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Abstract

To what extent can online social networks predict who is at risk of an infection? Many infec-

tions are transmitted through physical encounter between humans, but collecting detailed

information about it can be expensive, might invade privacy, or might not even be possible.

In this paper, we ask whether online social networks help predict and contain epidemic risk.

Using a dataset from a popular online review service which includes over 100 thousand

users and spans 4 years of activity, we build a time-varying network that is a proxy of physi-

cal encounter between its users (the encounter network) and a static network based on their

reported online friendship (the friendship With computer simulations, we compare stochastic

infection processes on the two networks, considering infections on the encounter network

as the benchmark. First, we show that the friendship network is useful to identify the individ-

uals at risk of infection, despite providing lower accuracy than the ideal case in which the

encounters are known. This limited prediction accuracy is not only due to the static nature

of the friendship network because a static version of the encounter network provides more

accurate prediction of risk than the friendship network. Then, we show that periodical moni-

toring of the infection spreading on the encounter network allows to correct the infection

predicted by a process spreading on the friendly staff ndship network, and achieves high

prediction accuracy. Finally, we show that the friendship network contains valuable informa-

tion to effectively contain epidemic outbreaks even when a limited budget is available for

immunization. In particular, a strategy that immunizes random friends of random individuals

achieves the same performance as knowing individuals’ encounters at a small additional

cost, even if the infection spreads on the encounter network.

Introduction

The forecast and containment of epidemics is a central theme in public health [1–4]. Events

such as the recent ebola epidemic constantly drive the attention and resources of institutions

such as the World Health Organization, governments, and researchers [5–7]. Beside biological

epidemics, the study of infectious processes is of broad interest as it models the spread of
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information, behaviors, cultural norms, innovation, as well as the diffusion of computer

viruses [8–11]. As it is impossible to study the spread of infectious diseases through controlled

experiments, and thanks to advancements in computation, modeling efforts have prevailed

[12–14].

The spread of an infection over a real-world network is determined by the interplay of

two processes: the structural dynamics of the network, whose edges change over time, and the

infection dynamics on the network, whose paths are constrained by the realization of the for-

mer process. When the two dynamics operate at comparable time scales, the time-varying

nature of the network cannot be ignored [15–19], specifically devised control strategies are

necessary [20], and aggregating the dynamics of the edges into a static version of the network

can introduce bias [18, 21]. Empirical work suggests that bursty activity patterns slow down

spreading [22–24], but temporal correlations seem to accelerate the early phase of an epidemic

[25, 26].

Knowledge of the patterns of human encounter is fundamental for monitoring and con-

taining outbreaks. Various sources of data can be used as a proxy of physical encounter, for

example check-ins on social networking platforms, traffic records, phone call records, and

wearable sensor data constitute examples [27–29]. However, pervasive and detailed informa-

tion is rarely available and might be expensive and unpractical to collect (as in the case of sen-

sor technologies), prone to errors (as in the case of survey data), and collection might invade

privacy [30–32].

There has been a growing interest in the role of indirect transmission in networks and con-

trol measures for reducing epidemic sizes [33–36]. In the absence of information about human

encounter, social network information obtained via mining of massive on-line social platforms

might be useful to design strategies for containment of epidemic outbreaks. To what extent

can online social networks predict who is at risk of infection? How can information about

such relationships help monitor and contain epidemic outbreaks? Recent work has suggested

that communication traces obtained from mobile phones might help reduce the expected size

of an epidemic [37]. In addition, networks generated from wearable sensor measurements,

diaries of daily contacts, online links and self-reported friendship present similar structural

properties [38]. However, it is unclear whether these global structural properties are represen-

tative of similarities in epidemic processes at the microscopic scale. In general, it is not even

clear whether friendship can be considered a reliable proxy of physical encounter, as a process

spreading from an initial seed, or “patient zero”, can only reach the nodes within its set of influ-
ence through paths that respect time ordering [39].

In this work, we study the prediction of epidemic risk at the individual level, using com-

puter simulation. In particular, we use the friendship ties between the individuals in a social

network to predict who has a high probability of becoming infected, given an infection driven

by physical encounter initiated at a known infection seed. The ability of identifying who is at

risk of infection is critical to inform containment procedures, such as the immunization of

particular groups, or the mobilization of treatment facilities to specific communities at risk.

Using a dataset from the popular online review service Yelp (we consider the Yelp Dataset

Challenge dataset, Round 5: www.yelp.com/dataset_challenge) which includes over 100k

users and spans 4 years of activity, we build a time-varying network that is a proxy of physical

encounter between users and a static network based on their reported friendship—the encoun-

ter network and the friendship network. For comparison, we also consider a static version of

the encounter network, in which temporal information is ignored. Through computer simula-

tion, we study Susceptible-Infected processes [40] spreading on the different networks and

compare the sets of infected individuals, assuming that real infections spread on the encounter

network and that the friendship network is available and used for prediction purposes.

Predicting and containing epidemic risk using on-line friendship networks
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Considering simulated infections on the time-varying encounter network as the benchmark,

we quantify how the friendship network and the static version of the encounter network pro-

vide prediction of individual-level risk.

Given epidemic processes spreading independently on the encounter and friendship net-

works but initiated at the same seed, we show that the friendship network contains useful

information for predicting epidemic risk at the individual level. In particular, the set of

nodes infected by processes spreading on the friendship network approximates those

infected by processes spreading on the encounter network substantially better than random

guessing. In addition, given epidemics spreading on the encounter network, a node’s

probability of becoming infected decreases with its distance from the infection seed on the

friendship network. These are important results, as in practice it might be feasible to track

friendship or other forms of static relationship, while infeasible to track or predict physical

encounter.

However, the prediction accuracy obtained with the friendship network does not come

close to an ideal case in which the encounters are known (which is usually not the case in prac-

tice). Even if the stochasticity of the infection process certainly contributes to the unpredict-

ability of risk at the individual level, the difference between the two networks plays a major

role. In fact, two independent infections spreading on the encounter network and started at

the same seed have on average substantially higher similarity than two infections spreading on

the two different networks. This result is driven not only by the static nature of the friendship

network as opposed to the time-varying nature of the encounter network, because a static ver-

sion of the encounter network provides more accurate prediction of risk than the friendship

network.

From a practical point of view, reported friendship ties can help monitor and contain epi-

demic outbreaks. On the one hand, we show that periodical, but even relatively infrequent,

observations of the benchmark infection boosts the accuracy of risk prediction using the

friendship network. In particular, we consider a scenario in which the encounter network is

still unknown, but the set of infected nodes is observed periodically. In the case of real epidem-

ics, reports of the infected population are usually available at regular intervals, daily, weekly or

monthly, in the form of situational reports or through case management systems. After each

observation, the set of infected individuals estimated by running the process on the friendship

network is updated to match the set of individuals infected by a process spreading on the

encounter network. By comparing the predicted infected set (obtained with the friendship net-

work and periodical updates) and the benchmark infected set (obtained with the encounter

network) immediately before each update, we show that a high level of accuracy is reached and

maintained even with infrequent observations.

On the other hand, we show that online friendship ties allow to effectively allocate a lim-

ited immunization budget in order to reduce the risk of an outbreak, even if the infection

spreads on the encounter network. In particular, we consider the strategy of providing

immunization to random friends of randomly selected individuals, motivated by the

“friendship paradox” [41–43], according to which the average individual in a network is

less connected than their average friend. Compared to a basic strategy that provides immu-

nization to randomly selected individuals, the proposed strategy increases the probability

that an infection dies out in its early stages, and always reduces the size of the infected

population. Its implementation only requires individuals to name a friend and avoids com-

puting metrics such as degree and centrality. Despite its simplicity, it only requires a rela-

tively small additional cost to provide the same effectiveness as a strategy that immunizes

encounters of random individuals (which would therefore require knowledge of the encoun-

ter network).

Predicting and containing epidemic risk using on-line friendship networks
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Methods

Dataset

The Yelp Dataset Challenge dataset Round 5 (www.yelp.com/dataset_challenge, code at

https://zenodo.org/record/2598838#.XJGuuxNKjOQ). consists in 1, 569, 264 reviews and 495,

107 tips to 61, 184 businesses (in 10 cities around the world) posted by 366, 715 users over a

period spanning over 10 years. Within this period, we consider 1, 469 consecutive days ranging

from 1/1/2011 to 1/8/2015, as reviews before 2011 are less numerous. Each review and tip

includes the user who posted it, the reviewed business, and the date it was posted. Yelp users

can form friendship ties between each other, and the list of friends of each user is included in

the dataset. Time information about the formation of friendship ties is not available. Using the

dataset, we define two networks, called the friendship network and the encounter network

respectively.

Let U be the set of users, F� U × U be the set of friendship ties, B the set of businesses, T be

the set of days, R� U × B × T be the set of reviews and tips (which we will refer to as reviews).

For each user u 2 U let Fu� U be the set of friends of u. Therefore F = [u 2 U{(u, v) : v 2 Fu}.
Each review (or tip) r 2 R is a triple (u, b, t) where u 2 U, b 2 B, t 2 T.

The friendship network

Of all users, 174, 100 have at least one friend, with an average number of friends per user, or

friend degree, 14.8. The friend degree distribution is shown in Fig 1 (triangles).

Let NF = (U, F) be the static friendship network. As we consider processes spreading

between connected nodes, connectedness is the key property of the networks. Therefore, we

restrict our attention to the giant component, as users outside giant components form small

components whose dynamics are not relevant. The giant component defined by friendship

includes 168, 923 users (whereas the second largest component has 8 users). In what follows,

we will identify NF with its giant component. Observe that this network is static, as its edges do

not change over time.

The encounter network

The most common vehicle for the spread of infectious diseases is physical contact (rather than

friendship) between individuals. Strictly speaking, two users in U encountered on a given day t
if they visit the same business on day t at the same time. In the present work, given the data

available to us, we consider reviews instead of physical encounter: an edge is active between

two users in U on day t if they posted a review to the same business on day t. Real physical

encounter requires users to visit (rather than review) a business at about the same time, but we

assume that the time of a review is a proxy of the time of the visit to a business. The data at our

disposal does not allow us to derive statistics about how likely a user is to have visited a place

over a given time interval preceding posting a review and we know of no publicly available sta-

tistics or data about this issue. Our assumption is in part justified by the fact that the element

that spreads over a network (e.g., a virus or an opinion) does not necessarily require direct

physical contact. For example, in the case of airborne transmission, particles can remain sus-

pended in the air for hours after an infected individuals has occupied a room [44]. In the

context of our dataset, after an infected user visits a business, the infection might spread to cus-

tomers who visit the business later in the day. Also, the virus can infect customers which are

not included in the dataset, and from them can infect another user who visits the business in a

later moment.

Predicting and containing epidemic risk using on-line friendship networks
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For each t 2 T, U(t) = {u 2 U : (u, b, t) 2 R for some b 2 B} is the set of users who wrote a

review on day t. We refer to U(t) as the active users on day t.
For each t 2 T and u 2 U(t), Eu(t) = {v 2 U(t), v 6¼ u : (u, b, t) 2 R and (v, b, t) 2 R for some

b 2 B}� U is the set of encounters of user u on day t (i.e., users who visited at least one of the

businesses visited by u). E(t) = [u 2 U{(u, v) : v 2 Eu(t)}� U ×U is the set of encounters on day t.
For each t 2 T, let NE(t) = (U, E(t)) be the network defined by the encounters on day t.

Observe that the node set in the definition is U rather than U(t). The encounter network is the

Fig 1. Inverse cumulative distribution function of friend degree (grey triangles) and encounter degree (white circles). The friend degree of a user is

defined as their number of friendship ties. The encounter degree of a user is defined as their number of encounters during all period of observation.

https://doi.org/10.1371/journal.pone.0211765.g001
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sequence {NE(t)}t 2 T. As connectedness is the key property in a spreading process, we consider

the 133, 038 users who had at least one encounter during T.

The distribution is shown in Fig 1 (circles). Fig 2 shows a heat map of friend degree and

encounter degree of users. The x-coordinate and y-coordinate on the map represent encounter

degree and friend degree respectively. Each (x, y) coordinate represents the number of users

with encounter degree equal to x and friend degree equal to y (smaller numbers are repre-

sented by red color tones, higher numbers by yellow color tones). Despite friend degree and

encounter degree are correlated (Pearson product-moment correlation 0.3416, p-value <2.2 �

10−16), the similarity of the sets of the friends and encounters of an individual is low. Fig 3

shows the cumulative distribution function of the Jaccard similarity of the set of friends and

Fig 2. Friends and encounters degree. Heat map of friend degree and encounter degree of all users with at least one friend and one encounter (friend

degree and encounter degree are limited to 200 in the plot). The x-coordinate and y-coordinate on the map represent encounter degree and friend

degree respectively. Each (x, y) coordinate represents the number of users with encounter degree equal to x and friend degree equal to y (smaller

numbers are represented by red color tones, higher numbers by yellow color tones).

https://doi.org/10.1371/journal.pone.0211765.g002
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the set of encounters of all users in the dataset (left panel), of all users in the giant component

of the network defined by all friendship ties (center panel), and of all users in the giant compo-

nent of the network defined by all encounters (right panel). Considering the 72, 786 users with

at least one friend and one encounter, the average Jaccard similarity of their encounter and

friend sets is 0.01716, with only 9, 527 of them with a value different than zero. Looking at the

giant component of the network defined by all friendship ties, the users with nonzero encoun-

ters have average Jaccard similarity of their encounter and friend set of 0.1306, with only 9,

022 users with a nonzero value. Looking at the giant component of the network defined by all

encounters, the users with nonzero friends have average Jaccard similarity of their encounter

and friend set of 0.112, with only 8, 278 users with a nonzero value. In general, the sets of

encounters and of friends of a user can significantly different and often have empty intersec-

tion. Despite epidemic processes spreading on the friendship and on the encounter network

evolve in a qualitatively similar way, the differences in local connectivity determined by the

two definitions of edges might result in very different sets of nodes at risk of infection.

The static encounter network

To argue that our results are not driven by the static nature of the friendship network as

opposed to the time-varying nature of the encounter network, we also consider a static version

of the encounter network. Let Eu = [t2T Eu(t)� U be the set of encounters of u during T, and

E = [t2T[u 2 U{(u, v) : v 2 E(t)}� U × U be the set of encounters between users in U. The static
encounter network is NE = (U, E). We restrict our attention to the giant component of the static

encounter network, which includes 113, 187 users (whereas the second largest component has

23 users).

We could have considered a weighted version of the static encounter network, where the

edge between nodes u and v has weight wu,v = |{t : (u, v) 2 E(t)}|, that is, equal to the number of

encounters between u and v over T, and where infection rates are not constant over edges but

proportional to weights. Our definition of static encounter network was driven by simplicity,

and included an edge between nodes u and v as long as they encountered at least once over T.

Such a simple model is motivated by the reason we introduced the static encounter network,

that is, to show its increased prediction accuracy with respect to the friendship network, in

order to argue that the limits of the friendship network are not only driven by its static nature.

Fig 3. Similarity of friend and encounter sets. Percentile plot of the Jaccard similarity of the set all user’s friends and the set of all user’s encounters.

Left: all non-singleton users. Center: users in the giant component of the network defined by all encounters. Right: users in the giant component of the

network defined by all friendship ties.

https://doi.org/10.1371/journal.pone.0211765.g003
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Infection dynamics

To model the spread of an infectious disease, we consider a Susceptible-Infected (SI) process

[40], in which nodes never recover after being infected. Here, we give a general definition

of the process that applies to both the static and the time-varying networks defined above.

Given a set of nodes V, a set of edges E � V � V and a set of time indices T , let fNðtÞgt2T be a

sequence of networks, where NðtÞ ¼ ðV; EðtÞÞ with EðtÞ � E. For a static network, EðtÞ ¼ E
for all of t 2 T .

Let IðtÞ denote the set of infected nodes at time t, of cardinality I(t). The infection starts at

time t = 0 from a set Ið0Þ of infected seeds.

Consider any t > 0. The infection spreads from the set of already infected

nodes Iðt � 1Þ as follows. For each non-infected node v 2 V n Iðt � 1Þ, let

dvðtÞ ¼ jfu 2 Iðt � 1Þ : ðu; vÞ 2 EðtÞjg, that is, the number of neighbors of v at time t
which are infected at time t − 1. Let BðtÞ ¼ fv 2 V n Iðt � 1Þ : dvðtÞ > 0g, that is, the set of

susceptible nodes at time t. We assume that each node v 2 B(t) gets infected with probability

min{βdv(t), 1}, where β 2 [0, 1] is the rate of infection.

When β = 1 the infection process is deterministic and, at time t, all non-infected neighbors

of the nodes infected by time t − 1 become infected. For finite values of β, the infection spreads

in a stochastic way. We consider different values of β for the different networks, due to their

different connectivity (β = 0.5 on the encounter network, and β = 0.01 on the static networks,

unless differently stated).

For the time-varying networks defined above (i.e., the encounter network and the time-

varying friendship network), T ¼ T. The infection will propagate for |T| time steps, resulting

in an infected population Ið2 T 2Þ. For static networks (i.e., the friendship network),

T ¼ ½0;1Þ and the infection propagates until IðtÞ ¼ V (i.e., until the entire population is

infected).

Our investigation does not include more general models such as SIR processes (Suscepti-

ble-Infected-Recovered), where an infected node recovers from infection with rate γ and after

recovery cannot spread the infection to its neighbors (from a dynamical point of view, the

node is removed from the network). In the considered SI process γ = 0 and nodes never

recover from infection. We made this decision to focus on the structural properties of the two

networks (friendship and encounter) rather then the dynamical properties of the infection

processes (infection and recovery rate). We believe that our results extend to SIR models with

reasonable values of the parameters β and γ, but we leave the question to future investigations.

Infection time

Given a realization of the infection process, for eachm 2 ½0; jVj�, let

tðmÞ ¼ minft : IðtÞ � mg:

The random variable t(m) denotes the first time in which at leastm nodes are infected.

Given a realization of the SI process on a time-varying network, let t(m) =1 forM > IðjTjÞ.
In what follows, the notation tA(m) indicates that nodes on a specific network A are considered

(e.g. A can be the friendship or the encounter network, even if the infection spreads on the

encounter network).

Seed selection

In a static network, seeds are chosen at random and without replacement. In a time-varying

network, the infection can start propagating at the first time t in which there is an edge

Predicting and containing epidemic risk using on-line friendship networks
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between an infected seed and a non-infected node, that is, at time

t0ðIð0ÞÞ ¼ minft : 9ðu; vÞ 2 EðtÞ for some u 2 Ið0Þ; v 2 V n Ið0Þg:

As a remark, for β< 1, it is possible that no node is infected at time t0. Seeds are selected

uniformly at random and without replacement among all nodes v 2 V such that t0({v})� 500,

that is, nodes that have a neighbor in the time-varying network by time t = 500.

Real infection and predicted infection

Assuming simulated infections on the time-varying encounter network as the benchmark, we

quantify the extent to which the friendship network can predict risk at the individual level.

Simulated infections on the static version of the encounter network will serve instead as a com-

parison, in order to characterize how the loss of temporal information affects prediction accu-

racy. In other words, we consider infection dynamics on the encounter network as the real

infections, and try to predict them by running infection dynamics on the friendship network

and on the static version of the encounter network.

Results

Epidemic risk and network distance

In this section we show that distance on the friendship network is correlated to epidemic risk.

Given and infection initiated at a single seed and spreading on the encounter network, nodes

at a shorter distance from the seed on the encounter network have a higher probability of

becoming infected. In the rest of the section, we always consider infections spreading on the

encounter network and distance defined on the friendship network.

Given nodes s and s0 in the friendship network, let d(s, s0) denote their distance (i.e., the

length of the shortest path connecting them). Given node s and an integer d> 0, let

NdðsÞ ¼ fs : dðs; s0Þ ¼ dg

be the set of nodes at distance d from s, and let nd(s) be its cardinality. N1(s) and n1(s) denote

the set of neighbors and the degree of s, respectively.

Let i denote an infection process, and si the selected seed. Given an infection initiated at a

seed si until time T, let IðsiÞ be the set of infected nodes at time T. For each d> 0 let

I dðsiÞ ¼ IðsiÞ \ NdðsÞ

be the set of infected nodes that are at distance d from si on the encounter network. The infec-

tion fraction of nodes at distance d from si is defined as

rdðsiÞ ¼
jI dðsiÞj
ndðsÞ

:

The empirical average of rd(si) over S simulations is given by

�rd ¼
1

S

XS

i¼1

rdðsiÞ;

and represents the risk of becoming infected if the seed is at distance d.

As the spreading of an infection process depends on the infection rate β, we write �rdðbÞ to

compare infection processes with different infection rate. Given a node s in the encounter net-

work, we recall that t0({s}) is the first time period in which s has an edge (that is, the smallest t
such that Eu(t)>0). As we consider infections spreading on the encounter network and
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distance on the friendship network, we consider seeds that are present in both networks. In

each simulation, a single seed is selected uniformly at random between all nodes s 2 |UF\UE|

such that t0({s})� 500 (as infections on time-varying networks spread for a limited number

of time steps, we require them to start early enough). For each β 2 {0, 0.1, 0.25, 0.5} we run

10, 000 simulations. The empirical estimates of �rdðbÞ for 1� d� 8 are shown in Fig 4 and

Table 1.

Fig 4. Risk of infection on the encounter network versus distance from the infection seed. Both distance from the seed on the friendship network

and distance from the seed on the static encounter network are considered. For each value of the infection rate β and each notion of distance from the

seed, 10,000 simulations on the encounter network initiated at random single seeds are run. The x-axis plots the distance d from the seed, the y-axis

plots the empirical probability that nodes at distance d become infected on the encounter network (distance on the friendship network: grey; distance

on the static encounter network: white).

https://doi.org/10.1371/journal.pone.0211765.g004
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Predictive accuracy of the friendship network

In order to evaluate how accurately the friendship network predicts epidemic risk at a micro-

scopic level, we consider infection processes initiated at the same seed and spreading indepen-

dently of each other, and compare the sets of infected nodes. The unpredictability of epidemic

risk is due to the structural differences of the different networks as well as to the randomness

of the infection processes. Therefore, for each of 5, 000 (a node can be selected multiple times

as the seed), we consider four infection processes: two infection processes on the encounter

network that spread independently of each other, one on the friendship network, and one on

the static version of the encounter network (indexed by E1, E2, F and S, respectively).

For target sizem and infection A 2 {E1, E2, F, S} initiated at seed s, let tA(m; s) be the first

time at which at leastm nodes are infected (the quantity might be undefined if the infection

does not reach at leastm individuals). When tA(m; s) is defined, let IA(m; s) be the correspond-

ing infected set (of size at leastm). Consider two infections A, B 2 {E1, E2, F, S}, A 6¼ B, initiated

at the same seed s and either spreading on two different networks, or spreading on the same

network but independently of each other. Given a targetm, if both IA(m; s) and IB(m; s) are

defined, their Jaccard similarity is given by

JA;Bðm; sÞ ¼
jIAðm; sÞ \ IBðm; sÞj
jIAðm; sÞ [ IBðm; sÞj

;

where, given a set X, |X| denotes its cardinality. These measures allow to characterize how

accurately the friendship network and the static version of the encounter network predict

epidemic risk on the encounter network (in the SI, we also consider the precision metrics

|IA(m; s) \ IB(m; s)|/|IA(m; s)| and |IA(m; s) \ IB(m; s)|/|IB(m; s)|, which provide similar obser-

vations and results).

Results are shown in Fig 5 and Table 2. Starting from the left, the first panel plots the met-

rics JE1 ;E2
ðm; sÞ for all seed selections (and a range of values of the target infection sizem), and

represents the baseline unpredictability due solely to the randomness of processes initiated

at the same seed and spreading independently on the encounter network. The second panel

shows the metrics JE1, S(m; s), which includes the unpredictability due to the loss of temporal

information in the static version of the encounter network. The third panel shows the metrics

JE1, F(m; s), which represents the unpredictability of using the friendship network to predict

risk on the encounter network. The fourth and rightmost panel shows the Jaccard similarity

between infection E1 and random sets ofm nodes belonging to but not necessarily connected

on encounter network. Such metric represents the admittedly weak baseline of what is achiev-

able by random guessing, without the knowledge of the structure of either the friendship or

the encounter network, assuming that only the set of nodes is known. Higher values of the

y-axis correspond to higher prediction accuracy. For each value of the targetm separately,

JE1;E2
ðm; sÞ has larger average than both JE1, S(m; s) and JE1, F(m; s), and that JE1, S(m; s) has larger

average than JE1, F(m; s). Notably, the intersections of the infected sets on the friendship and

Table 1. Epidemic risk with respect to distance on the friendship network.

β �r 1ðbÞ �r 2ðbÞ �r 3ðbÞ �r 4ðbÞ �r 5ðbÞ �r 6ðbÞ �r 7ðbÞ �r 8ðbÞ

0.10 4 � 10−3 7 � 10−4 2 � 10−4 7 � 10−5 3 � 10−5 2 � 10−5 1 � 10−5 2 � 10−5

0.25 0.041 0.027 0.014 0.006 0.003 0.003 0.002 0.003 � 10−4

0.50 0.159 0.143 0.095 0.055 0.036 0.031 0.030 0.032

1.00 0.343 0.333 0.262 0.182 0.133 0.118 0.116 0.123

https://doi.org/10.1371/journal.pone.0211765.t001
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encounter networks are substantially and significantly larger than the intersection of random

sets (average Jaccard similarity 1.2 � 10−2 vs. 8.3 � 10−4, two-sample t-tests, p-value<2.2 � 10−16).

This shows the value of using the friendship network for predicting epidemics risk even if the

infection is driven by physical encounter.

Together, the similarity measures J�,�(m; s) allow to characterize how the randomness of

the infection process, the temporal ordering of the encounters and the structural differences

between the networks affect the predictability of epidemic risk. Our analyses show that friend-

ship helps identifying the individuals at risk of infection even if the epidemic is driven by phys-

ical encounters (compare the third and fourth panels of Fig 5). This is an important result, as

in practice it might be feasible to track friendship or other forms of static relationship, but

infeasible to track or predict physical encounters. However, knowledge of the friendship net-

work does not allow us to reach the same accuracy as knowing the encounter network (which

is usually unavailable or extremely costly to get). On the one hand, the randomness of the

infection determines unpredictability of the set of infected individuals, even between indepen-

dent processes spreading on the encounter network and initiated at the same seed (first panel

of Fig 5). On the other hand, structural differences amplify such unpredictability when com-

paring processes spreading on the friendship network and the encounter network (first and

third panels of Fig 5). In addition, our results are not only driven by the static nature of the

friendship network opposed to the time-varying nature of the encounter network, as the static

version of the encounter network provides more accurate prediction of risk than the friendship

network (second and third panels of Fig 5).

Fig 5. Predictability of a node’s epidemic risk. For each of 5000 selections of a random single seed, two simulations on the encounter network, one on

the static network and one on the friendship network are run independently. The average similarities J�,�(m; s) of the infected sets over all seed selections

are shown for different pairs of simulations and different target infection sizem (x-axis). First panel: JE1 ;E2
ðm; sÞ (two independent infections on the

encounter network). Second panel: JE1, S(m; s) (one infection on the encounter network, one infection on the static encounter network). Third panel:

JE1, F(m; s) (one infection on the encounter network, one infection on the friendship network). Fourth panel: Jaccard similarity between infections on the

encounter network and random infected sets of sizem (nodes belonging to the encounter network). Black points represent the averages of the metrics

over all observations such that the metrics are defined, and bars represent standard deviations. Higher values of the y-axis correspond to higher

prediction accuracy.

https://doi.org/10.1371/journal.pone.0211765.g005

Table 2. Single seed infection on the encounter network and the static (encounter and friendship) networks. Stochastic infection—Similarity measures.

m hJE1 ;E2
i hJE1, Si hJE1, Fi h�J E1 ;E2

i h�J E1 ;S
i h�J E1 ;F

i

500 0.115 0.039 0.012 0.270 0.315 0.323

1000 0.159 0.056 0.019 0.325 0.561 0.454

2000 0.220 0.082 0.031 0.438 0.716 0.615

5000 0.316 0.129 0.056 0.571 0.776 0.744

10000 0.397 0.178 0.081 0.664 0.790 0.806

20000 0.466 0.249 0.110 0.788 0.835 0.830

https://doi.org/10.1371/journal.pone.0211765.t002
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Periodical monitoring and prediction

In addition to the predictive power that knowledge of the friendship network brings on its

own, here we show how periodical, even if relatively infrequent, monitoring of the infected

population can boost the prediction capabilities of the friendship network. In particular, we

show that periodical monitoring of the benchmark infection spreading on the encounter

network allows to correct the predicted infection spreading on the friendship network, sub-

stantially increasing accuracy. This corresponds to a scenario in which the investigator has

knowledge of the friendship network but, in addition, is able to observe the infected popula-

tion at fixed intervals. Periodical reports of the infection are usually available in the case of

real epidemics (e.g., weekly or monthly). After each observation, the set of infected individuals

according to the dynamics on the friendship network is updated to match the set of infected

individuals according to the dynamics on the encounter network.

Given a seed s connected on both the encounter and the friendship networks (and such that

t0(s)�900), we consider an infection spreading on the encounter network and one spreading

on the friendship network with periodic corrections (denoted by F and E respectively), for 500

time steps each and independently of each other. Given an observation window W, everyW
time steps the predicted infected set IF(kW) on the friendship network is corrected to match

the benchmark infected set IE(kW) on the encounter network. That is,

IFðkWÞ ¼ IEðkWÞ; for each k > 0:

and between time kW and (k + 1)W − 1 the set predicted infected IF(t) grows according to the

ties of the friendship network (because the encounter network, driving the real infection, is

not known). We are interested in comparing the sets IEðtÞ and IF (t) at times t = kW − 1, that

is, right before each correction. Let

JE;Fðk; s;WÞ ¼
IEðkW � 1Þ \ IFðkW � 1Þ

IEðkW � 1Þ [ IFðkW � 1Þ
;

be the Jaccard similarity of the infected sets on the two networks right before a correction (the

notation shows its dependence onW and on the realization of the infection process, repre-

sented by its seed s).
Fig 6 plots the average Jaccard similarity of the sets of all infected individuals in the two pro-

cesses right before each correction (times kW − 1, including all previous updates of the pre-

dicted infected sets), for window lengthW 2 {10, 20, 50} (6000 simulations for eachW). Note

that, as each infection process is run for T = 500 time steps, the number of corrections (and

therefore the number of points in the plots) depends on the choice ofW and equals T/W. A

high level of prediction accuracy is established early in the process (after the first correction)

and maintained over time. The accuracy decreases with larger window size, but evenW = 50

guarantees good accuracy. Our results suggest that the ability to periodically monitor who is

infected (according to the infection on the encounter network) is key to overcome the limits of

the friendship network in predicting epidemic risk.

In order to compare all window sizesW 2 {10, 20, 50}, we consider all time steps corre-

sponding to a correction for all choices ofW and ignore the first correction (i.e., we consider

times 100k for 1� k� 5). The trend of the average of the Jaccard similarity JE,F(k; s,W) with

respect to time t and window size W is captured by a linear relationship. The measure is lower

in the case ofW = 50 (−0.188 with respect toW = 10, p-value = 2.74 � 10−10), value for which it

increases over time (3.29 � 10−3 every 100 time steps, p-value = 1.27 � 10−3).
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Targeted immunization

In addition to analyzing the power of the online friendship network for real time monitoring

during the response phase of an epidemic, we consider as well how it can improve prepared-

ness through immunization campaigns, which can take the form of physical vaccination or

Fig 6. Periodical correction of risk prediction using the friendship network. Shown here is the average Jaccard similarity between the predicted

infected sets (according to infections spreading on the friendship network, and periodic corrections) and the infected sets given by infections spreading

on the encounter network, before each correction and for different values of the observation windowW. For eachW 2 {10, 20, 50}, 6000 single seeds are

selected at random, and for each seed one simulation on the encounter network and one (with periodic corrections) on the friendship network are run.

The x-axis shows time, the y-axis shows Jaccard similarity. Higher values of the y-axis correspond to higher prediction accuracy.

https://doi.org/10.1371/journal.pone.0211765.g006
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information campaigns informing and advocating for safe practices. In this sense, the friend-

ship paradox (i.e., the average friend of an individual is more connected than the average indi-

vidual [41]) has shown that name-a-friend methods improve the prediction of the peak of an

epidemic outbreak [42] and the spread of information online [43]. Instead of considering a

scenario in which the same network defines both social ties and infection, here we show that

such policies can be effective when social ties are defined according to an online friendship

network and infection spreads on an encounter network.

We consider a scenario in which a fixed budget is available for immunization (e.g., limited

amount of vaccine) and must be effectively allocated in order to contain an epidemic spreading

on the encounter network. In contrast to purely random immunization (where target individuals

to immunize are selected at random), we consider a strategy that selects random friends of ran-

domly chosen individuals for immunization (friend immunization). The friend immunization
method selects target individuals to immunize as follows: (i) select a set R of n random individu-

als; (ii) for each individual x 2 R, randomly select a friend, that is, an individual y such that x and

y are connected in the friendship network; (iii) each individual y receives immunization. The

friend immunization method results in a more effective use of the immunization budget, substan-

tially increasing the probability that an infection dies out in its early stages (Fig 7) and strongly

reducing the final infection size (Fig 8) with respect to random immunization. Moreover, it only

requires a small additional cost (in terms of the number of immunized individuals) to obtain

the same effect as an ideal strategy that targets future encounters rather than friends (encounter

immunization). The encounter immunization selection method is similarly to the friend immuni-

zation method, with the difference that for each x 2 R a future encounter y is selected.

Immunization budget is expressed as a fraction b of the entire population. Once the net-

work size is fixed, considering immunization budget in terms of a fraction b of the entire pop-

ulation is equivalent to setting a fixed number of individual to target (e.g. a fixed number of

vaccine). We represent b as a fraction for representation purposes, in order to stress that an

immunization budget that is small relative to the population can be effectively allocated. For b
2 {1%, 2%, 5%, 10%, 15%}, Fig 7 shows the fraction of infections above 0.1% of the entire pop-

ulation as a function of b for all considered immunization methods (5000 simulations for each

immunization method and value of b). We consider a 0.1% target for the final infection as an

indicator that the infection did not die out in its early stages. Lower values of the y-axis corre-

spond to more effective immunization strategies. The trend in Fig 7 is captured by a linear

model with interactions between immunization type and immunization budget (R2 = 0.98).

Each 1% increase of the immunization budget determines a 0.5% decrease of the fraction of

infections above the 0.1% target for random immunization (p-value = 0.0299), an additional

2.36% decrease for friend immunization (p-value = 2.77 � 106), and an additional 3.5% decrease

for encounter immunization (p-value = 4.03 � 108). Despite its simplicity, friend immunization

provides comparable effectiveness as the encounter immunization strategy (which would

require knowledge of the encounter network), at a small additional cost. For a fixed value of

the y-axis, observe the limited extra immunization budget required to reach that performance

employing friend immunization rather than encounter immunization.

Regarding the size of the infected population, Fig 8 shows (for b = 5%) the fraction of infec-

tions that reach given target sizes (5%, 10%, 15% of the entire population in the left, middle

and right panel respectively) as a function of the infection start time t0(s) of the seed for all

immunization methods (5000 simulations for each immunization method). The y-axis shows

the fraction of infections whose final size is above the given target, and lower values corre-

spond to more effective immunization strategies. Friend immunization provides a large advan-

tage with respect to random immunization, and its effectiveness increases with increasing

immunization budget faster than it does for the latter.
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Discussion

Epidemics are complex problems that draw tremendous efforts from Governments and Inter-

national Organizations. Given the diversity of contexts in which they happen and the varied

nature of different diseases, epidemic response presents multiple challenges that need to be

Fig 7. Fraction of infections that do not die out in their early stages as a function of the immunization budget b and the immunization method.

For each immunization type and b 2 {1%, 2%, 5%, 10%, 15%}, 5000 simulations on the encounter network initiated at random single seeds are run. The

x-axis shows b (% of population that receives immunization), the y-axis shows the fraction of infections whose final size is above 0.1% of the entire

population (taken as an indicator that an infection did not die out in its early stages). Lower values of the y-axis correspond to more effective

immunization strategies.

https://doi.org/10.1371/journal.pone.0211765.g007
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addressed in order to curve the thread. In addition, an increasingly connected world has

shown in the last decades the fast pace at which epidemics can turn into pandemics—see for

example the H1N1 crisis of 2009, the Ebola outbreak in 2014, or the Zika epidemic of 2015.

The increased speed and reach have further pointed out the need to develop more and better

tools to target resources in a more accurately, timely and efficient manner.

One key aspect of epidemic response is forecasting of risk, that is, predicting what individu-

als or areas are at higher risk of being infected in the future. Within the United Nations this

need translated into diverse efforts, ranging from contact tracing methodologies [45] that are

critical in highly contagious outbreaks such as Ebola, to the implementation of tools that com-

bine classical statistical models with meteorological, entomological and epidemiological data

(used for example in the early detection of Dengue outbreaks [46]), to the promotion of usage

of new sources of data [47].

These approaches are not intended to substitute one another, but they reflect the complex-

ity of predicting and containing epidemic risk and the need to target the particular idiosyncra-

sies of the situation at hand. Contact tracing, for example is one of the most effective methods

for containing an epidemic, but requires huge effort and cost to identify cases, perform inter-

views and monitor contacts. In addition, it relies on active participation and cooperation by

the affected communities [45]. Phone call data on the other hand is a less expensive source of

real time information and has proven useful during epidemic outbreaks such as the West Afri-

can Ebola outbreak [48], but accessing call records presents important privacy issues, even

when anonymized, and aggregation poses certain limitations when predicting the geographical

spread of an epidemic [49, 50].

On-line friendship networks are publicly available, partially or fully, on many online plat-

forms. In a practical scenario, the ego-centric friendship network of an infected individual

could be quickly accessed with the individual’s cooperation. Therefore, online social networks

presents themselves as an additional data resource to inform epidemic response in contexts

where contact information is hard to retrieve. This paper is a first step in this direction, explor-

ing how the knowledge of a friendship or other social network, while not being the physical

avenue of epidemic spread, can be operationalized to help predict and contain epidemic risk.

It is perhaps not surprising that the friendship network provides useful information for

identifying the individuals at risk even if the infection spreads on the encounter network.

Fig 8. Final infection size as a function of the immunization method and the infection start time. Given immunization budget b = 5% of the entire

population, for each immunization type, 5000 simulations on the encounter network are initiated at random single seeds. Each panel considers a target

infection size expressed as a percentage of the entire population. The x-axis shows the infection start time t0(s) of seed s, the y-axis shows the fraction of

infections whose final size is above the given target. Lower values of the y-axis correspond to more effective immunization strategies.

https://doi.org/10.1371/journal.pone.0211765.g008

Predicting and containing epidemic risk using on-line friendship networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0211765 May 16, 2019 17 / 21

https://doi.org/10.1371/journal.pone.0211765.g008
https://doi.org/10.1371/journal.pone.0211765


However, due to the structural differences between the two networks, accuracy of predictions

using the friendship network does not come close to the ideal case in which the encounter

network is known. Despite these differences in the networks and the prediction results, our

simulations show that knowledge of the friendship network enables effective monitoring and

immunization strategies. Very high prediction accuracy using the friendship network can be

reached and maintained if periodical yet infrequent reports of the infected population are

available, as they are in many real epidemic response scenarios. In addition, in the context of

immunization with limited budget, simply asking individuals to name a friend enables the

effective use of the available resources, and requires a small additional investment to reach the

same performance as knowing the encounter network.

When it is known who is infected or likely to become infected (e.g., individuals traveling to

certain countries who might have come in contact with a pathogen), accurate prediction of the

individuals at risk of contagion would allow targeted monitoring and immunization. Taken

together, our results highlight the opportunity of using a friendship network for predicting,

monitoring and containing epidemics. In real scenarios, friendship, family or professional

networks (which can be considered static or almost static) are more likely to be available than

time-varying networks of physical encounters, which would require extensive tracking of the

population. In addition, the encounter network is fully accessible only in a context of “predic-

tion in retrospect”, as in the case of the present work. Information to predict future encounters

between individuals is likely to be unavailable, at least at a detailed level. However, a feasible

approach could use past encounters as a proxy of future encounters. In fact, it is known that

human mobility and encounter present high spatial and temporal regularity and predictability

[51–54]. From a practical perspective, networks based on social relationships (such as a friend-

ship network) might be complemented by information about past encounter. In particular, the

links in a friendship network (which might be initialized according to known or self-reported

familial or professional ties) could be updated based on past encounters in order to reflect the

encounter network in an increasingly accurate fashion. Such approaches could be complimen-

tary to the periodical monitoring of the infected population that we considered in the paper,

and represent an interesting avenue of future research.

In the present paper we assumed that the network structure does not change over time

based on an infection. For example, certain infected individuals might avoid contact with

others, and thus be removed from the encounter network, preventing additional infection.

Removal might happen with a given probability or with some delay from the time of infection.

We leave the investigation of such scenarios to future research, and focused on the simpler and

fundamental scenario in which infected individuals remain in the network.

We considered reviews as a proxy of physical encounter—an edge is active between two

users on day t if they both posted a review to or a tip about the same business on day t. This

constitutes an approximation of real physical encounter, which would require users to visit

(rather than review) a business at about the same time. In order to justify this assumption, we

observe that the time of a review is a proxy of the time of the visit to a business, and that infec-

tions do not necessarily require direct physical contact. In fact, in the case of certain airborne

diseases, particles can remain suspended in the air for several hours after an infected individual

has been in a room [44]. In the context of our dataset, after an infected user visits a business,

the infection might spread to customers who visit the business later in the day. Other proxies

of physical encounter, such as proximity measured by Bluetooth devices, are usually limited to

small population, and suffer different limitations (e.g., the signal passes through walls).

Our simulations are based on a large dataset that allowed us to build a static friendship net-

work and a time-varying encounter network that is a candidate vehicle for the spread of a path-

ogen. The dataset includes more than 100k individuals and spans more than 4 years of activity.
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In general, other datasets might be available and allow similar analyses. Friendship networks

whose edges have a different semantic than that considered in the present work might lead to

different observations.

Epidemic response is a complex and often time critical problem, requiring from the

research community to help better understand what sources of data and methodologies can

help shed light and better target efforts in real world scenarios. This work shows how friend-

ship networks can be used as a valuable resource when coupled with periodically available case

data. To further this line of research it is important to count with more and more comprehen-

sive datasets that include information on contact/mobility as well as on friendship/relation,

ideally during the course of an epidemic. It is also important, when designing innovative meth-

odologies for containing and predicting epidemic risk, to closely consider the processes and

data followed and gathered, respectively, by governments and humanitarian organizations on

the ground when responding to epidemics as an important asset to improve the accuracy of

and find value in alternative methods and data.
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