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Abstract

Integrative clustering is a clustering approach for multiple datasets, which provide different views 

of a common group of subjects. It enables analyzing multi-omics data jointly to, for example, 

identify the subtypes of diseases, cells, and so on, capturing the complex underlying biological 

processes more precisely. On the other hand, there has been a great deal of interest in 

incorporating the prior structural knowledge on the features into statistical analyses over the past 

decade. The knowledge on the gene regulatory network (pathways) can potentially be incorporated 

into many genomic studies.

In this paper, we propose a novel integrative clustering method which can incorporate the prior 

graph knowledge. We first develop a generalized Bayesian factor analysis (GBFA) framework, a 

sparse Bayesian factor analysis which can take into account the graph information. Our GBFA 

framework employs the spike and slab lasso (SSL) prior to impose sparsity on the factor loadings 

and the Markov random field (MRF) prior to encourage smoothing over the adjacent factor 

loadings, which establishes a unified shrinkage adaptive to the loading size and the graph 

structure. Then, we use the framework to extend iCluster+, a factor analysis based integrative 

clustering approach. A novel variational EM algorithm is proposed to efficiently estimate the MAP 

estimator for the factor loadings. Extensive simulation studies and the application to the NCI60 

cell line dataset demonstrate that the propose method is superior and delivers more biologically 

meaningful outcomes.
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I. Introduction

Rapid advances in technologies have led to the generation of massive amounts of multi-

omics data. This has led to a great deal of interest in the integrative analysis of multiple 

datasets. As the multiple datasets provide information on the subjects and/or the features 

from many different perspectives, the integrative analysis can help us better understand 

complex biological underpinnings of many diseases and health problems.

Integrative clustering is the integrative analysis approach that aims to cluster the subjects 

from which multiple datasets have been gathered. By capturing the underlying biological 

variants governing the variations of all datasets, we are able to obtain more accurate 

subtyping, uncover new disease subtypes, understand disease progression, or develop 

tailored treatment and personalized medicine. For example, while the classification of 

cancers is typically based on the tissue/cell-type origin and pathogens [1], the biological 

mechanism of diseases actually builds upon several biological molecular processes [2]. By 

aggregating the information of the molecular processes at different levels, the integrative 

clustering can identify new disease subtypes whose clinical outcomes are distinct from the 

traditional cancer subtypes [3, 4] and help us understand better the survival and mortality 

risk differences.

Several approaches for integrative clustering have been proposed and applied to multi-omics 

data [1]. Many approaches are based on the low-rank matrix factorization such as the 

nonnegative matrix factorization [5] and the factor analysis [6, 7, 4]. Kim et al. [8] utilizes 

the hierarchical structure among the multi-omics data. Kiselev et al. [9] applies the 

consensus clustering approach to the single-cell RNA-seq data. Shen et al. [6] introduces 

iCluster, which is a Bayesian factor analysis based integrative clustering approach. In the 

framework of iCluster, the low-dimensional latent factors are assumed to carry sufficient 

information about the underlying biological variations among the subjects, and the posterior 

distribution of the latent factors are considered much less noisy and more reliable than the 

original data. Therefore, they perform the K-means clustering on the posterior mean of the 

latent factors, which are imputed by the EM algorithm. iCluster+ [4] extends iCluster 

allowing for dealing with more data types such as binary and Poisson in addition to 

Gaussian. Mo et al. [10] proposes the full Bayesian approach of iCluster.

On the other hand, many techniques of incorporating biological structural information have 

been developed over the past decade. It is well-known that gene expressions are governed by 

the gene regulatory network (GRN), which includes various pathways. A gene pathway can 

be represented by a directed acyclic graph (DAG) where the nodes represent pathway 

members (genes) and the edges represent production dependencies between the gene pairs. 

The knowledge on such graphical structure of genes can potentially improve statistical 

analyses of gene expression data, and is constantly growing fed by various data sources [11]. 

Some pathway databases are publicly available [12].

The existing statistical approaches capable of incorporating graph information include Li 

and Li [13] and Pan et al.[14], which propose network-based penalties from the frequentist 

perspectives. In the Bayesian framework, Li and Zhang [15] and Stingo et al. [16] use the 
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spike and slab prior in combination with the Markov random field (MRF) prior. Chang et al. 

[17] and Rockova and Lesaffre [18] incorporate graph information by smoothing shrinkage 

parameters under Bayesian lasso framework. The basic principle behind these works is that 

the penalties or the shrinkage priors encourage group-wise selection of features that are 

adjacent on the graph structure or belong to a same pathway. In addition to the biological 

qualitative motivation offered by the GRN, Yu and Liu [19] provides a quantitative 

justification of the group-wise selection. However, all of the aforementioned approaches are 

developed for the regression framework. For clustering, we note that the PARADIGM [20] 

uses the pathway level activities instead of the individual gene expression data, but no 

clustering method has been proposed to utilize the pathway graph information, to the best of 

our knowledge.

In this paper, we propose a novel integrative clustering method that can incorporate the 

graph information. We first build the generalized Bayesian factor analysis (GBFA) 

framework, and use the framework to extend iCluster+ [4]. Our GBFA framework employs 

the spike and slab lasso (SSL) prior to impose sparsity on factor loadings and the MRF prior 

[15] or the Ising prior to incorporate network information. The combination of the SSL and 

MRF (or Ising) priors achieves doubly adaptive L1 shrinkage on factor loadings; the level of 

shrinkage is adaptive to the corresponding loading size and its neighboring shrinkage levels. 

The adaptivity to loading sizes alleviates the bias caused by the L1 shrinkage and the 

adaptivity to neighboring shrinkage parameters encourages the group-wise selection among 

the adjacent factor loadings, which are the first innovation of our work. Plus, the SSL prior 

allows the Maximum a Posteriori (MAP) estimates of the factor loadings to attain exact 

zeros unlike the traditional spike and slab Gaussian prior. This leads to more accurate 

estimation of other parameters involving the latent factors, which the subsequent clustering 

procedure will be based on.

Similar approaches have been proposed by Klami et al. [21], Virtanen et al. [22], which they 

call the group factor analysis. Note that, while their approaches incorporate the group 

membership information, our GBFA takes into account the network graph information, 

which contains finer interaction knowledge beyond the membership. Also, while their 

approaches can deal with continuous variables only, our GBFA can support multiple data 

types including discrete variables such as binomial, negative binomial, and Poisson. This is 

the second innovation of our work.

The third innovation is that we propose an efficient variational EM algorithm for the MAP 

estimator of the factor loadings, where the posterior mean and covariance of the latent 

factors are imputed by minimizing the Kullback-Leibler divergence to the original posterior 

distribution. Owing to the latent variable augmentation [23], all relevant expectations are 

completely tractable, and therefore we can avoid the Monte Carlo approximation used in [4]. 

The imputed posterior mean of the latent factors are then used for clustering via the K-

means clustering method.

The paper is organized as follows. In the following section, we propose the GBFA 

framework and the integrative clustering method. Section III presents the variational EM 

algorithm. Extensive simulation studies are conducted in Section IV, followed by the 
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application to the NCI60 dataset in Section V. Section VI includes conclusions and 

discussion.

II. Methodology

In this section, we first establishes the generalized Bayesian factor analysis framework. 

Then, we propose an integrative clustering algorithm based on the GBFA framework.

A. Notation

Vectors are denoted by bold and lowercase letters. Matrices are denoted by uppercase letters 

if not greek. For a p × n matrix A, aji stands for the (j, i) entry of A, ai = (a1i,..., api)T stands 

for the i-th column vector of A, and ãj = (aj1,..., ajn)T stands for the j-th row vector of A. For 

a vector b, bi stands for the i-th element of b and Db denotes the diagonal matrix diag(b).

B. Generalized Bayesian Factor Analysis Framework

Suppose we have H multi-modal data generated from various technologies, say X1, ..., XH, 

each of which is a ph × n matrix for 1 ≤ h ≤ H where n is the sample size. Let X be their 

vertical concatenate, which is of size p × n where p = ∑h = 1
H ph.

X =
X1

⋮

XH
∈ ℝp × n .

Let zi be the L-dimensional latent factor for the i-th subject and w̃j be the factor loadings for 

the j-th feature. Let μ = m1T + WZ where m is the location vector, Z = [z1,...,zn] ∈ ℝL×n be 

the latent factor matrix, and W = [w ̃1,..., w̃p]T ∈ ℝp×L be the factor loading matrix. GBFA 

assumes that the distribution of X is governed by the parameter matrix μ, which takes a low-

rank representation, i.e., L ≪ p.

Suppose {xji}1≤i≤n belong to the same distribution family and the distribution of X, 

parameterized by μ, has the following form of likelihood.

π(X ∣ μ) = ∏
j

∏
i

π j(x ji ∣ μ ji),

where πj is the density function for the j-th distribution family.

Note that it is critical to support various and heterogeneous data types in accommodating 

multi-omics data. Our framework allows for analyzing heterogeneous data types including 

binomial, negative binomial, Poisson, and Gaussian distributions, and is more flexible than 

iCluster+ [4], which admits Bernoulli, Poisson, and Gaussian distributions only. Suppose 

{xji}1≤i≤n follow the binomial distribution with parameters nj and pji. We use the logit link 

function for pji and the likelihood is given by
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π j(x ji ∣ μ ji) =
n j

x ji

e
μ jix ji

(1 + e
μ ji)

n j
, 0 ≤ x ji ≤ n j . (1)

If {xji}1≤i≤n follow the negative binomial distribution with parameters rj and pji, for which 

we use the logit link function, the likelihood is given by

π j(x ji ∣ μ ji) =
r j + x ji − 1

x ji

e
μ jix ji

(1 + e
μ ji)

r j + x ji
, x ji ≥ 0 . (2)

If {xji}1≤i≤n follow the Poisson distribution with mean eμji, the likelihood is given as follows.

π j(x ji ∣ μ ji) = e−e
μ jie

μ jix ji

x ji!
, x ji ≥ 0 . (3)

If {xji}1≤i≤n follow the Gaussian distribution with mean μji and precision ρj, we have the 

likelihood as follows.

π j(x ji ∣ μ ji) =
ρ j

1 2

2π
e
−ρ j(x ji − μ ji)

2 2
, x ji ∈ ℝ .

Binomial, negative binomial, and Gaussian distributions have extra parameters nj, rj, and ρj, 

respectively. The parameters nj and rj must be provided with the data. We assign the gamma 

distribution 𝒢 ζ j/2, ζ j/2  as the prior for ρj. A typical choice for ϛj is 1, which gives the most 

uninformative prior. We marginalize out ρj and the actual (marginal) distribution of xji 

becomes the Student t-distribution.

Of note, the Bernoulli distribution is a special case of the binomial distribution with nj = 1 

and the geometric distribution is a special case of the negative binomial distribution with rj = 

1 .

C. Priors for W and Z

We consider the L1 shrinkage spike and slab prior on W,

log π(W ∣ γ) = C + ∑
j, l

log λ jl − ∑
j, l

λ jl ∣ w jl ∣ ,
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where λjl = (1 − γjl)λ0+γjlλ1 with 0 ≤ λ1 < λ0 and γjl is a binary variable indicating 

nonzero-ness of wjl. This spike and slab lasso (SSL) prior, which has been introduced in [24, 

25], administers two levels of shrinkage depending on the size of loadings. If |wjl| is close to 

zero, γjl turns off and triggers higher level of shrinkage λ0 for wjl. Conversely, if |wjl| is far 

from zero, γjl turns on and wjl receives lower level of shrinkage λ1. Furthermore, combined 

with EM algorithm, the SSL prior imposes continuously adaptive shrinkage on wjl, as 

elaborated in Section III.

An important advantage of SSL prior against the traditional spike and slab Gaussian prior 

[26] is that the elements in the MAP estimator Ŵ can take exact zero values. Having exact 

zero values for true zeros in W leads to more accurate estimation of other parameters 

including the ones related to the latent factors Z. As the clustering algorithm, presented in 

Section II-E, is based on the posterior mean of Z, it makes a crucial improvement.

Following the standard orthonormality assumption on the latent factors, we assign the 

standard Gaussian prior for Z.

log π(Z) = C − 1
2 ∑

l, i
zli
2 .

D. Prior for γ: Incorporating Network Information

Suppose the graphs Gh = ⟨Ph,Eh⟩ are given where Ph = {1,...,ph} represents the set of 

variables in the h-th dataset and Eh is the set of edges among them, where the presence of 

edge indicates the correlation between the relevant pair of variables. We incorporate this 

network information into the generalized factor analysis framework by encouraging to match 

the correlation structure. Since Xh are vertically concatenated, we first combine H graphs 

into a single graph G = ⟨P,E⟩ by setting P = {1, ...,p} and E = {(ι(h,j),ι(h,k)) : (j, k) ∈ Eh, 1 

≤ h ≤ H} where ι(h,j) is the index in the matrix X of the j-th variable in the h-th dataset. Let 

G be the adjacency matrix for G.

Consider two Gaussian variables xj and xk. Note that, under the assumption that the latent 

factors zli are independent with zero mean and unit variance, the covariance of xj and xk 

given W is as follows.

Cov(x j, xk) = ∑
l

w jlwkl .

This implies that, in order for xj and xk to be correlated, they must load at least one common 

factor. This argument easily extends to non-Gaussian variables as well. If the latent factors 

are independent, the only way a pair of variables can be correlated is that they must load at 

least one common factor.

Therefore, it is reasonable to encourage the pairs of adjacent variables to share common 

factors. If one variable loads any factor, its adjacent variables are encouraged to load the 
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factor as well. In other words, if xj and xk are adjacent in G and if wjl ≠ 0 for some l, then we 

promote wkl ≠ 0.

To this end, we employ the Markov random field (MRF) prior, as introduced in Li and 

Zhang [15].

log π(γ) = Cδ, η − δ∑
j, l

γ jl + η ∑
j, k, l

G jkγ jlγkl, (4)

where δ is the parameter that controls of the sparsity of factor loadings. The MRF prior 

helps achieve our goal because γkl = 1 is encouraged if γjl = 1 and vice versa, when xj and 

xk are adjacent (Gjk = 1). Here, η ≥ 0 is the smoothing parameter that controls the strength 

of the encouragement.

We also propose using the Ising prior for γjl as follows.

log π(γ) = Cδ, η − δ∑
j, l

γ jl + η ∑
j, k, l

G jk𝕀(γ jl = γkl) . (5)

The key difference between (4) and (5) is that the former encourages γjl = γkl = 1 only while 

the latter promotes γjl = γkl. The two-way smoothing in (5) can enhance specificity 

depending on the specified graph structure.

E. Clustering

In the GBFA framework, the high-dimensional data matrix X is represented by the low-rank 

parameter matrix μ. In particular, the low-dimensional latent factors Z are shared by all data 

sets and assumed to capture all biological variations among the subjects. Since Z is not 

observed, we retrieves the cluster membership based on the posterior mean (Z|X). When 

the model assumptions are true, (Z|X) is considered much less noisy and more reliable than 

the original data matrix X. In Section III, we develop the variational EM algorithm, where 

(Z|X) is approximated by μZ. We then conduct the K-means clustering on the estimate of μZ 

to retrieve the membership of clusters. We call the resulting clustering method GBFA_CL.

III. Computation

We propose the Maximum A Posteriori (MAP) estimator for W marginalizing Z and γ out. 

Unfortunately, the classical EM approach involves an intractable conditional expectation of 

the loglikelihood. To address the problem, we use the latent variable augmentation technique 

and the variational EM approach. For binomial and negative binomial likelihood functions, 

we use the following identity [23].

e
μ jix ji

(1 + e
μ ji)

b ji
= 2

−b jie
κ jiμ ji∫0

∞
e
−ρ jiμ ji

2 2
π ji(ρ ji)dρ ji,
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where kji = xji − bji/2 and πji(ρji) is the density of the Polya-Gamma class 𝒫𝒢 b ji, 0 . 

Applying this identity to (1), (2), and (3) offers a unified form of likelihood for Gaussian, 

binomial, and negative binomial variables as follows.

π j(x j, ρ j ∣ μ j) ∝ e
− 1

2 ∑ iρ ji(μ ji − ψ ji)
2 + ∑ iκ jiμ jiπ j

∗(ρ j), (6)

where the unknown components are summarized in Table I. There is no ρji associated with a 

Poisson variable xji. But, for succinct notations, we use π j(x j, ρ j ∣ μ j) = π j(x j ∣ μ j)π j
∗(ρ j) with 

any π j
∗. Then, the full likelihood can be written as

π(γ, ρ, W , Z, X ∣ m) = π(W ∣ γ)π(γ)π(Z)∏
j

π j(x j, ρ j ∣ μ j) .

A. Variational EM Algorithm

Let π̃(·) be a measure on γ, ρ, and Z and 𝔼( ⋅ ) denotes the expectation with respect to π̃. The 

EM algorithm yields the MAP estimator by maximizing

Q m, W , π = 𝔼 log π γ, ρ, W , Z, X ∣ m − 𝔼 log π γ, ρ, Z ,

which is maximized when π̃(·) = π(·|m, W, X) and Q(m, W, π̃) = log π(W, X|m).

Unfortunately, there is no analytic solution to the conditional expectations involving γ, ρ, 

and Z given W. Therefore, we use the variational EM approach [27], which limits the 

domain of π̃ within tractable. We consider a product measure on individual γjl;, ρ, and Z. 

Let π̂(γ, ρ, Z) = π̂(γ)π̂(ρ)π̂(Z) where

π(γ) = ∏
j, l

θ jl
γ jl(1 − θ jl)

1 − γ jl,

π(ρ) ∝ ∏
j

e
− 1

2 ∑ iρ jiφ ji
2

π j
∗(ρ j),

π(Z) ∝ ∏
i

e
− 1

2(zi − μz, i)
TΣz, i

−1(zi − μz, i),

and 𝔼̂ be the expectation operator under π̂. Note that {ρji}1≤i≤n associated with a Poisson 

variables xj are completely independent, for which we freely fix φji = 0.

Then, our MAP estimator is obtained by maximizing the evidence lower bound (ELBO) 

with respect to m, W, θ, φ, and {μz,i, ∑z,i}1≤i≤n
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Q(m, W , θ, φ, {μz, i, Σz, i}i = 1
n ) = 𝔼 log π(γ, ρ, W , Z, X ∣ m)

−𝔼 log π(γ) − 𝔼 logπ(ρ) − 𝔼 log π(Z),
(7)

which lower-bounds the log evidence log π(W, X |m).

Each of E- and M-steps will be detailed in the following sections. A single iteration of our 

EM algorithm takes O(npL2 + eL) time complexity where e = |E| is the number of edges in 

the graph, assuming L ≪ min(p, n). The EM approach has an advantage over MCMC in that 

the number of iterations that EM algorithm requires is generally much smaller than the 

number of samples that MCMC needs. It is worth noting that E-step for Z and M-step for W 
are the bottleneck but can be obviously parallelized. Finally, we note that any coordinate 

ascent algorithm would be inappropriate because the objective function is not concave and 

the solution will depend on the order of the variables.

B. E-steps

E-steps optimize (7) with respect to the parameters of π̂(Z), π̂(ρ), and π̂(γ), alternately.

1) E-step for γ: Let α jl = log
θ jl

1 − θ jl
. We make a quasi-Newton update for αl with 

backtracking line search for each l. As the Hessian matrix is huge if p is large, we make use 

of only the diagonal elements of the Hessian matrix following Becker and Le Cun [28]. This 

alleviates the gradient vanishing problem of the sigmoid (expit) function.

As alluded to in Section I, we can see that the SSL and MRF priors indeed achieve the 

doubly adaptive shrinkage for W. The KKT condition yields, for each αjl,

α jl = − δ + η∑
k

G jkθkl + log
λ1
λ0

− ∣ w jl ∣ (λ1 − λ0) . (8)

Section III-C1 and (8) show that L1 shrinkage for wjl depends on the loading size |wjl| and 

the shrinkage for adjacent loadings (θkl).
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2) E-step for ρ: For a non-Poisson variable xj, we have

φ ji
2 (m j + w j

Tμz, i − ψ ji)
2 + w j

TΣz, iw j .

For a non-Poisson discrete variable xj, we have by Poison et al. [23]

𝔼(ρ ji) =
b ji(e

φ ji − 1)

2φ ji(e
φ ji + 1)

, 1 ≤ i ≤ n,

with bji = nj if xj is a binomial variable and bji = xji + rj if xj is a negative binomial variable. 

For a Gaussian variable xj, we have

𝔼(ρ j) =
ζ j + n

ζ j + ∑iφ ji
2 .

3) E-step for Z: Exact solutions exist for μz,i and ∑z,i if there is no Poisson variable in 

data. For each i, we update

Σz, i (WT𝒟ρi
W + I)−1, μz, i Σz, iW

Tci, (9)

where C = κ + ρ○(ψ − m1T). Here, ○ denotes the Hadamard product.

The gradient ascent updates with backtracking line search are performed if at least one 

Poisson variable is included in data.

C. M-steps

M-steps optimize (7) with respect to W (and m jointly).

M-step for W: For a non-Poisson variable xj, we solve

w j argmin
w

1
2wT A jw − b j

Tw + ∑
l

𝔼(λ jl) ∣ wl ,

where 𝔼(λ jl) = θ jlλ1 + (1 − θ jl)λ0, and
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A j = −
d2𝔼 log π j(x j, ρ j ∣ μ j)

dw jdw j
T ,

b j = A jw j +
d𝔼 log π j(x j, ρ j ∣ μ j)

dw j
.

(10)

Note that Aj and bj do not depend on the current value of w̃j, and this is an adaptive lasso 

problem where the penalties are adaptive to both the corresponding loading sizes and the 

graph structure, as so are θjls. We use the DWL algorithm [29], which efficiently computes 

the exact solution. This guarantees the monotone increase of Q.

For a Poisson variable xj, w̃j cannot be solved by lasso. Instead, we use the proximal 

gradient ascent method.

2) M-step for m (jointly with W): If mj is fitted rather than fixed, we update mj and w̃j 
jointly. For a non-Poisson variable xj, we can update (mj, w̃j)T with extended Aj and bj as 

follows.

A j = −

d2𝔼 log π j(x j, ρ j ∣ μ j)

dm j
2

d2𝔼 log π j(x j, ρ j ∣ μ j)

dm jdw j
T

d2𝔼 log π j(x j, ρ j ∣ μ j)
dw jdm j

d2𝔼 log π j(x j, ρ j ∣ μ j)

dw jdw j
T

,

b j = A j

m j
w j

+

d𝔼 log π j(x j, ρ j ∣ μ j)
dm j

d𝔼 log π j(x j, ρ j ∣ μ j)
dw j

.

Note that mj receives no shrinkage. Again, for a Poisson variable xj, w̃j cannot be solved by 

lasso. Instead, we use the proximal gradient ascent method.

D. Initialization

Let Y be a matrix approximating μ, which is defined as
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y ji =

x ji, if x j is Gaussian,

logit
x ji + 1
n j + 2 , if x j is binomial,

logit
x ji + 1

r j + x ji + 2 , if x j is negative binomial,

log(x ji ∨ 1 2), if x j is Poisson .

For the location mj, one can choose the (trimmed) mean of ỹ j, the median of ỹ j, or any 

fixed vector. One way to initialize W would be the (reduced) singular value decomposition 

of Y − m1T = U DVT and W = U D. We initialize φji = 0 and θjl = 0.5. The algorithm is 

summarized in Algorithm 1.

IV. Simulation Study

We conduct simulation study to evaluate performance of our proposed method. We compare 

its performance to other methods; the K-means clustering applied to separate and 

concatenated data, and iCluster+ [4].

A. Simulation Design

We generate 100 Monte Carlo datasets. For each dataset, we generate H = 3 data matrices 

mimicking multi-omics data, each of which has p1 = p2 = p3 = 300 features of homogeneous 

data types varying with h. For each h, we have μh = mh1T + WhZ where μh ∈ ℝPh×n, mh ∈ 
ℝPh×1, Wh ∈ ℝPh×L, and Z ∈ ℝL×n.

We have L = 3 latent factors. The true loading matrix Wh is generated as follows.

w jl
1 =

𝒰(1.5, 2.5), if {l = 1, j = 1, …, 20},
or {l = 2, j = 281, …, 300},

0, otherwise,

w jl
2 =

𝒰(1.5, 2.5), if {l = 1, j = 281, …, 300},
or {l = 3, j = 1, …, 20},

0, otherwise,

w jl
3 =

𝒰(1.5, 2.5), if {l = 2, j = 1, …, 20},
or {l = 3, j = 281, …, 300},

0, otherwise,

where U stands for the uniform distribution. All nonzero entries of Wh flip their signs with 

probability 1/2. Figure 1 illustrates the form of W.

We consider two cases for the true number of clusters; K = 4 and K = 6. When K = 4, there 

are n = 160 subjects. When K = 6, there are n = 180 subjects. All subjects are grouped to 

into K equally sized disjoint clusters. If the i-th subject belongs to k-th cluster, the latent 

factor for the i-th subject is generated as follows.

zi = νk + σz × 𝒩(0, I),
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where, when K = 4, we use σz = 0.3 and

ν1 = (1 2, 1 2, 0)T , ν2 = (1 2, − 1 2, 0)T ,

ν3 = ( − 1 2, 0, 1 2)T , ν4 = ( − 1 2, 0, − 1 2)T ,

and when K = 6, we use σz = 0.2 and

ν1 = (1 2, 0, 0)T , ν2 = ( − 1 2, 0, 0)T ,

ν3 = (0, 1 2, 0)T , ν4 = (0, − 1 2, 0)T ,

ν5 = (0, 0, 1 2)T , ν6 = (0, 0, − 1 2)T .

We consider three scenarios, each of which has a different combination of data types as 

described in Table II. Any Gaussian variable is sampled from 𝒩(μ ji
h , σe

2). When K = 4, we use 

σe = 3, and when K = 6, we use σe = 2. Any binary variable has the success probability 

p ji
h = 1 (1 + exp( − μ ji

h )). Any Poisson variable has the mean exp( − μ ji
h ) with m j

h = 2.5. For 

any binomial variable, the number of trial parameter nj is randomly selected between 1 and 

15 and the success probability is given by p ji
h = 1 (1 + exp( − μ ji

h )). We use m j
h = 0 for all 

data types except for Poisson.

In all three scenarios, we assume that every 20 consecutive genes in X1 and X2 form a 

pathway and we randomly generate 50 edges within each pathway.

B. Tuning Strategy and Performance Measure

To select the GBFA model, we use the Bayesian information criteria (BIC). We select the 

model that gives the minimum value of the BiC defined as follows.

BIC = − 2∑
h

lh(Xh, μh) + log(n) × df ,

where lh is the log-likelihood of h-th data and df is the number of nonzero elements in Ŵ.

For a given η, we select the tuning parameter combination (L, λ0, δ) that gives the minimum 

BIC value. In all simulations, we use the Ising prior for smoothing, and fix λ1 = λ0/5 and m 
at the trimmed mean of ỹ j (see Section III-D).

We conduct the K-means clustering on the estimated posterior mean μZ of the latent factors. 

To select the optimal number of clusters, there are several widely used methods such as the 

elbow method [30], the silhouette method [31], gap statistics [32], and so on. We use the 

silhouette analysis for our proposed method and the K-means clustering method.
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For iCluster+, we use the R package iClusterPlus and perform the most extensive search to 

choose the best tuning parameters and the best number of clusters K (and of latent factors L 
= K − 1), as suggested by [4].

In order to measure the similarity between the estimated clustering and the true clustering, 

we use the Jaccard index [33] and the Rand index [34], both of which have values between 0 

and 1. The higher the value is, the more similar the clusterings are.

C. Results

The summary of all simulation results is shown in Table III. In all aspects of performance 

measures, GBFA_CL outperforms other methods in all scenarios. In particular, the ability to 

choose the right number of clusters of the proposed method is by far superior to that of other 

methods.

GBFA_CL we obtains improved results when η ≠ 0 in general compared to when η = 0, 

which proves the usefulness of the ability to incorporate the network graph information in 

the GBFA framework. However, the observed improvement is subtle when the result is 

already very good without incorporation of the graph information.

Note that the concatenated K-means clustering is not necessarily better than the separate K-

means clusterings. In fact, we observe each separate K-means clustering works better in 

many cases. This is due to the fact that the errors are accumulated in the concatenated data, 

and suggests that a naïve concatenation of data is not a good practice of the integrative 

analysis. On the other hand, GBFA_CL and iCluster+ outperform the K-means clustering, 

which demonstrates the effectiveness of the low-dimensional factor analysis when the model 

assumptions are applicable.

It is surprising that GBFA_CL substantially outperforms iCluster+ even when the graph 

information is not incorporated. Our understanding is that it is largely owing to our 

variational EM algorithm being accurate and efficient. Of note, iCluster+ uses Monte Carlo 

Newton-Raphson type of algorithm due to intractability of the relevant expectations in the 

EM approach. Finally, we note that iCluster+ is not feasible in scenario 3 because it does not 

support binomial variables, while GBFA_CL works seamlessly.

V. Real Data Analysis

A. NCI60 Cell Line Data

The NCI60 is a panel of 60 diverse human cancer cell lines used by the Developmental 

Therapeutics Program (DTP) of the U.S. National Cancer Institute (NCI) to screen over 

100,000 chemical compounds and natural products. It consists of 9 kinds of cancerous cell 

lines; leukemia, melanomas, ovarian, renal, breast, prostate, colon, lung, and CNs origin. 

There are various -omics datasets available for those cell lines including gene expression 

data from various platforms, protein abundance data, and methylation data. We download 

three datasets from CellMiner [35], two of which are gene expression data and the other one 

is protein abundance data.
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The first data is a transcript profile data based on Affymetrix HG-U133 chips [36]. The 

second data is a mRNA expression data based on Agilent Whole Human Genome Oligo 

Microarray technology [37]. The last one is a proteomics profiling data using high-density 

reverse-phase lysate microarrays [38]. We use 59 cell line data consisting of 9 subgroups 

which are common to all three datasets. As a preprocessing [39], we select the top 5% of 

genes with high variance, which results in 491 genes in the affymetrix data, 488 genes in the 

agilent data, and 94 proteins in proteomics data.

We incorporate the pathway graph information from the Kyoto Encyclopedia of Genes and 

Genomes (KEGG) pathway database [40] in GBFA_CL. For the pathway enrichment data 

analysis, we use ToppGene Suite [41], a portal for the enrichment analysis.

B. Results

We apply GBFA_CL and iCluster+ to NCI60 data. Various combinations of tuning 

parameters are explored for both methods and the optimal model is selected in the same 

manner as in section IV.

We compare the estimated clusterings with the true cell line clustering. The results are 

shown in Table V. iCluster+ chooses L = 8 (and K = 9) and GBFA_CL chooses similarly 

between L = 8, 9 and K = 8, 9, 10. In terms of the similarity of the clustering, all versions of 

GBFA_CL show better results except for the case with η = 0.5, in which case the result is 

comparable to that of iCluster+. Overall, the incorporation of the pathway graph knowledge 

improves the similarity of the estimated clustering to the truth.

We also conduct the pathway enrichment analysis to identify the pathways significantly 

enriched among the genes selected by GBFA factor loadings. We compare the genes selected 

from GBFA_CL with η = 0 and η = 1.5, and the pathways that are related with cancers are 

listed in in Table IV. “Pathways in cancer” is enriched in most of the factors (factor 

loadings). Other cancer related pathways such as breast cancer, melanoma, lung cancer, and 

prostate cancer are also enriched in several factors. “Hemostatis” and “Melanogenesisis” are 

also related to leukemia [42] and melanoma [43, 44] cancers, respectively. These facts 

indicate that GBFA successfully captures the underlying biological variations.

We observe that there are two pathways enriched only in GBFA_CL with graph information 

incorporated; the neurotrophin signaling pathway and the chemokine signaling pathway. It is 

known that the neurotrophins regulate the cancer stem cells [45] and the chemokine 

signaling pathway governs cancer progression [46]. Figure 2 shows the edges between the 

genes in our data which belong to the neurotrophin signaling pathway. Incorporating this 

graph information has lead to the conclusion that can potentially be biologically meaningful.

VI. Conclusion and Discussion

We have proposed the generalized Bayesian factor analysis framework, which is a 

generalization of the sparse factor analysis framework in two ways; the incorporation of the 

network graph information and the accommodation of multiple data types. We have also 

proposed the very efficient variational EM algorithm for the MAP estimator. Then, GBFA 
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has been applied to the integrative clustering analysis. The newly proposed integrative 

clustering method has been proven to be flexible, accurate, and efficient throughout the 

simulation studies and the application to the NCI60 datasets. Moreover, we have shown that 

the use of the proposed method on the analysis of multi-omics data with incorporation of the 

pathway graph information can deliver more biologically meaningful outcomes.

Note that the applications of our GBFA framework is not limited to the integrative clustering 

only. We believe that GBFA can extend many other existing statistical methods and can 

potentially address plenty of problems where the structural graph information exists.

Another future work will include the extension of the proposed framework for more 

complicated forms of data. Due to the advances of the mobile businesses and technologies, 

various biomedical data such as the electronic health record (EHR) are available in great 

abundance. Such data often involve not only graphical structure but also hierarchical 

structure, multi class categorical variables, missing values, and distributed repositories.
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Fig. 1. 
Regions of nonzero elements in W1, W2, and W3 shown in black.
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Fig. 2. 
Network of Neurotrophin signaling pathway. Each node are genes selected by GBFA 

incorporating the network information.
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TABLE I

Parameters for unified likelihood in (6).

Type ψji kji π j
∗(ρ j)

Gaussian xji 0 ρ ji ≡ ρ j ∼ 𝒢
ζ j + n

2 ,
ζ j
2

Binomial 0 xji − nj/2 ρ ji ∼ 𝒫𝒢(n j, 0)

Neg. Bin. 0 (xji − rj)/2 ρ ji ∼ 𝒫𝒢(x ji + r j, 0)
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TABLE II

Combinations of data types explored in each simulation scenario.

Scenario X1 X2 X3

1 Gaussian Gaussian Gaussian

2 Gaussian Bernoulli Poisson

3 Gaussian Binomial Poisson
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TABLE V

NCI60 data analysis results from iCluster+ and 4 different versions of GBFA_CL (η = 0, 0.5, 1, 1.5). For each 
method, the chosen number of latent factors and the chosen number of clusters are listed. Two similarity 

measures are also listed.

Method η L K Jaccard Rand

iCluster+ - 8 9 0.348 0.896

GBFA_CL

0 9 10 0.496 0.930

0.5 8 8 0.367 0.886

1 9 9 0.521 0.933

1.5 9 10 0.527 0.933
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