Skip to main content
. Author manuscript; available in PMC: 2019 Oct 1.
Published in final edited form as: Proc Int Conf Data Sci Adv Anal. 2019 Feb 4;2018:109–119. doi: 10.1109/DSAA.2018.00021
Algorithm 1: EM algorithm for GBFA
P ← {j : xj is Poisson}.
Initialize m, W, ρ, and θ.
repeatforl=1,,L¯doEstep forγαjlαjl+sl(δ+ηkGjkθkl+log(λ1λ0)wjl(λ1λ0)αjl)for alljwhereslis determined by thebacktracking line search.θjl1(1+eαjl);λjl(1θjl)λ0+θjlλ1for allj.endifP=¯thenupdateμz,iandΣz,ias in (9) for1in.Estep forZelsefori=1,,n¯doupdateμz,iandΣz,iby the gradient ascent method with the backtracking line search.endforj=1,,p¯doupdateφji,ρji,andρjas in Section III-B2.Estep forρforj=1,,p¯doMstep forWifjP¯thenw~jargminw(12wTAjwbjTw+lλjlwlwhereAjandbjare given by (10).elseupdatew~jby the proximal gradient ascent method.enduntilconvergence¯.