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Abstract

Background—Both attention deficit hyperactivity disorder (ADHD) and autism spectrum 

disorder (ASD) are neurodevelopmental disorders with high prevalence. They are often comorbid 

and both exhibit abnormalities in sustained attention, yet common and distinct neural patterns of 

ASD and ADHD remain unidentified.

Aims—To investigate shared and distinct functional connectivity patterns in a relatively large 

sample of boys (7–15 years old) with ADHD, ASD and typical development (TD) matched by age, 

gender, and IQ.

Method—We applied machine learning techniques to investigate patterns of surface-based brain 

resting state connectivity in 86 boys with ASD, 83 boys with ADHD, and 125 boys with TD.
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Results—We observed increased functional connectivity within the limbic and somatomotor 

networks in boys with ASD compared to boys with TD. We also observed increased functional 

connectivity within the limbic, visual, default mode, somatomotor, dorsal attention, frontoparietal, 

and ventral attention networks in boys with ADHD compared to boys with ASD. In addition, using 

a machine learning approach, we were able discriminate TD from ASD, TD from ADHD, and 

ASD from ADHD with accuracy rates of 76.3%, 84.1%, and 79.1%, respectively.

Conclusion—Our results may shed new light on the underlying mechanisms of ASD and ADHD 

and facilitate the development of new diagnostic methods for these disorders.

Introduction

Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder 

characterized by inattention and abnormal hyperactivity and impulsivity, affecting nearly 6% 

of children 1. Autism spectrum disorder (ASD) is another highly prevalent 

neurodevelopmental disorder characterized by difficulties in social communication and 

social interaction 2. ADHD and ASD are often comorbid 3,4, with about 30% of ASD 

patients having comorbid ADHD characterized by age-inappropriate inattention, 

impulsiveness, and hyperactivity. Neuroimaging studies have shown that both disorders are 

associated with abnormal resting state functional brain connectivity 5–12. For instance, 

studies have suggested that compared with typical development (TD), 1) children with 

ADHD showed disrupted functional connectivity patterns in brain regions involved in 

attention and sensory processing 7,8 and 2) children with ASD displayed increased resting 

state functional connectivity in the posterior cingulate cortex and salience network, and the 

strength of functional connectivity was linked to severity of social interaction deficits 5,9,12. 

These studies have significantly enhanced the neurophysiological understanding of ADHD 

and ASD. Nevertheless, the mechanisms underlying the comorbidity and distinction between 

the two disorders remain unclear. In this study, taking advantage of the Autism Brain 

Imaging Data Exchange (ABIDE) and ADHD200 data set (http://

fcon_1000.projects.nitrc.org/indi/adhd200/), we investigated shared and distinct functional 

connectivity patterns in a relatively large sample of boys (7–15 years old) with ADHD, 

ASD, and TD matched by age, gender, and IQ. For better functional alignment across 

subjects, the FreeSurfer image analysis suite was applied to generate a cortical surface for 

each subject 13. We hypothesized that 1) children with ASD and ADHD would be associated 

with altered functional connectivity compared to children with TD, and the altered patterns 

may be associated with symptoms of ASD and ADHD; and 2) machine learning techniques 

could be used to identify distinct and common functional connectivity features for both ASD 

and ADHD.

MATERIALS AND METHODS

Subject sample

We used an independent sample of individuals with ASD and individuals with TD from the 

Autism Brain Imaging Data Exchange (ABIDE) and individuals with ADHD from the 

ADHD200 data set (http://fcon_1000.projects.nitrc.org/indi/adhd200/). The inclusion criteria 

were as follows: i) full scale IQ (F-IQ) scores >80; ii) aged between 7 and 15 years to 

Jung et al. Page 2

Br J Psychiatry. Author manuscript; available in PMC 2020 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://fcon_1000.projects.nitrc.org/indi/adhd200/
http://fcon_1000.projects.nitrc.org/indi/adhd200/
http://fcon_1000.projects.nitrc.org/indi/adhd200/


minimize potential developmental effects 14; iii) scanned in a 3T MRI scanner to increase 

between-site reliability 15; iv) right-handed; v) diagnosis of ASD based on DSM-IV-TR and 

assessed with the Autism Diagnostic Observation Schedule (ADOS), the Autism Diagnostic 

Interview–Revised (ADI-R), or both; vi) children with ASD do not have comorbid ADHD 

and children with ADHD do not have comorbid ASD; vii) diagnosis of ADHD based on 

DSM-IV-TR without Axis I disorders. In total, 294 participants fit the above criteria and 

were included in the present study. Fifty-five children with ASD (65%), sixty-one children 

with ADHD (73%), and all children with TD were psychotropic medication-naıve. Among 

children with ADHD, 44 met criteria for combined type ADHD, 3 met criteria for 

hyperactive/impulsive type ADHD, and 36 met criteria for predominantly inattentive type 

ADHD. Each site was required to confirm that their local Institutional Review Board (IRB) 

or ethics committee had approved both the initial data collection and sharing the datasets. 

Details of site-specific protocols, informed consent, and ethical approval at the time of the 

scan for each data set can be found at http://fcon_1000.projects.nitrc.org.

Data preprocessing

Anatomical image data were processed using FreeSurfer, version 5.3.0 software package 

(http://surfer.nmr.mgh.harvard.edu/) 16. To increase anatomical validation cross individuals 

with ADHD, ASD, and TD, FreeSurfer was used for segmentation of subcortical structures 

and automatic tessellation of the cortical surface because cortical surface variability is 

considerably improved by segmentation. The preprocessing of anatomical data was as 

follows: 1) motion correction and non-uniformity correction, 2) automatic Talairach 

transformation, 3) intensity normalization, 4) skull strip and segmentation of the subcortical 

white matter and gray matter, 5) tessellation of the white matter and gray matter, 6) surface 

smoothing and inflation, 7) topology correction, and 8) parcellation. Automated 

segmentation and parcellation results were reviewed for quality and corrected by two trained 

experts (authors MJ and WS) as necessary.

Resting-state fMRI data sets were processed with the CONN functional connectivity toolbox 

(http://www.nitrc.org/projects/conn) 17. Preprocessing involved 1) realignment to the mean 

image, 2) removal of volumes with a mean intensity >1.5% of the mean global signal or 

0.5mm/TR framewise displacement to reduce the effect of head movement, 3) CompCor 

correction to reduce physiological and other noise artifacts 18, 4) entering segmented CSF 

and white matter as confounding regressors at the subject- level in FreeSurfer, and 5) band-

pass filtering of the functional image (0.01–0.08 Hz).

ROIs and Connectivity analysis

We used 162 ROIs adopted from the Desikan–Killiany parcellation atlas by FreeSurfer 19 

(Supplementary Table 1, Supplementary Figure 1). Mean time series were obtained for each 

subject by averaging the fMRI time series over all voxels in each of the 162 ROIs. 

Functional connectivity was estimated based on these regional mean time series by 

calculating the pairwise Pearson correlation coefficient between all possible 

(162×161/2=13041) ROI pairs. A symmetric connectivity matrix was constructed to 

represent these connections. Correlation coefficients were Fisher z-transformed to increase 

normality for statistical analyses.
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Classification Analysis: Discriminating TD, ASD, and ADHD

To investigate diagnostic features between ADHD and ASD, a feature selection approach 

combining a univariate t-test and multivariate support vector machine- recursive feature 

elimination (SVM-RFE) was performed 20. To avoid the risk of overfitting, all analyses were 

performed using 10-fold cross validation21.

In the first step, we analyzed group-level differences of features between groups. Significant 

differences for each pair of ROIs were assessed using a mass univariate two sample t-test 

with a threshold of P < 0.001 and false discovery rate (FDR) correction. Features showing 

significant difference were retained for the remaining analyses. Our logic was that these 

features would be the most likely to contribute to the discrimination between groups.

In the second step, we used SVM-RFE to select the features with the most discriminative 

power for the classifier itself. SVM-RFE was used to train the classification model and 

obtain weights for each feature. The features were ranked according to the absolute values of 

weights, and the lowest ranking feature was discarded. Then the classification model was 

trained using the new feature set (i.e. without the discarded feature). This procedure was 

repeatedly performed until the feature set was empty. We conducted a full backward 

elimination procedure to further select the features with the highest classification accuracy. 

Since we used a 10-fold cross validation strategy to estimate the performance of the 

classifiers and feature ranking and each iteration was based on a slightly different dataset, 

the selected feature sets differed slightly from iteration to iteration.

To determine the most discriminative features, a consensus discrimination map which 

aggregated features selected in all cross validation iterations was used. Regional weight, 

which represents the contribution of each feature for discriminating different groups, was 

denoted by the number of ROI occurrences in the consensus discrimination map 22. The 

discriminative power of each feature was denoted by the average of its classification weights 

across all iterations. We conducted linear regression analyses of group-level differences to 

select features based on SVM-RFE and core symptom severity in ASD (total SRS scores), 

adjusting for data collection site, FIQ, and age using SPSS. Regression analyses were 

corrected for multiple comparisons using FDR correction (p<0.05).

Features with the most discriminative power were fed to an SVM with a linear kernel, which 

was implemented using LIBSVM. The classification (ASD vs. TD; ADHD vs. TD; ADHD 

vs. ASD) was also based on 10-fold cross validation, and the performance of the classifier 

was evaluated by accuracy, sensitivity, and specificity. Nonparametric permutation tests 

(1000 times) were used to estimate the statistical significance of the observed classification 

accuracy. We randomly permuted the class labels of the data prior to training. Cross 

validation was then performed on the permuted dataset and the procedure was repeated 1000 

times. If the classifier trained on real class labels had an accuracy exceeding the 95% 

confidence interval generated from the accuracies of the classifiers trained on randomly 

relabeled class labels, this classifier was considered to be well-performing.
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RESULTS

Demographic and Clinical Characteristics

294 subjects (86 boys with ASD, 83 boys with ADHD, and 125 boys with TD) were 

included in the study. There were no significant differences between the three groups for 

FIQ (p=0.51) and age (p=0.26). Demographic and clinical characteristics for all participants 

included in the analyses are presented in Table 1. There was a significant difference between 

ASD and TD groups for SRS total scores (p<0.001).

Diagnostic features of ROI-to-ROI functional connectivity analysis

Comparison of the TD and ASD groups showed 72 ROI-to-ROI increased connectivities in 

the ASD group compared to the TD group (Figure 1). The ASD group showed increased 

connectivity in brain areas associated with the limbic, visual, default mode, somatomotor, 

dorsal attention, frontoparietal, and ventral attention networks. The TD group only showed 9 

ROI-to-ROI increased connectivities in brain areas associated with the visual, default mode, 

dorsal attention, frontoparietal, and ventral attention networks. The classification accuracy of 

discriminating TD from ASD was 76.3% (p < 0.001; see Table 2).

Comparison of the TD and ADHD groups showed 8 ROI-to-ROI increased connectivities in 

the ADHD group compared to the TD group (Figure 2). Specifically, the ADHD group 

showed increased connectivity in brain areas associated with the limbic, ventral attention, 

visual, and default mode networks. In addition, the TD group showed 2 ROI-to-ROI 

increased connectivities in brain areas associated with the default mode and visual networks. 

The classification accuracy of discriminating TD from ADHD was 84.1% (p < 0.001; see 

Table 2).

Comparison of the ASD and ADHD groups showed 9 ROI-to-ROI increased connectivities 

in the ADHD group compared to the ASD group (Supplementary Figure 2). Specifically, the 

ADHD group showed increased functional connectivity between brain regions associated 

with the limbic, visual, default mode, somatomotor, dorsal attention, frontoparietal, ventral 

attention networks. In addition, we found that the ASD group showed increased functional 

connectivity in the left middle occipital sulcus and right precentral sulcus associated with the 

somatomotor and dorsal attention networks. The classification accuracy of discriminating 

ADHD from ASD was 79.3% (p < 0.001; see Table 2).

Association between functional connectivity and core symptom severity

Regression analysis showed a positive association between increased connectivity in the 

ASD group compared to the TD group and SRS scores, specifically 1) with the right insula 

and post transverse collateral sulcus functional connectivity (p = 0.0004, p = 0.01 FDR 

corrected; r = 0.376) and 2) with the right orbital gyrus and right horizontal ramus of the 

lateral sulcus functional connectivity (p = 0.0076, p = 0.025 FDR corrected; r = 0.309) 

(Supplementary Figure 3, Supplementary Table 2).
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Discussion

In this study, we investigated shared and distinct patterns of dysconnectivity in boys with 

ASD and ADHD. We found that 1) children with ASD showed increased functional 

connectivity compared to children with TD, and children with ADHD showed increased 

functional connectivity compared to children with ASD and children with TD; and 2) 

machine learning approaches can discriminate ASD and ADHD with accuracies of 76.3% 

(ASD from TD), 84.1% (ADHD from TD) and 79.6% (ADHD from ASD). Our results may 

deepen our understanding of the neurophysiological mechanisms underlying the comorbidity 

and distinction between ADHD and ASD.

Our findings of increased functional connectivity patterns within the limbic regions and the 

somatomotor network in ASD compared to TD are consistent with previous studies 12. For 

instance, Cerliani and colleagues found increased functional connectivity in the limbic area 

and sensory-motor area in male ASD patients12. Likewise, the DSM-5 manual also includes 

abnormal responses to sensory stimulation as a diagnostic criterion of ASD. Our results 

suggest that increased functional connectivity in the limbic and sensory-motor areas might 

reflect this abnormal response. The finding of increased functional connectivity patterns in 

children with ADHD compared to TD is also consistent with previous studies of ADHD 6. 

Studies have suggested that the default network and limbic area are associated with 

regulation of attention 23, self-cognition 24, and external cognition 25. We thus speculate that 

increased functional connectivity may underlie impairments in “sharing attention with other 

people,” which is a core symptom of ADHD.

We also found increased functional connectivity in the frontal lobe, temporal lobe, occipital 

lobe, parietal lobes, frontoparietal network, and ventral attention network in the ADHD 

group compared to the TD group. Rubia et al. found that temporal lobe and parietal lobe 

dysfunction in boys with ADHD during an attention allocation task is associated with 

symptoms of ADHD 26. We believe that abnormal functional connectivity in the temporal 

lobe and parietal lobe might disrupt or delay maturation of the regulation of attention in 

ADHD.

Nonetheless, our findings are inconsistent with other studies indicating that the ADHD 

cohort showed decreased functional connectivity in the posterior cingulate cortex 7 and 

increased functional connectivity within frontal regions of the executive control network8 as 

compared to the TD cohort. These conflicting findings may be due to inconsistent 

methodologies or variability in the ADHD sample population. For instance, Kyeong et al.7 

used graph theory analysis to estimate degree centrality in the stratifying ADHD subgroups 

with mild symptom ADHD and severe symptom ADHD. Francx et al. 8 used independent 

component analysis to detect components or networks in the persistent ADHD subgroups 

and remittent ADHD subgroups. These discrepancies illustrate the importance of 

methodology and clinical subgroup differences during the interpretation of neuroimaging 

study findings.

We found that children with ASD showed increased functional connectivity between the left 

middle occipital sulcus and right precentral sulcus compared to ADHD. The occipital lobe 
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and parietal lobe are involved in communication processing, including emotion perception 27 

and face discrimination 28, as well as the pathophysiology of autism 29. A previous study 

indicated that ASD involves a different cognitive process during social interactions 30. We 

speculate that this may be due to the increased functional connectivity between the occipital 

and parietal lobes compared to ADHD and TD. These results may provide an explanation 

for the altered communication processing at the neural level in individuals with ASD.

Our machine-learning algorithms confirmed common classification features between ASD 

and ADHD in the limbic, ventral attention, visual, and default mode networks. This finding 

is consistent with previous studies that found abnormal functional connectivity in these 

networks in both ASD and ADHD5,6,31. Recent studies indicate that ADHD may be 

associated with difficulties in social interaction32. Symptoms of ADHD (e.g., attention 

deficits, impulse control, hyper-activity) are also frequently observed in ASD, demonstrating 

that the two disorders share some common manifestations. Taken together, the common 

classification features between ASD and ADHD may reflect shared neural mechanisms and 

clinical manifestations in the two disorders.

Translational neuroimaging studies have provided a basis for identifying neurophysiological 

features of ASD and showed potential clinical utility 33. Specifically, advanced machine 

learning techniques have been introduced to extract meaningful features from neuroimaging 

data and subsequently make an objective diagnosis for ASD. Anderson and colleagues used 

univariate t-tests to exclude irrelevant FCs and achieved an accuracy of 79%. Nielsen et al. 

used a leave-one-out classifier with a general linear model on the multisite ABIDE dataset 

and obtained accuracies of up to 60% for different sites.

More recently, Yahata and his colleagues developed a machine learning algorithm 

combining L1-regularized sparse canonical correlation analysis and sparse logistic 

regression for selecting a subset of FCs to obtain a classification accuracy of around 85% in 

a Japanese dataset, but generalization for independent cohorts using two independent 

validation cohorts obtained from the ABIDE dataset showed lower accuracy (75%). In the 

present study, we combined univariate t-tests and multivariate SVM-RFE to identify the 

most discriminative features between ASD, ADHD, and TD using 7 independent cohorts 

and obtained accuracies of 76.3% between TD and ASD, 84.1% between TD and ADHD, 

and 79.1% between ASD and ADHD. Our results demonstrated that a classifier developed 

using surface-based functional connectivity also showed high classification for ASD and 

ADHD across other independent cohorts.

We found that the increased functional connectivity in the right insula and right orbital 

cortex was associated with SRS scores. Functional and structural imaging studies of ASD 

have identified abnormalities in the insula, explaining the emotion dysregulation and social 

avoidance symptoms of ASD34,35. The orbital cortex, a critical brain region in social 

cognition, has been associated with high levels of autistic traits36. Taken together, these 

results suggest that atypical connectivity in the insula and orbital cortex are related to 

emotion dysregulation and social cognition.
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There are several limitations in this study. First, our analyses were performed on boys with 

ASD who did not have comorbid ADHD and boys with ADHD who did not have comorbid 

ASD. Yet, we did not have ADHD symptom scores of subjects with ASD or ASD scores of 

subjects with ADHD. We thus cannot exclude the possibility that the disorders were 

comorbid. Further research including both ASD and ADHD symptom scores is needed. 

Second, this study only included boys with TD, ASD, and ADHD; thus, the results may not 

be generalizable to girls. Future studies including both boys and girls with ASD and ADHD 

are needed.

In summary, we found that boys with ASD are associated with increased functional 

connectivity in the limbic area, while boys with ADHD are associated with increased 

functional connectivity in the frontal and temporal areas. Machine learning-derived 

classification methods hold the potential to uncover neuroimaging biomarkers for ASD and 

ADHD.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
ROI-to-ROI functional connectivity analysis between TD and ASD. The ASD group showed 

predominantly higher connectivity than the TD group. Colored circles indicate brain regions. 

Colored lines indicate networks.
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Figure 2. 
ROI-to-ROI functional connectivity analysis between TD and ADHD. The ADHD group 

showed predominantly higher connectivity than the TD group. Colored circles indicate brain 

regions. Colored lines indicate networks.
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