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Abstract

Birds, with their broad geographic ranges and close association with humans, have historically 

played an important role as carriers of human disease and as reservoirs for drug-resistant bacteria. 

Here, we examine scientific literature over a 15-year timespan to identify reported avian-bacterial 

associations and factors that may impact zoonotic disease emergence by classifying traits of bird 

species and their bacteria. We find that the majority of wild birds studied were migratory, in 

temperate habitats, and in the order Passeriformes. The highest diversity of bacteria was found on 

birds in natural habitats. The most frequently reported bacteria were Escherichia coli, Salmonella 
enterica, and Campylobacter jejuni. Of the bacteria species reported, 54% have shown 

pathogenicity toward humans. Percentage-wise, more pathogens were found in tropical (vs. 

temperate) habitats and natural (vs. suburban, urban, or agricultural) habitats. Yet, only 22% were 

tested for antibiotic resistance, and of those tested, 75% of bacteria species were resistant to at 

least one antibiotic. There were no significant patterns of antibiotic resistance in migratory versus 

non-migratory birds, temperate versus tropical areas, or different habitats. We discuss biases in 

detection and representation, and suggest a need for increased sampling in non-temperate zones 

and in a wider range of avian species.
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Introduction

Zoonotic pathogens pose a significant public health threat, particularly with regard to 

bacterial diseases (Taylor et al. 2001; Jones et al. 2008). Birds have long played an important 

role in human disease, specifically in spreading microbial pathogens (Belshe 1998; Reed et 

al. 2003; Johnson et al. 2007; Moulin-Schouleur et al. 2007). This is likely due to several 

Correspondence to: Pamela J. Yeh, pamelayeh@ucla.edu. 

Compliance with Ethical Standards
Conflict of interest The authors declare that they have no conflict of interest.

Electronic supplementary material: The online version of this article (https://doi.org/10.1007/s10393-018-1342-5) contains 
supplementary material, which is available to authorized users.

HHS Public Access
Author manuscript
Ecohealth. Author manuscript; available in PMC 2019 May 16.

Published in final edited form as:
Ecohealth. 2018 September ; 15(3): 627–641. doi:10.1007/s10393-018-1342-5.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://doi.org/10.1007/s10393-018-1342-5


key avian traits. First, like humans, birds are found worldwide. Their ability to migrate long 

distances, colonize new areas, and withstand a range of environments allows for a global 

distribution (Fournier et al. 2000; Rappole et al. 2000; Humair 2002; Winker et al. 2007; 

Benskin et al. 2009; Altizer et al. 2011). Second, birds are prominent species in human-

dominated habitat types. The close association of birds and humans in urban and agricultural 

settings facilitates zoonotic disease transfer (Waters et al. 1991; Marzluff 2001; Capua and 

Alexander 2002; McKinney 2002; Atterby et al. 2016). Third, birds and humans are host to 

some of the same bacteria species, many of which are pathogenic. While evidence for direct 

bacterial transmission from birds to humans is limited, several bird species have indirectly 

transmitted at least 12 genera of pathogenic bacteria through polluted water, ticks, and feces 

that lead to diarrhea, salmonellosis, Lyme disease, and other illnesses in humans (Tsiodras et 

al. 2008). Finally, both domestic agricultural and wild birds can contaminate shared spaces 

and cause human infections (Sacks et al. 1986; Graczyk et al. 2008; Bonnedahl et al. 2009; 

Ewers et al. 2009; Vincent et al. 2010; Bonnedahl and Järhult 2014). Bird-carried diseases 

are, therefore, of interest because of the threat not only toward birds, but also human health 

(Literák et al. 2010).

Changing environments, including those associated with urbanization, agriculture, and 

climate change, may affect the likelihood of birds acquiring pathogens. These novel 

environments can lead to new niches and evolutionary trajectories for birds (Darwin 1859; 

Lack 1940), which may affect the ecology of pathogens and their vectors (Dobson and 

Carper 1992; Holmes and Garnett 1994; Daszak et al. 2000; Harvell et al. 2002; Guernier et 

al. 2004; Harrus and Baneth 2005; Engering et al. 2013; Estrada-Peña et al. 2014; 

Rothernburger et al. 2017). As birds shift ranges to accommodate environmental changes, 

infected individuals could introduce novel pathogens into immunologically naïve 

populations (Hubálek 2004). With possible increased bacterial migration rates between 

individuals, antibiotic resistance is also forecasted to evolve and spread rapidly (Perron et al. 

2007).

While zoonotic transmission of pathogens from birds to humans has been more difficult to 

quantify than conspecific transmission (Tsiodras et al. 2008), emerging infectious diseases 

are predicted to occur primarily through zoonotic transmission (Jones et al. 2008). This, 

coupled with the large percentage of bacterial pathogens (38%, Taylor et al. 2001), makes 

understanding associations of different bacteria and bird species valuable to public health 

efforts to combat infectious disease (Kruse et al. 2004; Vouga and Greub 2016). In a recent 

literature survey, 122 studies documented associations between wildlife and transmission of 

bacteria to our food chain (Greig et al. 2014). These data demonstrate the potential threat of 

wildlife-transmitted bacteria and influences on human health. The potentially urgent public 

health threat of bird-borne infectious diseases suggests that now is the right time to assess 

bird-bacteria associations.

Here we examine scientific literature over a 15-year timespan to quantify characteristics of 

the reported bacteria species involved in bird-bacteria relationships, and examine the 

potential zoonotic effects of these associations by classifying birds by specific habitats and 

bacteria in terms of pathogenicity and drug resistance. Specifically, we ask the following 

questions:
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1. How are certain characteristics of birds such as taxonomic order, habitat, and 

migration status related to pathogenic bacteria species, specifically ones that are 

pathogenic toward humans?

2. What are the characteristics of bacteria that are found in birds with regard to 

taxonomy, pathogenicity, and antibiotic resistance?

Materials and Methods

Data Compiled from the Literature

We conducted a search of papers published from 2000 to 2015 using SCOPUS, with the 

keywords “avian” or “birds,” and “disease” or “pathogenic,” and “bacteria” following 

PRISMA guidelines (Moher et al. 2009) (Fig. 1). Papers were limited to English primary 

sources that included birds with at least one bacterial association. Each bird-bacteria 

association represented one data point in our analysis. If a paper surveyed a single bird 

species with multiple bacteria species, we included each bird-bacteria association from that 

paper. For example, in one paper, researchers swabbed a herring gull and discovered 24 

bacteria species (Bogomolni et al. 2008) for which we designated 24 separate data points.

Type of Data Collected

For each bird-bacteria association, we made the following classifications: (1) geographic 

zone of study, (2) species, family, and order of bird, (3) whether the bird was wild or 

domestic, (4) migratory status of bird species, (5) habitat type, (6) species, family, and 

phylum of bacteria species associated with the bird, (7) whether the bacteria can cause 

human infection, (8) if bacteria were tested for antibiotic resistance, (9) if bacteria were 

resistant to any antibiotics, (10) antibiotics tested, and (11) antibiotics each bacteria species 

was resistant to. Further details of how we assessed these traits are provided below.

For geographic zone, we recorded whether a study took place in a tropical or temperate area. 

We noted the location where each species was found, and if a general area was given, such 

as “California,” we recorded that as the area. When coordinates were not given, we inputted 

the area into Google Earth Pro (Google Inc. 2015), scrolled to 100–200 m above ground, and 

used the coordinates at the automatically generated marker, usually in the centroid of the 

specified area. Tropical areas were bounded by the Tropic of Cancer (23.4371°N) and Tropic 

of Capricorn (23.4371°S).

If the bird species was not mentioned in an article, we recorded the family or order. Birds 

were considered “domestic” if they were raised solely for human consumption. Species were 

considered “migratory” if the “movement” section in the Handbook of the Birds of the 
World (HBW) (Hoyo et al. 1992–2013) indicated that the bird was a “migrant,” such as 

long-distance or altitudinal. If the section stated that a bird was “sedentary,” a “resident,” or 

“locally nomadic,” it was deemed “non-migratory.” We recorded “N/A” for any bird with 

“little or no information” about its movements, for any “domestic” bird, or if the bird was 

described in publications only as a family or order.
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Birds found in “natural” habitats generally live in areas of non-agricultural flora and fauna 

(Blair 1996). Birds in “suburban” locations live in areas with both built cover and vegetation 

such as parks or gardens, and birds in “urban” habitats were located within a metropolis 

(Blair 1996). Additionally, habitats included “agricultural” for birds found in cultivated 

fields, “industrial livestock” for poultry houses or livestock farms, “multiple habitats” for 

studies taking place in multiple habitats, and “N/A” if the location was vague or unknown. 

We did not include pets. On a species level, if a bird was included in several studies with 

different habitats, it was placed into the “multiple habitats” category. Wild birds sampled 

around poultry houses were considered in “industrial livestock” habitats. “Domestic” birds 

lived in “industrial livestock” habitats, and were separated from wild bird analyses unless 

noted.

For bacteria species, we included species name, or if no species was listed, the genus. To 

determine pathogenicity toward humans, we used peer-reviewed journals to confirm if a 

species of bacteria has caused infections in humans. We recorded if bacteria species were 

tested for antibiotic resistance, the antibiotics used, and the results of those tests. Resistance 

was determined by the author of each study.

To detect bias in the characteristics of birds included in the bird-bacteria literature, we 

estimated the percentages of all birds in temperate versus tropical areas, migratory versus 

non-migratory, and natural versus agricultural versus suburban versus urban versus multiple 

habitat categories by randomly sampling 1000 birds from HBW (Hoyo et al. 1992–2013). 

We used chi square statistics to draw conclusions about patterns in the data. Data for wild 

birds living among domestic birds (in “industrial livestock” habitat) when shown were not 

analyzed statistically because of a low sample size for that group (n = 4).

Results

We analyzed 683 papers, which included 530 unique bird species, 11 phyla of bacteria 

representing at least 368 species, and 2289 unique bird-bacteria associations (Appendix 

Table 1, Appendix Table 2 in ESM). The samples in these studies were collected from all 

seven continents, with most samples from the USA and Europe (Fig. 2).

Characteristics of Birds in this Study

The 530 bird species included in the surveyed literature represent only 5% of 10,731 

recognized bird species and an even smaller percent of the 18,000–20,000 estimated bird 

species (Barrowclough et al. 2016). Birds in this study spanned 29 of the 39 recognized bird 

orders (Gill and Donsker 2017) with a majority of species represented by three orders 

(Passeriformes 47% of 530 bird species; Charadriiformes 12%; Anseriformes, 8%) (Fig. 3). 

In some cases, this was an underrepresentation based on their abundance; for example, 

Passeriformes account for approximately 60% of all bird species. In other cases, there was 

overrepresentation: Charadriiformes account for 3% and Anseriformes less than 2% of all 

known bird species. Among the 683 studies, some species were overrepresented (Appendix 

Table 1, Appendix Figure 1 in ESM).
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Most studies (75%) included birds that were migratory (Table 1). On a per-study level, 51% 

of studies focused on domestic birds in industrial livestock, 15% in natural habitats, 6% in 

suburban habitats, 3% in urban habitats, 2% in agricultural habitats, and 23% in multiple or 

unclearly defined habitats. On a per-species level, 4% of species studied were considered in 

domestic industrial livestock, 41% were only in natural habitats, 14% in suburban habitats, 

and 3% in agricultural habitats. No birds were found in only urban habitats (Table 1). 

Classification of birds in our analysis by migratory pattern and habitat showed that the 

migratory birds were significantly more common than non-migratory birds in all but 

suburban habitats (natural: X1
2 = 85.56, P < 0.0001; suburban: X1

2 = 0.51, P = 0.47; 

agricultural: X1
2 = 4.57, P = 0.03; multiple habitats: X1

2 = 52.47, P < 0.0001; Fig. 4).

We collected life history data from 1000 randomly selected species from HBW. Our sample 

reflected the makeup by order of the 10,731 known bird species (Gill and Donsker 2017). 

Starting with the most speciose orders, Passeriformes accounted for 65% of species (vs. 60% 

in Gill and Donsker 2017), Piciformes for 4.9% (vs. 4.1%), Caprimulgiformes for 4.9% (vs. 

5.6%), Charadriiformes for 3.4% (vs. 3.6%), Columbiformes for 2.7% (vs. 3.2%), etc. Based 

on our estimated percentages using the HBW sample, the majority (73%) of the world’s bird 

species reside in tropical areas. The studies included in our analysis, however, were 

significantly biased toward temperate species (Fig. 2; Table 1). The bird-bacteria literature 

was also significantly biased toward migratory birds: 75% of the bird species studied 

migrate, while we estimate that 32% of the world’s species migrate (Table 1). The bias 

toward migratory birds could result from a bias toward temperate species; (temperate: 74% 

of species studied migrate vs. 32% of all birds: X1
2 = 281.1, P < 0.0001; tropical: 36% of 

species studied migrate vs. 32% of all birds: X1
2 = 0.21, P = 0.68). Finally, while most bird 

species are found in natural areas (about 73%), only 42% of species studied in the bird-

bacteria literature lived there (Table 1). Overall, we found a significantly different 

distribution of species among habitats in the literature compared to distributions worldwide, 

driven by an underrepresentation of natural species and an over-abundance of species found 

in multiple or unclassified habitats (Table 1).

Characteristics of Bird-Associated Bacteria

The 368 bacteria species represented in our findings illustrate a small fraction of sequenced 

bacteria species (Schloss and Handelsman 2004), and even less of the estimated 109–1012 

bacteria species in the world (Dykhuizen 1998; Locey and Lennon 2016; Larson et al. 2017). 

The most frequent bacteria species reported in the reviewed studies were Escherichia coli, 
Salmonella enterica, and Campylobacter jejuni (Appendix Figure 2 in ESM). Two or more 

of these bacteria species were often found in the same bird species (Appendix Table 1; 

Appendix Figure 2 in ESM). Per study, Pasteurella multocida and Borrelia burgdorferi were 

also commonly found in domestic and wild birds, respectively.

Out of 53 described bacteria phyla (Keller and Zengler 2004), 11 were reported in our 

analyses (21%). The majority of bacteria were from Proteobacteria (170 bacteria species out 

of 368; (46%), Firmicutes (31%), or Actinobacteria (11%)) (Fig. 5). One bacterium 

(Avispirillum sp.) has not been classified into a phylum yet (Waldenström 2006). Eleven 
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phyla were found in migratory birds compared to seven phyla in non-migratory birds. 

Additionally, all 11 bacteria phyla were found in temperate habitats, but only eight phyla 

were represented in tropical habitats; temperate habitats had the additional phyla 

Chloroflexi, Deferribacteres, and Deinococcus-Thermus (Appendix Table 1, Appendix Table 

2 in ESM). The greatest diversity of phyla was found in natural habitats (11 phyla), then 

industrial livestock (8), agricultural (6), suburban (6), and urban habitat (5).

Characteristics of Bird-Associated Bacteria that are Human Pathogens

Of the 538 identified bacteria species that are known human pathogens (Taylor et al. 2001), 

we found 199 in our study (37% of total bacterial pathogens). More pathogens were 

identified in temperate (193 species) compared to tropical habitats (48 species), but based on 

sampling effort as measured by the number of studies conducted, proportionately more 

pathogens were identified in tropical studies (48 species from 57 tropical studies, 193 

species from 541 temperate studies (X1
2 = 15.97, P < 0.0001)). Thirty-five of 48 bacteria 

species found in tropical habitats areas were also found in temperate areas. Regarding 

habitat type, most pathogens (137 species) were found in 101 studies conducted in natural 

habitats, of which nearly half (49%) were not reported in other habitats. Suburban habitats 

had 38 species of pathogenic bacteria (from 39 studies), while agricultural and urban 

habitats had 18 and 13 species, from 12 and 20 studies, respectively. Over 350 studies in 

industrial livestock habitats identified 81 pathogens. Overall, the likelihood of detecting 

pathogenic bacteria relative to sampling effort differed significantly among habitats (X4
2 = 

121.39, P < 0.0001), with the fewest pathogens, relative to the number of studies conducted, 

for domestic birds in industrial livestock habitats.

Relative to the total number of bacteria species found, migratory birds were not more likely 

to carry pathogenic bacteria than non-migratory birds (X1
2 = 1.42, P = 0.23; Fig. 6a). As a 

whole, however, pathogenic bacteria were significantly more frequent than non-pathogenic 

bacteria (X6
2 = 57.29, P < 0.0001), specifically in birds from natural, suburban, urban, and 

agricultural field habitats (natural: X1
2 = 240.0, P < 0.0001; suburban: X1

2 = 70.23, P < 

0.0001; urban: X1
2 = 21.12, P < 0.0001; agricultural: X1

2 = 21.12, P < 0.0001; Fig. 6b). 

Domesticated industrial livestock carried nearly equal numbers of pathogenic and non-

pathogenic bacteria (X1
2 = 1.29, P = 0.26; Fig. 6b). While the sample size for wild birds in 

industrial livestock habitats was too small to analyze, each of the four bacteria species 

detected in those birds was pathogenic (Fig. 6b), likely due to our own bias of placing 

“pathogen” within our search terms.

Characteristics of Bacteria with Antibiotic Resistance

One hundred and nine bacteria species out of 368 (29.6%) were tested for antibiotic 

resistance, of which 75% (82 species) showed resistance to at least one antibiotic. Of the 

resistant bacteria in our analysis, 30 (37%) were found only in domesticated livestock. We 

documented 61 resistant bacteria species in migratory birds compared to 24 in nonmigratory 

birds, representing a roughly equal likelihood of identifying unique resistant bacteria based 
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on sampling effort (61 from 48 studies testing resistance of bacteria from migratory birds; 

non-migratory: 24 from 23 studies; X1
2 = 0.15, P = 0.70). Likewise, temperate and tropical 

birds harbored an equal diversity of resistant bacteria, with E. coli as the most resistant 

bacteria in both regions (Appendix Table 3 in ESM). Sixteen resistant bacteria species were 

found in 26 studies testing for resistance in bacteria from tropical birds, and 81 species were 

identified from 143 temperate studies (X1
2 = 0.004, P = 0.95). The diversity of resistant 

bacteria species detected did vary significantly among habitats based on relative sampling 

effort (X4
2 = 26.81, P < 0.0001). Forty resistant bacteria were detected from 19 studies in 

natural habitats (2.1 species/study), 2 species from 2 agricultural studies (1 species/study), 

11 from 17 suburban studies (0.64 species/study), 1 species from 4 studies in urban habitats 

(0.25 species/study), and 44 from 105 industrial livestock studies (0.42 species/study). E. 
coli was resistant to the most antibiotics in every habitat except agricultural habitat, where E. 
coli antibiotic resistance was not assessed (Appendix Table 3 in ESM).

Patterns of Antibiotic Resistance

Of the 176 (26%) studies that tested for antibiotic resistance, the mean number of antibiotics 

tested was 11.5. In total, 125 antibiotics were tested among the studies, with the most 

common being tetracycline (71% of 176 studies), gentamicin (69%), and ampicillin (61%). 

The vast majority of the antibiotics tested, 111 of 125 (89%), were found to have at least one 

bacterium resistant to them (Table 2).

The characteristics of the birds studied were not associated with significant differences in 

antibiotic resistance (migratory vs. non-migratory, temperate vs. tropic, and different 

habitats, X2, all P > 0.80). For example, bacteria from migratory birds were resistant to 79% 

(69/87) of the antibiotics tested compared to 85% (57/67) of antibiotics tested in non-

migratory birds (X1
2 = 0.03, P = 0.87). The percent of antibiotics yielding resistance were 

87% and 89% in temperate versus tropical birds, respectively, and among birds in different 

habitats, ranged from 71 to 95%, again with no significant patterns emerging.

In regard to bird taxonomy, chickens (Gallus gallus) carried bacteria found to be resistant to 

96 antibiotics, the highest among domestic birds (Appendix Table 4 in ESM). Among 

migratory wild birds, the common buzzard (Buteo buteo) had the highest number of resistant 

antibiotics (20), while rock doves (Columba livia) and tawny owls (Strix aluco) had the 

highest number of antibiotic-resistant bacteria for non-migratory birds (24; Appendix Table 

4 in ESM). Likewise, the bird orders Galliformes and Anseriformes had the most antibiotic-

resistant bacteria for both domestic and wild birds (Appendix Table 5 in ESM).

Discussion

Zoonotic transmission of diseases is a clear public health issue (Jones et al. 2008; Cutler et 

al. 2010). Because diverse and abundant bird populations coexist with humans, and humans 

and birds are host to some of the same bacteria (da Costa et al. 2013), an investigation of 

bird-bacteria associations seems warranted. The goals of this literature-based analysis were 

to examine patterns of bird-bacteria associations and identify gaps in knowledge, 
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specifically in determining understudied species, geographic locations, and habitat types. A 

15-year timespan allowed us to obtain a snapshot of the current trends in the literature. A 

limitation could be that rare bacteria are overrepresented compared to common bacteria; 

however, the same common bacteria were sampled year after year (Appendix Table 1 in 

ESM).

We found a clear sampling bias toward domesticated birds, particularly chickens and 

turkeys, and other species closely associated with humans (e.g., rock doves). Further 

attention should be given to sampling bird species from orders underrepresented in bird-

bacteria literature.

Additionally, temperate bird species are overrepresented compared to tropical bird species. 

Studies of tropical birds are particularly relevant in Asia and Africa, where numerous 

bacteria have evolved multi-drug resistance against antibiotics intended to treat tuberculosis, 

cholera, gonorrhea, salmonellosis, methicillin-resistant Staphylococcus aureus, and E. coli 
infections (Ndihokubwayo et al. 2013).

The overrepresentation of birds in multiple habitats possibly reflects an increase in 

urbanization (Luniak 2004). Additionally, the bias toward migratory birds can be partly 

explained by an oversampling of temperate species, which are largely migratory. It seems 

plausible that the literature should also skew toward subjects affecting humans: more 

pathogenic species, more domestic birds.

There is a lack of literature reporting bacterial diversity in temperate versus tropical birds. 

When only comparing bacterial diversity from soil and leaf litter samples in temperate and 

tropical regions, previous researchers found more bacterial diversity in temperate areas 

compared with the tropics (Kim et al. 2014; Tian et al. 2017), which reflects our findings as 

a whole. Previous studies have found that natural and agricultural habitats tend to have more 

bacteria phyla than urban habitats (Ibekwe et al. 2013; Jordaan 2015), and this finding is 

consistent with our results. The oversampling of migratory temperate birds may account for 

some of the apparent increase in bacterial diversity in migratory birds.

Had more bacteria species in birds been sampled, tropical zones would have proportionally 

more human pathogens than temperate zones. Likewise, natural habitats would have 

proportionally more pathogens than other habitats. Both of these findings are consistent with 

previous research (Guernier et al. 2004; Bradley and Altizer 2007). In wild birds, pathogenic 

bacteria were more common than non-pathogens. This could be because of selective 

isolation of known pathogens toward birds or a bias toward sampling dead birds (Benskin et 

al. 2009), which have a higher likelihood of bacterial infection. In our literature-based 

analysis, eight orders of birds had only human-pathogenic bacteria associated with them. It 

is likely that researchers have focused more on bacteria that are human pathogens in order to 

determine the threat from potential zoonotic reservoirs. One caveat is that we input 

“pathogen” or “disease” into our search terms, which inherently makes the results contain 

more pathogens. We statistically analyze human pathogens only, but our results also include 

bird pathogens.
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In total, there was a high rate of resistance (75%) in tested bacteria. Worldwide, data 

regarding antimicrobial resistance are limited except for certain bacteria species of 

widespread concern, such as E. coli and S. aureus that have resistance rates of 50% or more 

in certain countries (WHO 2014). The high rate of resistance in our analysis can reflect the 

efforts of researchers focusing on certain pathogenic bacteria, or it can reflect the severity of 

resistance at hand. Interestingly, there were no significant differences in antibiotic resistance 

rates based on bird migratory status, geographic zone, or habitat type. Migratory birds are 

more likely to have antibiotic-resistant bacteria because they are exposed to antibiotics at 

higher rates due to traveling great distances and inhabiting a variety of environments, 

particularly in areas around humans (Allen et al. 2010). Additionally, industrial livestock and 

urban areas should have higher relative levels of resistant bacteria; because livestock are 

frequently treated with antibiotics, resistance develops more easily and can spread to the 

surrounding environment and to consumers in urban environments (Teuber 2001).

Domestic chickens were found to have the most antibiotic resistance, possibly as a reflection 

of the large number of studies that focused on chickens. It is also likely that chickens contain 

the most resistance because they are subject to numerous antibiotic therapies, and thus 

opportunities for resistance, in intensive farming situations (van den Bogaard et al. 2002; 

Muaz et al. 2018).

We suggest a better integration in the two areas of research of avian studies and 

microbiology. While it is unrealistic to expect those who conduct field studies in birds to add 

a microbial component, better communication and integration of field ornithology with 

microbial studies would allow for a less-biased understanding of bird-bacteria associations. 

More studies can utilize genomic methods and combine their findings with current bird 

microbiome studies to synthesize host-bacteria interactions. Some laboratories have already 

begun work in this direction (Taragel’ová et al. 2008; Literák et al. 2010; Oravcova et al. 

2013). Finally, the significance of birds as vectors for pathogens, including viral pathogens 

that cause West Nile flu and H1N5 flu, makes understanding zoonotic transmission of 

diseases crucial to clinicians and to the field of public health, thus emphasizing the 

importance of multi-disciplinary studies in understanding bird-bacteria associations and their 

consequences.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Screening process. PRISMA flowchart detailing the review and data selection process. Six 

hundred and eighty-three studies were ultimately used for analysis.

Chung et al. Page 14

Ecohealth. Author manuscript; available in PMC 2019 May 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Map of avian sampling locations. Each unique sampling location studied is represented by 

one plotted point on the map. Purple and orange dots are wild and domesticated species, 

respectively. Most of the sampling locations are in temperate locations (defined by areas that 

are above or below 23.4371 degrees latitude) compared with tropical locations. Inset pie 

charts show proportions of sampling locations by unique study (n = 683) and by unique 

species (n = 530).
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Figure 3. 
Distribution of bird orders in the bird-bacteria literature over a 15-year timespan. We 

grouped the 530 unique bird species studied by their orders. In parentheses, the number of 

bird species in each order is shown. The most common orders were Passeriformes (47%), 

Charadriiformes (12%), and Anseriformes (8%). This chart includes 15 domestic species: 8 

Galliformes, 5 Anseriformes, 1 Struthioniformes, 1 Rheiformes.
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Figure 4. 
Bird migratory and habitat traits. Migration status of wild birds in different habitats, 

excluding 16 birds whose migration status was unknown (n = 499). A bird found only in one 

habitat in this literature-based analysis was listed under its respective habitat. Birds sampled 

in several different habitats were grouped into the “Multiple habitats” category.
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Figure 5. 
Distribution of bacteria phyla in the bird-bacteria literature over a 15-year timespan. We 

grouped 368 unique bacteria species studied by phyla. In parentheses, the number of bacteria 

species in each phylum is shown. The most common phyla were Proteobacteria (46%), 

Firmicutes (31%), and Actinobacteria (11%). There was one bacterium (Avispirillum sp.) 

that has not been classified yet (Waldenström 2006) and is in the phylum labeled, “N/A”.
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Figure 6. 
Pathogenicity of bacteria in relation to bird characteristics. a Bacteria pathogenicity and 

migratory status of wild birds. Domestic birds were excluded from migratory counts. b 
Pathogenicity in each of the habitats. Bacteria on domestic species were included in the 

“Industrial livestock: domestic” category. Note: For both a and b, if multiple bacteria species 

were found on a bird, each bacteria species was counted.
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Table 2.

List of Antibiotics and Resistance.

Mechanism/class Antibiotic

Targets cell membrane

 Cationic peptides Bacitracin*

Colistin*

 Lipopeptide Daptomycin

Targets cell wall

 Carbapenems Ertapenem

Imipenem*

Meropenem*

 Cephalosporins (first generation) Cefadroxil*

Cefazolin*

Cefradine*

Cephalothin*

 Cephalosporins (second generation) Cefaclor*

Cefotetan*

Cefotiam*

Cefoxitin*

Cefuroxime*

Cephalexin*

 Cephalosporins (third generation) Cefdinir

Cefixime*

Cefoperazone*

Cefotaxime*

Cefpodoxime*

Ceftazidime*

Ceftibuten

Ceftiofur*

Ceftizoxime*

Ceftriaxone*

 Cephalosporins (fourth generation) Cefepime*

Cefpirome

Cefquinome*

 Glycopeptides Bleomycin

Teicoplanin*

Vancomycin*

 Moenomycins Flavomycin*

 Monobactams Aztreonam*

 Penicillins Amoxicillin*

Ampicillin*

Carbenicillin*
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Mechanism/class Antibiotic

Cloxacillin*

Mecillinam*

Methicillin

Mezlocillin*

Oxacillin*

Penicillin G*

Piperacillin*

Ticarcillin*

 Phosphonic acid derivatives Fosfomycin*

 Polypeptides Enramycin*

 Cephalosporin combination Ceftazidime-clavulanic acid

 Penicillin combination Amoxicillin-clavulanic acid*

Ampicillin-sulbactam*

Piperacillin-tazobactam*

Ticarcillin-clavulanate*

Targets DNA

 Aminocoumarin Novobiocin*

 Nitrofurans Furazolidone*

Nitrofurantoin*

 Nitroimidazoles Metronidazole*

 Quinolones/Fluoro-quinolones Ciprofloxacin*

Danofloxacin*

Difloxacin*

Enrofloxacin*

Flumequine*

Gatifloxacin*

Levofloxacin*

Marbofloxacin*

Moxifloxacin*

Nalidixic acid*

Norfloxacin*

Ofloxacin*

Orbifloxacin*

Oxolinic acid*

 Quinoxalin-di-N-oxides Carbadox*

Targets folic acid synthesis

 Diaminopyrimidine Trimethoprim*

 Sulfonamides Sulfachloropyridazine*

Sulfadiazine-trimethoprim*

Sulfadimethoxine*

Sulfamethazine*

Sulfamethoxazole*
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Mechanism/class Antibiotic

Sulfamethoxazole-trimethoprim*

Sulfathiazole*

Sulfisoxazole*

Sulphadimethoxine*

Targets ribosomes

 Aminoglycosides Amikacin*

Apramycin*

Dihydrostreptomycin*

Gentamicin*

Kanamycin*

Neomycin*

Netilmicin*

Paromomycin

Spectinomycin*

Streptomycin*

Tobramycin*

 Chloramphenicol Chloramphenicol*

 Fusidane Fusidic acid*

 Glycylcyclines Tigecycline*

 Lincosamides Clindamycin*

Lincomycin*

 Lincosamides, Aminoglycoside Lincospectin*

 Macrolides Azithromycin*s

Clarithromycin*

Erythromycin*

Josamycin*

Kitasamycin*

Spiramycin

Telithromycin*

Tilmicosin*

Tulathromycin

Tylosin*

 Orthosomycins Avilamycin*

 Oxazolidinones Linezolid*

 Phenicols Florfenicol*

 Pleuromutilins Tiamulin*

 Streptogramin Quinupristin-dalfopristin*

Streptogramin A*

Streptogramin B*

Virginiamycin*

 Tetracycline Chlortetracycline*

Doxycycline*
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Mechanism/class Antibiotic

Minocycline*

Oxytetracycline*

Tetracycline*

Targets RNA

 Mupirocin Mupirocin

 Rifamycin Rifampicin*

Targets more than one area

 Combination drugs Bacitracin-chloramphenicol

Penicillin-streptomycin

We classified antibiotics found in bird-bacteria literature from 2000 to 2015. Antibiotics are grouped by mechanism, on left. Combination 
antibiotics were considered as one unique antibiotic. An antibiotic with an asterisk (*) means that at least one bacterium has shown resistance to the 
respective antibiotic within our analysis.
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