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the detection of low-frequency variant alleles across multiple genomic regions. However, rational library
preparation and sequencing data analytic strategies that integrate molecular barcodes have rarely been
applied to clinical settings. In this study, we evaluated the parameters that are crucial in the use of
molecular barcodes in next-generation sequencing for genotyping clinical specimens from patients with
hematologic malignancies. The uniform incorporation of molecular barcodes into DNA templates
through PCR was found to be crucial, and the extent of uniformity was governed by multiple inter-
dependent variables. An error elimination strategy was developed for removing sequencing background
errors by using molecular barcode sequence information as an alternative to the conventional error
correction approach. This approach was successfully used to identify mutations with frequencies as low
as 0.15%, and the clonal heterogeneity of hematologic malignancies was revealed. These findings have
implications for elucidating heterogeneity and temporal and spatial clonal evolution, evaluating
response to therapy, and monitoring relapse in patients with hematologic malignancies. (J Mol Diagn
2019, 21: 471—482; https://doi.org/10.1016/j.jmoldx.2019.01.008)

In recent years, next-generation sequencing (NGS) technol-

ogies have revolutionized the field of clinical genomics.'~
These technologies have

allowed massive parallel
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sequencing of hundreds to thousands of genes in a single tube
reaction.” However, there are several challenges to using
NGS-based assays for cancer management.” They are
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relatively expensive for frequent use’ and have a high
background error rate.*”

The mainstay targeted NGS technologies use either PCR
amplification or hybridization capture-based strategies to
enrich the target sequences during the preparation of
sequencing-ready libraries.'* Both of these strategies have
merits and limitations.'” An amplification-based enrichment
strategy can be used to sequence tens to hundreds of genes.
However, with increases in the complexity of primer se-
quences and in the number of primers per reaction, these
assays require superior technical validation. In contrast,
hybridization capture-based enrichment approaches can be
used to sequence hundreds to thousands of genes, with less
cumbersome technical optimizations.'®'® However, hy-
bridization capture-based approaches have also been asso-
ciated with incumbent costs higher than those of
amplification-based NGS assays.

The identification of low-frequency genetic variants has
implications in cancer management.'’ Low-frequency vari-
ants provide valuable insight into tumor heterogeneity, the
temporal and spatial clonal evolution of tumors, tumor re-
sponses to therapy, and disease relapse.”” In previous studies,
therapy-resistant clones or mutations were shown to exist as
early as the therapy was initiated.”' ~>* In other studies, these
mutations were found to be acquired de novo, after therapy
had begun.21 In either scenario, the early identification of low-
frequency mutations will reshape the therapeutic measures
needed to prevent disease relapse.”’>>°

The detection of authentic low-frequency genetic variants
is challenging since sequencing background errors contribute
to false-positive variant alleles below a frequency of 5% in
conventional NGS experiments.”’ The development of highly
sensitive approaches such as droplet digital—PCR (ddPCR)
has revolutionized low-frequency variant detection and
pushed the lower limits of detection to 0.001%.>® However,
ddPCR requires prior knowledge of the variant that is being
interrogated, and its multiplex capabilities are very limited.
The incorporation of unique molecular barcode sequences
during sequencing library preparation has enabled the
re-derivation of sequences of original DNA templates, pro-
vided the opportunity to eliminate background errors asso-
ciated with sequencing, and improved specificity and lower
limits of detection.”>”*" In contrast to ddPCR, molecular
barcoded NGS could also facilitate the identification of de
novo variants across multiple regions.

Sequencing read duplicates that share molecular barcode
tag information are essential for removing the errors accrued
during library preparation or sequencing. However, we lack
library-preparation approaches that yield a uniform
sequencing-read duplication, as well as an error removal
strategy that can be performed on a minimum number of
duplicate reads. Here, we developed a simplified library-
preparation approach that would yield uniform duplicates
from each targeted region. Furthermore, we developed an
efficient error elimination approach that uses a minimum
number of sequencing-read duplicates and aids in the
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identification of true variants that occur at low frequencies.
As a proof of concept, we identified low-frequency variants
in bone marrow samples obtained from patients with he-
matologic malignancy at various stages of disease follow-
up. Mutation frequencies as low as 0.15% were accurately
detected in these patients with this approach.

Materials and Methods
Genomic DNA

High—molecular weight genomic DNA was extracted from
A375, Raji, NCI-1355 cells (obtained from ATCC, Mana-
ssas, VA) and OCI-AMLS3 cells [kindly provided by Dr.
Michael Andreeff (The University of Texas MD Anderson
Cancer Center, Houston, TX)]. In brief, the cell pellets were
resuspended in lysis buffer (10 mmol/L Tris-Cl, pH 8.0; 5
mmol/L. EDTA; 200 mmol/L NaCl; and 0.2% SDS) supple-
mented with 10 pg/mL proteinase K (Sigma-Aldrich, St.
Louis, MO) and incubated overnight at 56°C. After protein-
ase K digestion, cell lysates were extracted with equal vol-
umes of phenol, chloroform, and isoamyl alcohol (25:24:1;
Sigma-Aldrich). DNA was precipitated with double volumes
of absolute ethanol. Precipitated DNA pellets were washed
once with n-butanol and twice with 70% alcohol before being
resuspended in 10 mmol/L Tris-Cl (pH 8.0). Bone marrow
samples from patients with hematologic malignancies
(chronic myelomonocytic leukemia grade 1, 3; myelodys-
plastic syndrome, 3; plasma cell myeloma, 3; acute myeloid
leukemia, 2; chronic myelomonocytic leukemia grade 0, 2;
therapy-related acute myeloid leukemia, 2; B-cell acute
lymphoblastic leukemia, subtype B-lymphoblastic leukemia/
lymphoma, 2; acute myelomonocytic leukemia, 1; myelofi-
brosis grade 3, 1; and therapy-related myelodysplastic syn-
drome, 1) were obtained from the molecular diagnostics
laboratory at MD Anderson. These samples were collected at
varying stages of disease follow-up. Genomic DNA was
extracted using ReliaPrep Large Volume HT gDNA,
following the manufacturer’s guidelines (Promega, Madison,
WI). DNA concentrations were measured using a Qubit 2.0
fluorometer (Thermo Fisher Scientific, Waltham, MA). The
study protocol was approved by the institutional review board
at MD Anderson Cancer Center, and the study was conducted
in accordance with the Declaration of Helsinki.

Sequencing Panel Design

Primer pairs that can yield 130- to 211-bp amplification
products were designed using the PrimerQuest Tool (Inte-
grated DNA Technologies, Coralville, IA) and synthesized
from Integrated DNA Technologies. Each primer pair was
evaluated separately to determine whether it could generate
specific products in real-time quantitative PCR (qPCR) using
1x SYBR Green master mix (Thermo Fisher Scientific), 50
ng of OCI-AML3 genomic DNA, and 0.5 umol/L primer mix.
Primer pairs that produced a difference from the median C,

jmd.amjpathol.org m The Journal of Molecular Diagnostics


http://jmd.amjpathol.org

Molecular Barcode—Incorporated NGS

value of >3 on qPCR analysis were redesigned. The speci-
ficity of the amplified products from the gPCR reaction was
verified by matching the observed and expected melting
temperatures of the amplified product. A difference of >2°C
between the observed and expected melting temperatures was
considered nonspecific, and the primer pairs were redesigned.
Primer pairs were also evaluated independently with a PCR
amplification reaction using 1 x HotStarTaq Plus master mix
(Qiagen, Valencia, CA), 50 ng of OCI-AML3 genomic DNA,
and 0.5 pmol/L primer mix. The amplification products were
purified with 1x volume of solid-phase reversible immobi-
lization (SPRI) beads (Beckman Coulter, Brea, CA) and
analyzed with the Agilent DIO00 DNA bioanalyzer kit
(Agilent Technologies, Santa Clara, CA); a single band of an
expected size was considered a specific product. These pre-
screened primer pairs were appended with adaptor sequences,
custom sequencing primer sequences, and a molecular bar-
code sequence and synthesized from Integrated DNA Tech-
nologies. Target-specific forward primers were incorporated
with P5 adaptor (5" adaptor), custom sequencing primer 1
binding sequence, and 12-bp random nucleotides as a mo-
lecular barcode sequence in the hairpin structures described
previously.””*" Target-specific reverse primers were incor-
porated with a P7 adaptor (3’ adaptor) and custom sequencing
primer 2 binding sequence. Molecular barcode—containing

primer pairs were reevaluated using qPCR and the Agilent
D1000 bioanalyzer, as mentioned earlier in this paragraph. To
create a sequencing-ready, 21-plex panel, all molecular
barcode—containing, target-specific forward and reverse
primers were pooled to a final concentration of 10 pmol/L.
The list of primer sequences is provided in Table 1.

Sequencing-Ready Library Preparation

PCR Cycles

The library was prepared in a two-stage PCR setup. The first
stage of PCR was performed in 20 pL. volume using 1Xx
TagMan genotyping master mix (Thermo Fisher Scientific),
HotStarTaq Plus master mix or NEBNext Ultra II Q5 master
mix (New England BioLabs, Ipswich, MA), 50 or 100 ng of
genomic DNA, and 0.5 pmol/L pooled primer mix. The
first-stage PCR started with denaturation at 94°C for 5
minutes; followed by 3 cycles of 94°C for 30 seconds, 55°C
for 10 minutes, and 72°C for 30 seconds; and a final incu-
bation at 74°C for 2 minutes. The second stage of PCR was
performed in 40 pL volume using 1x NEBNext Ultra IT Q5
master mix, HotStarTaq Plus master mix, or 1x TagMan
genotyping master mix; 17 pL of purified product from the
first-stage PCR; and 0.5 pmol/L Illumina index primers (San
Diego, CA). The second stage started with denaturation at

Table 1  List of Primers Used for Preparing Molecular Barcode—Containing Libraries and for Sequencing

Primer Chromosome: start-end Forward primer Reverse primer

Universal 5'-GGACACTCTTTCCCTACACGACG- 5'-GTGACTGGAGTTCAGACGTGTGCT-
sequence CTCTTCCGATCTCTGNNNNNNNNNN - CTTCCGATCTGAC-3’

NNATGGGAAAGAGTGTCC-3'

chr17:7579811-7579985
chr17:7579562-7579747
chr17:7579491-7579623
chr17:7579369-7579569
chr17:7579269-7579411
chr17:7578428-7578581
chr17:7578337-7578547
chr17:7578123-7578321
chr17:7577435-7577645
chr17:7576990-7577190
chr17:7576822-7576950
chr17:7573863-7574068
chr17:7572889-7573061
chr7:140481354-140481532
chr7:140453058-140453256
chr12:25398169-25398337
chr12:25380240-25380369
chr12:25378535-25378687
chr1:115258669-115258832
chr1:115256459-115256621
chr1:115252120-115252258

TP53Exon 2_1
TP53Exon 3_1
TP53Exon 4_1
TP53Exon 4_2
TP53Exon 4_3
TP53Exon 5_1
TP53Exon 5_2
TP53Exon 6_1
TP53Exon 7_1
TP53Exon 8_1
TP53Exon 9_1
TP53Exon 10_1
TP53Exon 11_1
BRAFExon 11_1
BRAFExon 15_1
KRASExon 2_1
KRASExon 3_1
KRASExon 4_1
NRASExon 2_1
NRASExon 3_1
NRASExon 4_1
Custom
sequencing
primer

5'-GGGTTGGAAGTGTCTCA-3’
5'-ACTGACTTTCTGCTCTTGT-3’
5'-GGTCCTCTGACTGCTCTTT-3'
5'-ATGGATGATTTGATGCTGTCC-3’
5'-CCTGTCATCTTCTGTCCCTT-3’
5'-AACTCTGTCTCCTTCCTCTTC-3’
5'-CTGCCCTCAACAAGATGTTT-3’
5'-CAGGCCTCTGATTCCTC-3’
5'-CGCACTGGCCTCATCTT-3’
5'-ACTGCCTCTTGCTTCTCTT-3’
5'-CACCTTTCCTTGCCTCTTTC-3’
5'-ATATACTTACTTCTCCCCCTC-3’
5'-GACCCTCTCACTCATGTGAT-3’
5 -TGTTTGGCTTGACTTGACTT-3’
5'-TCATAATGCTTGCTCTGATAGG-3’
5'-ATTATAAGGCCTGCTGAAA-3’
5'-AGACTGTGTTTCTCCCTTCT-3’
5'-AGGACTCTGAAGATGTACCTATG-3’
5'-TCGCCAATTAACCCTGATTAC-3’
5'-CCCTTACCCTCCACACC-3’
5'-AAACAAGCCCACGAACTG-3’
5'-ACACTCTTTCCCTACACGACGC-
TCTTCCGATCTCTG-3’

5'-GGCCTGCCCTTCCAATG-3'
5'-TCATCCATTGCTTGGGACG-3'
5 -TTCTGGGAGCTTCATCTGG-3’
5/'-GCTGCCCTGGTAGGTTT-3’
5'-GGCATTGAAGTCTCATGGAAG-3'
5'-GCTGTGACTGCTTGTAGATG-3’
5/-CAGCCCTGTCGTCTCTC-3’
5'-CACTGACAACCACCCTTA-3'
5'-GTCAGAGGCAAGCAGAG-3'
5/-CTCCACCGCTTCTTGTC-3’
5'-CCACTTGATAAGAGGTCCCA-3’
5/'-TCCTATGGCTTTCCAACCTA-3’
5'-GTGGGAGGCTGTCAGTG-3’
5'-TGTCACCACATTACATACTTACC-3’
5/'-ATAGCCTCAATTCTTACCATCC-3’
5'-GTCCTGCACCAGTAATATG-3’
5'-CTCATGTACTGGTCCCTCAT-3’
5'-CAGTGTTACTTACCTGTCTTGTC-3’
5'-ACCTCTATGGTGGGATCATATT-3’
5'-GATGGCAAATACACAGAGGAA-3'
5'-GGATCACATCTCTACCAGAGT-3'
5'-GTGACTGGAGTTCAGACGTGTGCTCT-
TCCGATCTGAC-3’

Note that universal forward and reverse sequences are appended to the 5’ end of each target-specific forward and reverse primer sequence, respectively,

before synthesizing the primers.
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98°C for 30 seconds; followed by 10 cycles at 98°C for 10
seconds, 85°C for 1 second, 68°C for 6 minutes, and 74°C
for 30 seconds; 9 to 17 cycles at 98°C for 10 seconds, 85°C
for 1 second, 68°C for 30 seconds, and 74°C for 30 seconds;
and a final incubation at 74°C for 5 minutes. During the
second-stage PCR cycling, ramping at a rate of 0.2°C/second
was applied at temperature transitions from 85°C to 68°C and
from 68°C to 74°C.

Removal of Molecular Barcode Primers

After first-stage PCR, 1 pL of exonuclease I (20 U/uL; New
England BioLabs) was added to the reactions and incubated
at 37°C for 30 minutes.

SPRI Bead Cleanup

After the completion of the first-stage PCR or exonuclease I
treatment, PCR products were purified with 1x volume of
SPRI beads and eluted in 20 pL of 10 mmol/L Tris-HCI (pH
8.0). The second-stage PCR products were purified with
0.8x volume of SPRI beads and eluted in 50 pL of 10
mmol/L Tris-Cl (pH 8.0).

Size Selection

Double size selection was performed on the purified li-
braries obtained after second-stage PCR. In brief, frag-
ments of >600 bp were removed with 0.56x SPRI beads;
the desired fragments, ranging from 250 to 600 bp, were
selected with 0.85x SPRI beads and purified. Size-
selected libraries were eluted in 20 pL of 10 mmol/L
Tris-HCI (pH 8.0).

Library Quantification

Libraries were quantified using a Kapa Library Quantifica-
tion Kit for Illumina platforms (Roche, Basel, Switzerland).
The presence of primer dimers and the size of the fragments
in the library were verified by a bioanalysis using the Agi-
lent High-Sensitivity DNA Kit (Agilent Technologies).
Typically, library concentrations were within the range of 1
to 10 nmol/L. In the libraries prepared from positive refer-
ence samples, the expected allelic frequencies of the BRAF
V600E mutation were verified with ddPCR (Bio-Rad Lab-
oratories, Hercules, CA).

Library Pooling and Sequencing

Each library was uniquely indexed in the second stage of
PCR. These indexed libraries were pooled to a final con-
centration of 0.5 to 2 nmol/L, denatured with 0.2 N NaOH,
neutralized with 200 mmol/L Tris-Cl (pH 7.0), and diluted
in hybridization buffer, according to the manufacturer’s
instructions (Illumina). To impart diversity into the 21-plex
libraries prepared in this study, a uniquely indexed control
library with 548 amplicons was included to 20% fraction of
the total library pool. The denatured libraries were loaded at
a 6.5 pmol/L concentration onto a MiSeq Nano flow cell for
sequencing with 500-cycle v2 chemistry, or at an 8§ pmol/L

474

o3

[Target regions (130 to 211 bp)]

—— . Second-stage PCR
ITarget regions (130 to 211 bp)! __ with lllumina adapter primers

iTarget regions (130to211 bp) I

l I 5’ Adapter
B Barcode

First-stage PCR
with target-specific primers

Sequencing
with custom primers

1] Sample index

Data analysis I 3’ Adapter

Figure 1  Next-generation sequencing (NGS)-ready library preparation
workflow for the molecular barcode—containing 21-amplicon panel. The
hairpin structure of the target-specific forward primers contains the partial
P5 adaptor (5" adaptor) sequence and a 12-bp random nucleotide sequence
as a molecular barcode sequence. The target-specific reverse primers
contain the partial P7 adaptor (3’ adaptor) sequence. The first stage of PCR
was performed using target-specific forward and reverse primers, and a
130- to 211-bp region of interest was amplified. The second stage was
performed with Illumina sample-indexing primers. The Illumina partial P5
and P7 adaptor sequences that were incorporated into the first-stage PCR
product served as anchor sequences to the second-stage PCR primers;
amplicons that contained full-length P5 and P7 adaptor sequences were
generated by second-stage PCR. These amplicon libraries were subjected to
sequencing on MiSeq with custom sequencing primers, and the data were
analyzed with a custom bioinformatics pipeline and NextGENe NGS
data—analysis software.

concentration onto a MiSeq v3 flow cell with 600-cycle v3
chemistry. Sequencing was performed with custom
sequencing primers 1 and 2; the sequences are provided in
Table 1. Typically, 2 libraries were sequenced on a Nano
flow cell, and 11 libraries were sequenced on a v3 flow cell.

Sequencing Data Analysis

The data were analyzed using a combination of a custom-
developed bioinformatics pipeline and a commercially
available variant caller (NextGENe version 4.1.2; SoftGe-
netics, State College, PA). The front-end bioinformatics
pipeline was used to derive consensus read sequences as
follows: the first 12 nucleotides in the forward sequencing
reads indicate the molecular barcode sequence. On the basis
of the molecular barcode sequence information, reads in the
forward sequencing read file and the corresponding reads in
the reverse sequencing read file were sorted independently.
In this way, sequencing reads that shared the same molec-
ular barcode information were grouped into a single family;
the number of reads present in each family indicates the size
of that family.

From each family of sequencing reads, a consensus read
sequence was developed. At a given position, if the same
nucleotide was present in all reads of the family, it was
chosen as a consensus nucleotide. If ambiguity was
encountered (ie, if more than one type of nucleotide was
present at a particular position), the consensus nucleotide

jmd.amjpathol.org m The Journal of Molecular Diagnostics


http://jmd.amjpathol.org

Molecular Barcode—Incorporated NGS

was denoted with N. Consensus reads derived from mo-
lecular barcode families with two or more sequencing reads
were used to identify variants. Variants were called and
annotated with NextGENe. During variant identification,
nucleotide positions that were denoted by N were ignored
by the variant-calling algorithms of NextGENe. The back-
end bioinformatics pipeline was used to process the variant
calls and identify the true variants. With this approach, the
potential false-positive variants caused by sequencing er-
rors were effectively eliminated up to 0.05% frequency.
This error elimination approach was used to identify true
variants that were present in samples from patients with
hematologic malignancy, down to 0.15% frequency. A
read—balance ratio of >0.5 was used as a cutoff criterion
for processing variant data and eliminating the residual
sequencing artefacts that contributed to false-positive var-
iants; the minimum numbers of nonreference reads
required to identify single-nucleotide variants and in-
sertions and deletions were set to 10 and 15, respectively.

ddPCR

Following the manufacturer’s guidelines, ddPCR reactions
were assembled in 20 pL volume by mixing 10 pL of 2x
Supermix, 1 pL of 20X target primers/probe mix, and 30 ng
of genomic DNA. The droplets were generated, the genomic
DNA targets were amplified within the droplets, and the
fluorescence intensity of the droplets was measured to
quantify wild-type and mutant allele copies, as per the
vendor’s recommendation (Bio-Rad).

Results

Crucial Requirement of Different Polymerase Mixes
during First- and Second-Stage PCR

In previous studies, molecular barcode—containing hairpin
structures were shown to improve the formation of target-
specific amplification products.”””" A similar hairpin
structure was used to incorporate the molecular barcode
sequences, and an NGS gene panel was created to cover all
exons of TP53 and hot spot regions of KRAS (exons 2, 3,
and 4), NRAS (exons 2, 3, and 4), and BRAF (exons 11 and
15). To obtain amplicons with partial adaptor sequences
present at both ends, three-cycle amplification was per-
formed during first-stage PCR  with  molecular
barcode—containing, target-specific primers. For second-
stage PCR, 19 cycles amplification were performed with
[lumina index primers (Figure 1).

During the first stage, molecular barcodes and Illumina
partial adaptor sequences were incorporated; during the
second stage, full-length Illumina adaptor sequences were
produced, along with sample indexes. Three different PCR
mixes were evaluated during the first and second stages of
PCR. Adding TagMan genotyping master mix during first-
stage PCR yielded highly specific amplification products

The Journal of Molecular Diagnostics m jmd.amjpathol.org
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Figure 2  Evaluation of three different polymerase master mixes in the
first and second stages of PCR, for sequencing library preparation. Ampli-
fication reaction mixes were assembled with TagMan genotyping master
mix, HotStarTag Plus master mix, or NEBNext Ultra IT Q5 mix during first-
stage PCR. All of the first-stage PCR products were assembled in NEBNext
Ultra II Q5 master mix (A), HotStarTaq Plus master mix (B), or TagMan
genotyping master mix (C) for second-stage PCR. Libraries were purified
with solid-phase reversible immobilization beads and analyzed on an
Agilent 2100 DNA bioanalyzer. A 300- to 400-bp target-specific library is
indicated by a bracket. Note that the fragments of 100 to 200 bp pre-
dominantly contained primer dimers. Green and purple bars indicate lower
and upper markers, respectively. All samples were evaluated in triplicate.

(Figure 2A). When NEBNext Ultra II Q5 high-fidelity and
HotStarTaq Plus polymerases were used in first-stage PCR,
high—molecular weight amplification products were
apparent (Figure 2A). In contrast, TagMan genotyping
master mix during second-stage PCR failed to yield optimal
amplification products; however, NEBNext Ultra II Q5
high-fidelity polymerase mix and HotStarTaq Plus

475


http://jmd.amjpathol.org

Mallampati et al

polymerase mix successfully generated abundant amplifi-
cation products (Figure 2, B and C). These findings suggest
that the right combinations of polymerase mixes are crucial
for multiplex PCR amplification in the first stage and for
singleplex PCR in the second stage.

Exonuclease I Treatment after First-Stage PCR Is
Crucial

It is essential to remove the molecular barcode—containing,
target-specific primers after the first stage of PCR to prevent
the production of new barcode-containing amplicons during
the second stage of PCR. The first-stage PCR product was
treated with exonuclease I, which digests unincorporated

A 000 — —"

'
1T

First-stage PCR  TagMan TagMan
Exonuclease | . *
Second-stage PCR Ultrall @5 Ultrall Q5

B 7000 —
2000 —
1000 —
600 —
500 —
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%0 — =E=== }
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|
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35 — i e— —— —— —— —

bp L 1 2 3 4 5 6 7 8
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Exonuclease | + + + +
Second-stage PCR Ultrall Q5 Ultrall Q5 Ultrall Q5 Ultra ll Q5

Number of PCR cycles 17 20 23 26

C R e e
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600 —
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400 —
300 —
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150 —
100 —

35 — e — —— — —— ——

L THTEN

bp L 12 3 4 5 6 7 8

InputDNA (ng) 50 100 50 100 50 100 50 100
Genomic DNA mix A B A B
First-stage PCR TagMan TaqMan TagMan TaqMan
Exonuclease | + + + +
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Number of PCR cycles 19 19 19 19
Size selection - - + +
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single-strand primers from their 3’ end. Exonuclease
I—treated libraries gave rise to a much higher yield and fewer
primer dimers than did untreated libraries (Figure 3A).

PCR Yield and Barcode Family Size Is Dictated by the
Number of PCR Cycles in Second-Stage PCR

During the first stage of PCR, each amplicon was tagged
with a unique molecular barcode. The amplicons from the
first stage of PCR served as templates in the second stage
and yielded barcode families of varying sizes. High varia-
tion in the barcode family sizes of each template would
decrease the quality of the library. To identify the crucial
factor that governs the highly uniform size of barcode
families, varying cycles of amplification were performed
during the second stage of PCR (Figure 3B). Seventeen to
20 cycles of amplification yielded a library quantity (1 to 10
nmol/L) that was sufficient for sequencing. However, when
the number of cycles was increased to 23 or 26, the yield of
the libraries was reduced, accompanied by imbalanced PCR
amplification, in which some barcode families were ampli-
fied at a higher rate than were others (data not shown).
These findings suggest that an optimal number of PCR
cycles is required to obtain a uniform barcode family size.

Size Selection Efficiently Improves the Quality of a
Molecular Barcode—Containing NGS Library

In multiplex PCR, primer dimers form very frequently.3 .
The formation of primer dimers is essentially dictated by
sequence complexity, primer length, and the number of
primers contained in the multiplex PCR. The presence of
primer dimers in the sequencing library results in poor-
quality sequencing data. The sequencing library prepared
from 21-plex primer pairs contained a significant proportion

Figure 3  Identification of parameters crucial for improving the quality
of molecular barcode—containing next-generation sequencing libraries. A:
Exonuclease I treatment reduces the primer dimer concentration and im-
proves the yield of sequencing libraries. First-stage PCR products were
incubated with 1 pl of 10 mmol/L Tris-ClL (pH 8.0) or exonuclease I (20 U/
ul) at 37°C for 30 minutes. B: Identification of an optimal number of
second-stage PCR cycles for library preparation. The first-stage PCR
amplification was performed in TagMan genotyping master mix. The prod-
ucts were then digested with exonuclease I. The second-stage PCR ampli-
fication with Ultra II Q5 mix was performed for 17, 20, 23, or 26 cycles. The
second-stage PCR products were purified with solid-phase reversible
immobilization beads and run on the Agilent 2100 DNA bioanalyzer. C: Size
selection efficiently eliminated primer dimers. Genomic DNA mixes A (1%
A375, 0.5% Raji, 0.1% NCI-1355, and 98.4% OCI-AML3 DNA; lanes 1, 2, 5,
and 6, respectively) and B (1% NCI-1355, 0.5% Raji, 0.1% A375, and 98.4%
OCI-AML3 DNA; lanes 3, 4, 7, and 8, respectively) were created and sub-
jected to first-stage PCR amplification, exonuclease I treatment, and
second-stage PCR amplification. The purified second-stage PCR products
were used for double-size selection with 056x/0.85x volumes of solid-
phase reversible immobilization beads, and the size-selected libraries
were analyzed on the Agilent 2100 DNA bioanalyzer. Note that a 300- to
400-bp target-specific library is indicated by brackets. Green and purple
bars indicate lower and upper markers, respectively. All samples were
evaluated in duplicate (B and C) or in triplicate (A).
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of primer dimers (Figure 3C). To eliminate 150-bp dimers,
0.56x/0.85x double size selection was performed after the
second, cleanup PCR step. By incorporating this additional
step, these dimers were effectively removed and 300- to
400-bp fragments selected (Figure 3C). To support these
observations, the sequencing data also indicated an almost
complete absence of dimers in the size-selected library.

Analytical Approach Improves the Detection
Sensitivity of Low-Frequency Mutation

The sequencing-ready libraries were prepared from a cell
line—derived DNA mix that contained 98.4% (p.Q61L)
NRAS, 1% (p.E285K) TP53, 0.5% (p.R213Q; p.Y234H)
TP53, 0.5% (p.G13C) KRAS, and 0.1% (p.V600E) BRAF
mutations, and the relative representation of each amplicon
in a 21-plex amplicon library was measured by gPCR. Each
of the 21-amplicon C; values were within the range of 19.4
to 22.6 (median, 21.2; mean, 21.0; SD, 0.79) and 17.8 to
20.6 (median, 19; mean, 18.9; SD, 0.73) for 50 and 100 ng
of input DNA, respectively. All amplicons were amplified
with a difference in C, values of 3, suggesting that each of
the 21 amplicons in the library was represented uniformly
(Figure 4A).

The sequencing data further confirmed the uniform
coverage of 21 amplicons in the library (Figure 4B). In the 21-
amplicon library, a median coverage of 144,825 was
observed, and most of the amplicons were within twofold of
the median coverage, suggesting highly uniform sequencing
coverage for all of the amplicons in the 21-plex library. The
sequencing data were initially analyzed to identify the ex-
pected variants without integration of the molecular barcodes.
The analysis indicated that the expected mutations above
0.3% were clearly distinguishable from false-positive muta-
tions, although false-positive mutations were seen in some
amplicons. The false-positive mutations became abundant
when the allele frequency was below 0.3%, and the true
mutations between 0.05% and 0.3% were completely
obscured by the false-positive mutations (Figure 4C).

The molecular barcodes were used to eliminate errors that
had accrued in the sequencing data. Sequencing reads that
contained the same molecular barcode tags were grouped into
individual barcode families, and then a consensus read
sequence was derived from reads in each family. To derive
consensus reads, molecular barcode families that contained
two or more sequencing reads were chosen. In deriving the
consensus read sequence from a group of reads that was
present in each molecular barcode family, a 100%-match
criterion was used: For any given nucleotide position, when
all reads in the barcode family contained the same nucleotide
(100% match), that nucleotide was chosen as the consensus
nucleotide (Supplemental Figure S1A). If any mismatches
were encountered, the consensus nucleotide assigned for that
position was N (Supplemental Figure S1A). The nucleotide
positions where N was assigned in the consensus reads were
categorically ignored when allelic variants were determined
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(Supplemental Figure S1B). This error elimination approach
was developed instead of using the error correction strategy
described in earlier studies.””"!

Error Elimination Approach Effectively Removes
False-Positive Variants and Identifies True Variants at
Low Frequencies

A positive reference sample containing 98.4% (p.Q61L)
NRAS, 1% (p.E285K) TP53, 0.5% (p.R213Q; p.Y234H)
TP53, 0.5% (p.G13C) KRAS, and 0.1% (p.V60OE) BRAF
mutations was sequenced, and the error elimination
approach was used to remove false-positive variants
occurring at a low frequency. The sequencing analysis
indicated that approximately 87% consensus reads were
derived from molecular barcode families that contained at
least two sequencing reads (Supplemental Figure S2), and
50% consensus reads were derived from families that con-
tained at least four sequencing reads (Figure 5A), suggesting
that in a larger fraction of consensus reads, the error was
eliminated effectively. Before error elimination, in some
amplicons, the error was null; in others, it occurred at a
range of 1 to 32 nucleotide positions per amplicon. After
application of the error elimination strategy, the error was
completely removed in all 21 amplicons to allele fre-
quencies as low as 0.05% (Supplemental Figure S3).

All of the expected mutations in the reference samples
were identified without yielding false-positive mutations,
suggesting that the error elimination strategy is effective in
detecting low-frequency variants (Figure 5B). The mean
size of a molecular barcode family that produced a
consensus read at the variant positions identified in the
positive reference samples was calculated. Each consensus
read was found to be derived from molecular barcode
families with 5.5 to 10.7 reads, suggesting that the errors
were corrected more effectively, as an optimal number of
reads could be obtained in each family for deriving the
consensus sequence (Figure 5C).

After the establishment of the library preparation and
bioinformatics pipeline for the custom molecular
barcode—containing NGS panel, 20 samples from patients
with hematologic malignancies were genotyped using the
custom panel, and the results were compared with an 81-
gene end-leukemia panel developed in the Clinical Labo-
ratory Improvement Amendments—certified molecular di-
agnostics laboratory at MD Anderson. A mean coverage of
17,085 in the targeted regions and a minimum coverage of
over 30 in the mutant alleles were found (Supplemental
Figure S4). The end-leukemia panel reported variants
occurring at allele frequencies above 1%; mutant allele
frequencies above 1% were highly concordant between two
panels (Figure 6A).

Of the 20 samples sequenced, 9 contained low-frequency
mutations below 1%, in addition to high-frequency muta-
tions above 1%. These low-frequency mutations were
noticed in several hotspot mutation regions from KRAS,

477


http://jmd.amjpathol.org

Mallampati et al

24,
A e 50ng
- 221 ® = 100ng
@ L]
s,
g 204 o..
(2
18] N
16 v v
Amplicons
B mm Replicate 1
» 600!000 mu Replicate 2
§ 400,000
© 200,000 II
g I | P II e “ n " " II " u " nn “
[}
§ 20,000
b3
2 10,000
<
0%

Figure 4 Evaluation of molecular barcode—
containing libraries by real-time quantitative PCR
(gPCR) and next-generation sequencing (NGS). A: gPCR
evaluation of size-selected libraries indicate uniform
representation of 21 amplicons in the libraries. Note
that all amplicons were present within a 2- to 3-C; value
difference from the median. B: NGS indicates relatively
uniform representation of the 21 amplicons in
sequencing libraries. Libraries were sequenced in two
independent runs, and the absolute read counts for each
amplicon are depicted. C: An NGS data analysis without

\\\\\\

f»/ 5/ y./ y./ b./ G,/ 6)/ g/'\ / g/ q/ Q/\\/\\/\ﬁ,/ '\,/ X4 h/é\,/

SIS S SulIPON
OOOOOOOO+O+O

& & PO
+@+9«, B s

using molecular barcode information indicates the
presence of abundant false-positive mutations at low
frequencies. Libraries prepared from the reference DNA

'5/ b./
S

\% X ..
«Q"«Q"«Q"«Q" q",\qﬁ,\q‘-’ Q" Qg3qs'5@y~ﬁv+q?‘+q?+q?‘\q. q?‘\q."‘ mix containing 98.4% (p.Q61L) NRAS, 1% (p.E285K)
e TP53, 0.5% (p.R213Q; p.Y234H) TP53, 0.5% (p.G13C)
mpficons KRAS, and 0.1% (p.V60OE) BRAF mutations were
C sequenced independently twice; the results of one
- 122 siasn sequencing run are shown. Note that the expected
X 6ol mutations above 0.3% allelic frequency were clearly
> 40 apparent, although false-positive mutations appeared in
S 20+ this range within the amplicons covering KRAS exon 4
3 1.0 _— and NRAS exon 3. More false-positive mutations are
g 0.84 e observed between 0.05% and 0.3% allelic frequencies,
% 061 P and the true BRAF (V600E) mutation within this range is
o 04 ¥ (R213Q) “G130) % obscured by the false positives.
® 025 . *
‘é 0.204 é n 4 a cvo00n) | x % s
8 0.15] v i n 606 pe v N ThT. o
3 . da T > 2 . e 3 e X
S 0.10{% W LW Y Yoy 4 v ¥ '*wﬁﬁz;
0.054 B g ry v o . see XJx Og 0
noydb—-r-r—r——
§ § § § § § § & =& = & § 6§ &§ & § §
AR EEEEEEEEEEEENE
v B B B W S ¥ I I S I
FEREREREEZFEEEE £
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NRAS, BRAF, and TP53 (Figure 6B) and were verified using Discussion

ddPCR as an orthogonal validation method. They were
accurately identified by molecular barcode—incorporated
NGS (Supplemental Table S1). Manual examination of
closely located mutations in the NextGENe viewer or
Integrative Genomics Viewer revealed that high- and low-
frequency mutations in the same genes were present in
mutually exclusive reads. The coexistence of these muta-
tions in the same clinical specimens and their identification
by distinct sets of sequencing reads indicate that the ma-
lignant cells were heterogeneous, which could be deter-
mined using molecular barcode—containing NGS with error
elimination.
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In this study, we developed a well-balanced molecular
barcode—containing NGS library preparation workflow and
a custom bioinformatics pipeline to identify variants down
to 0.15% in patients with hematologic malignancies. In this
approach, each template is tagged with a random nucleotide
sequence as a template index, which is often referred to as
the molecular barcode or unique ID. Although the potential
of molecular barcodes to significantly improve the detection
limits of variants has been recognized, the widespread
application of molecular barcode—containing NGS still re-
quires tremendous technologic advancement: The
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incorporation of barcodes into DNA templates through PCR
is not uniform, and there are only a limited number of
rational analytical approaches that can effectively remove
the sequencing errors.””

When a long stretch of 12 random nucleotides is used as a
molecular barcode sequence, it can contribute to mispriming
events from target-specific primer sequences and yield sig-
nificant amounts of nonspecific product.””*" Therefore, the
molecular barcode sequence was incorporated into the
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hairpin structure appended to target-specific forward
primers. In a simplified protocol of simple, multiplexed,
PCR-based barcoding of DNA for sensitive mutation
detection using sequencing that also uses molecular
barcode—containing hairpin structures, a combination of
lower primer concentrations and extended annealing tem-
peratures during the first-stage PCR cycle, and a dilution
strategy for first-stage amplified products, were adopted to
overcome the tedious purification steps.””*" A limitation of
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this approach is that the carryover of molecular
barcode—containing primers into the second stage of PCR,
which occurs at minute concentrations, might contribute to
the occurrence of molecular barcode families of lesser size.
To overcome this primer carryover issue, high-depth
sequencing was performed in earlier studies, and only bar-
code families with 10 reads or more were used to correct the
sequencing errors.””’

The optimal concentrations of input DNA and the
number of PCR cycles with molecular barcode—containing,
target-specific primers are reported to be crucial for incor-
porating molecular barcodes into a higher fraction of DNA
templates through PCR.?’~*” Here, molecular barcodes were
incorporated into the hairpin structures appended to target-
specific forward primers, and the crucial parameters that
contributed to the high degree of uniformity in molecular
barcode—containing NGS were evaluated. The extent of
uniformity was found to be influenced by highly interde-
pendent variables, including target-specific primer se-
quences, the selection of DNA polymerases, PCR cycling
conditions, the removal of molecular barcode primers car-
ried over from the first stage of PCR, and the removal of
primer dimers. Typically, 50 ng of input DNA, 3 cycles of
first-stage  PCR  with 0.5 pmol/L  molecular
barcode—containing 21-plex target-specific primer pairs,
and 19 cycles of second-stage PCR with 0.5 pmol/L
Ilumina indexing primers yielded 1 to 10 nmol/L

480

R273G

p
p
p

p.
NRAS(p.G13V)

TP53(p
TP53|
TP53|
TP53|

Figure 6 Identification of low-frequency mutations down to
0.15% in hematologic malignancy patients. A: Determination of
expected and observed mutant allele frequency (MAF) concor-
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samples were retrieved from the sequencing results of an 81-
gene end-leukemia panel developed in MD Anderson’s molecu-
lar diagnostics CLIA laboratory. Note that the end-leukemia
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I above 1%. B: Low-frequency mutational profiles identified by a
molecular barcode—containing 21-amplicon next-generation
sequencing panel. Of the 20 samples sequenced, nine yielded
low-frequency mutations.
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sequencing-ready libraries and produced molecular barcode
families with a uniform size distribution.

When the cutoff threshold for calling the variants from
raw sequencing reads was reduced to 0.01%, > 50% of
nucleotides in any given amplicon were found to yield low
allele frequency variants (data not shown). Characteristi-
cally, A-to-G, G-to-A, C-to-T, and T-to-C nucleotide tran-
sitions were found in those identified variants. These
variants likely originated from sequencing steps rather than
from library-preparation stages. At any given position, in a
very small fraction of reads, erroneous base calls are re-
ported consistently during sequencing, and these sequencing
artefacts predominantly contributed to the low allele fre-
quency variants.®”'® In the past few years, molecular
barcodes have been used to correct these sequencing errors
by incorporating an error correction strategy.””*" Because
a potential limitation of error correction approaches is that
the error will remain uncorrected when families of smaller
sizes are used, sequencing was performed at greater depths
to obtain molecular barcode families of larger sizes. Typi-
cally, families with 10 reads or more were used for efficient
error correction.””>! In this study, an error elimination
approach was developed as an alternative to an error
correction strategy, which allowed the use of molecular
barcode families with two or more reads to remove
sequencing errors. Technically, in those families that
contain only single reads, errors cannot be eliminated;
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therefore, the molecular barcode families with single reads
were omitted from the analysis. In this error elimination
approach, error-accrued positions were waived from
participation during variant identification, which allowed
the detection of true variants down to 0.15%.

In this study, a simplified library-preparation approach
was developed that allowed the uniform incorporation of
molecular barcode tags through the targeted amplification of
template DNA. In contrast to the error correction strategies
reported in previous studies,’’ an error elimination strategy
was developed that allowed us to use molecular barcode
families containing at least two sequencing reads to derive
consensus sequence reads. This approach allowed us to not
only remove the errors more effectively but also retain the
maximal number of consensus reads for identifying the
variants. As a proof of concept, a 21-amplicon panel was
developed and its application demonstrated by the identifi-
cation of low-frequency variants in hematologic malignancy
patients who were at different stages of disease follow-up.
The panel developed in this study will have direct applica-
tions in clinical settings for evaluating therapeutic responses
and monitoring minimal residual disease. In addition, the
approaches described in this study may lead to the devel-
opment of larger sequencing panels that can be used with
extended genomic regions that are pertinent to hematologic
malignancies; such panels may help us to understand clonal
heterogeneity.

Clonal heterogeneity plays a crucial role in cancer therapy
resistance”’ and is indirectly reflected by the existence of
distinct subsets of mutant allele frequencies.”®”’ In our
study, molecular barcodes facilitated the accurate identifi-
cation of low-frequency variants down to 0.15% and aided
the identification of subclonal diversity in patients with
hematologic malignancies. These findings may help us to
understand clonal evolution in hematologic malignancies
and to better manage the disease.””" As evidenced by this
study, low-frequency mutations identified in BRAF, KRAS,
and NRAS genes can be targeted with therapeutic in-
hibitors.””*’ Early therapies directed toward subclonal
populations, which contribute to low mutant allele fre-
quencies, can be integrated into mainstay therapies to pre-
vent relapses from these malignant subclones. However,
further clinical studies to evaluate the benefits of these
combinatorial therapeutic approaches are warranted.
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