

cancer treated with pembrolizumab. This PD1-blocking
agent was FDA-approved in May 2017 for cancer pa-
tients diagnosed with microsatellite instability-high
(MSI-H) or mismatch repair deficient (dMMR) cancers.
Currently, MSI detection depends on a small number of
known microsatellite loci or mismatch repair genes, and
has limited reliability [126]. However, NGS data can
offer highly accurate detection of MSI [127, 128]. Pem-
brolizumab was the first FDA-approved cancer treat-
ment solely based on a genetic biomarker, rather than in
combination with a primary tumor type. This decision
opens up the route for additional biomarkers that focus
on genomic profiles. In this context, a clinical trial
(NCT02750657) has been set up to study the potential
of mutational signature analysis for better treatment se-
lection in PDAC, which is currently recruiting patients
and might prove important for realizing the diagnostic
potential of mutational signature analysis [44].

Conclusion
In conclusion, cancer diagnosis may benefit from the im-
plementation of mutational signature analysis, which is
complementary to existing diagnostic approaches such
as analyses of driver mutations in oncogenes and tumor
suppressors. The identification of HRR deficiency in
breast cancer and other cancers suggest the potential for
a broader application of mutational signature analysis in
different cancer types. Moreover, the detection of add-
itional signatures suggests that similar developments
could occur in the diagnosis of a broader range of DNA
repair defects. Mutational signatures are proving to be
clinically useful biomarkers for a growing range of can-
cer types, and signatures have already been shown to be
useful for prognosis in several studies, such as the pre-
diction of responses to conventional chemotherapy, tar-
geted therapy, and immunotherapy approaches.
Moreover, mutational signatures are found to be power-
ful biomarkers for the identification of hereditary cancer
syndromes, providing opportunities for cancer preven-
tion, monitoring, and early detection strategies.
Despite these promising results, mutational signature

analysis will need further research to define universal
reference signatures based on all types of mutational
events and relevant genomic features, as well as to delin-
eate the underlying mutational processes. This will re-
quire analyses of extensive, and more diverse, cancer
genome sequencing datasets, as well as the targeted ma-
nipulation or perturbation of experimental models.
Moreover, it is important that prospective clinical trials
are undertaken to assess the effectiveness and accuracy
of mutational signature analyses in predicting response
to therapy. Finally, for patients to benefit from these de-
velopments, transparency regarding technical advances
in algorithms and sharing of methods and data are
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imperative for the timely and responsible transfer of mu-
tational signature analyses from the research domain to
the clinical setting.
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