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Abstract

Background/Objectives

Antibiotic use in early life has been associated with weight gain in several populations. How-

ever, associations between chronic antibiotic use and weight among adults in the general

population are unknown.

Subjects/Methods

The NIEHS Sister Study is a longitudinal cohort of sisters of women with breast cancer. We

examined associations between chronic antibiotic use (� 3 months) during the fourth decade

of life (30–39 years) and subsequent obesity at enrollment (mean age = 55) via logistic

regression. We also examined associations between chronic antibiotic use in the 5 years and

12 months prior to enrollment and weight gain after enrollment in linear mixed models. Mod-

els were adjusted for race/ethnicity, education, urban/rural status, age, and smoking.

Results

In adjusted analyses (n = 50,237), chronic penicillin use during the 4th decade of life was

associated with obesity at enrollment (OR 2.00, 95% CI 1.40, 2.87), and use in the 5 years

prior to enrollment was associated with increased BMI change after enrollment (β 1.00 95%

CI 0.01, 2.00). Use of bactericidals (OR 1.71, 95% CI 1.29, 2.26) during the 4th decade of

life was also associated with obesity at enrollment. Associations for penicillins and bacterici-

dals were consistent across indications for use. Bacteriostatic use in the 5 years prior to

enrollment was associated with a reduction in BMI after enrollment (β -0.52, 95% CI -1.04,

0.00), and tetracycline use during the 4th decade of life was associated with reduced odds of

obesity at enrollment (OR 0.72, 95% CI 0.56, 0.92). However, these inverse associations

were only present for those who reported taking antibiotics for skin purposes. Cephalospo-

rins, macrolides, quinolones, and sulfonamides were not associated with BMI change over

time.
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Conclusions

Chronic use of antibiotics during adulthood may have long-lasting impacts on BMI. Associa-

tions may differ by antibiotic class, and confounding by indication may be important for

some antibiotic classes.

Introduction

Antibiotics have been used for growth promotion in several species of livestock since the 1950s

[1, 2], although the hypothesis that antibiotic use may similarly result in weight gain in healthy

humans has only recently been investigated. Oral antibiotics increase height and weight of

children with malnutrition or infection in low and middle income countries (reviewed in [3]).

Antibiotic treatment of severe, chronic diseases in adults has also been associated with weight

gain. Macrolide treatment for cystic fibrosis [4]; omeprazole, amoxicillin, and clarithromycin

combination treatment for Helicobacter pylori [5]; and treatment of infective endocarditis with

vancomycin and gentamycin [6]; were all associated with increased weight gain in treated

patients. These weight gain effects may have been mediated by the treatment of infectious dis-

ease, since infections may lead to reduced absorption of nutrients, increased loss of nutrients

from diarrhea, nutrient diversion from growth to immune support, and lack of appetite [7–9].

Other evidence supports a microbiome-mediated pathway for the relationship between

antibiotics and obesity. Chronic and repeated antibiotic and probiotic use may have a pro-

found impact on the composition of the gut microbiome [10–12], which differs between obese

and lean people [13–15]. In animal and human studies, some probiotic strains have been asso-

ciated with weight gain (reviewed in [16]), though others have shown associations with weight

loss [17–19]. Since probiotics do not treat infections, at least some of the mechanism by which

probiotics cause weight gain may be via alteration of gut microbiota and not via a protective

effect against harmful pathogens. Transplanting fecal microbiota from lean/obese discordant

human twin pairs into germfree mice led to weight gain in the mice that received the micro-

biota from the obese twins [20], implying that the microbiota themselves may be responsible

for weight alteration.

Bacteria may influence the host’s weight via several mechanisms. Bacteria are responsible

for the metabolism of complex carbohydrates that result in short chain fatty acids [21], which

provide an additional source of energy for the body through lipid and glucose synthesis and

absorption of monosaccharides from the gut lumen [22]. This absorption induces hepatic lipo-

genesis, is responsible for depositing triglycerides in fat cells, and generally influences energy

harvest from the diet and storage of energy in the host [23].

In humans, there has been a recent explosion of epidemiological evidence supporting an

association between early-life antibiotics and overweight and obesity in children [24–33],

although indication for use may be an important confounder [32]. As the first year of life is

critical for development of the microbiota, this research suggests that disruption of the devel-

opment of the microbiome during infancy may lead to increased BMI in later life, and the

effect may vary by type of antibiotic. However, because microbiota are responsible for energy

harvesting and storage throughout life, and because even week-long doses of antibiotics may

alter microbial composition for 2 years in adults [34], chronic antibiotic exposure in adulthood

may also result in altered weight. This has not been previously explored from a chronic disease

perspective, in part because long-term antibiotic use is somewhat rare. To address this gap, we

conducted an analysis to examine the association of different antibiotics with weight and

weight change in a large prospective cohort of adult women.
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Methods

Study population

The National Institute of Environmental Health Sciences Sister Study is a prospective cohort

study of environmental and genetic risk factors for breast cancer and other endpoints in

approximately 50,000 women ages 35 to 74 years [35]. At enrollment, participants were unaf-

fected with breast cancer but did have a sister who was diagnosed with the disease. Women

were recruited from all 50 states in the USA and Puerto Rico. Although they are similar to the

general population with regard to some lifestyle factors, as with most volunteer cohorts, partic-

ipants tend to be healthier and to have higher socioeconomic status than similarly aged

women from the general population. We used data from Sister Study Data Release 4.1, which

contains baseline data and two detailed follow-ups that include height and weight. Details of

the study have been described elsewhere. For this study, all women who were not currently

pregnant or breastfeeding with complete data on anthropometry at enrollment and anthropo-

metric history, history of antibiotic usage, and covariates were included in analyses. This

research was approved by the Institutional Review Boards of the National Institute of Environ-

mental Health Sciences, NIH, and the Copernicus Group.

Anthropometric measurement

At enrollment (ages 35–74, mean age = 55), examiners visited participant’s homes and mea-

sured height and weight. On the enrollment questionnaire, women reported height and weight

during their 30’s. Additionally, at the first and second detailed follow-ups, women self-

reported current height and weight. Body mass index (BMI) was calculated using the formula

weight (lb)/ [height(in)]2 x703, and we used the CDC adult conventions to determine weight

status [36]. BMI below 18.5 is considered underweight, 18.5 to<25.0 is normal weight, 25.0 to

<30 is overweight, and 30.0 and above is obese.

Percent changes in BMI were also calculated for changes from a woman’s 30s (4th decade of

life) to enrollment, from enrollment to the first detailed follow-up, from enrollment to the sec-

ond detailed follow-up, and from the first to the second detailed follow-up. At enrollment, we

used BMI from the examiner-measured height and weight data, and at all other instances used

the self-report. In sensitivity analyses, we evaluated self-reported BMI at enrollment.

Antibiotic use

At enrollment, women reported whether they had ever taken oral antibiotics at least three

times a week for three months or longer, excluding topical antibiotics. They additionally

reported the name of the antibiotic, the indication for use, the age they first started taking the

antibiotic regularly, and the duration of use.

We collapsed antibiotics into classes for analyses, including aminoglycosides, cephalospo-

rins, chloramphenicol, macrolides, penicillins, other beta lactams, quinolones, sulfonamides,

tetracyclines, and other antibiotics. We also grouped antibiotics by whether they are bacteri-

cidal (penicillins, quinolones, cephalosporins, aminoglycosides, other beta-lactams) or bacteri-

ostatic (tetracyclines, macrolides, sulfonamides, chloramphenicol). We collapsed indications

into categories of skin issues (i.e. rosacea, acne), and non-skin issues (ear nose and throat,

respiratory, prevention [taking prior to surgery or dental visits], sinus, urinary tract infections,

other), since this categorization was the best predictor of weight change. In analyses of individ-

ual antibiotics, we considered binary variables indicating ever-use of antibiotic classes with at

least 20 exposed participants, thus, we excluded aminoglycosides (n = 13), chloramphenicols

(n = 5), and other beta lactams (n = 2). We also considered antibiotic use during a woman’s
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30s, antibiotic use in the year prior to enrollment, and antibiotic use in the five years preceding

enrollment.

Covariates

To identify important covariates for estimating the relationship between chronic antibiotic use

and weight gain, we considered a directed acyclic graph (DAG) to identify possible confound-

ers, colliders, and mediators [37]. Variables in the DAG included race/ethnicity, education,

age at enrollment, urban/rural status, smoking, exercise, diabetes, sugary beverage intake at

enrollment, total calorie intake at enrollment, and healthy lifestyle. All models were adjusted

for race/ethnicity (non-Hispanic white, non-Hispanic black, Hispanic, other), education

(binary variable indicating at least bachelor’s degree), age at enrollment (four categories

included <45, 45 to<55, 55 to<65, and over 65), urban/rural status (binary variable indicat-

ing urban residence at enrollment), and smoking status (total pack years, calculated from

packs/day � years smoked). Distributions of these variables were calculated for the populations

at enrollment and at each follow-up. We also calculated the length of time participants

reported using each antibiotic class, and report the medians and the 25th and 75th percentiles

for each class. These measures are included only for those who report using antibiotics.

Data analysis

We estimated prevalence odds ratios of the associations between ever use of antibiotics and

obesity at enrollment in logistic regression models. We also estimated associations between

use of antibiotics during the 30s and obesity at enrollment (minimum age at enrollment = 35,

mean age = 55). To assess this, we considered those who initiated antibiotic use during their

30s as exposed. Those who initiated antibiotic use outside of that timeframe were excluded.

This approach addressed the concern that initiation of antibiotic use prior to their 30s might

capture weight gain prior to their 30s. It also addressed the concern that initiation of antibiotic

use after the 4th decade of life might not represent a model where the exposure precedes weight

gain, and also narrows the time window between last reported weight and initiation of antibi-

otic use. We also estimated associations between use of antibiotics during their 30s and obesity

at enrollment in a logistic regression model that excluded women with obesity during their

30s.

We also took advantage of more recently collected data to minimize recall bias of weight

and antibiotic use. We estimated associations between reported antibiotic use in the 12 months

prior to enrollment, and five years prior to enrollment, and percent changes in BMI from

enrollment to each follow up and from the 1st to the 2nd follow up. We used a linear mixed

regression model with random effects for subject, fixed effects for the covariates listed previ-

ously, and unstructured covariance to perform longitudinal analyses. In addition to control-

ling for the standard set of covariates, we controlled for BMI at enrollment. In sensitivity

analyses, we omitted this variable. Since several participants reported using multiple antibiotic

classes, and since users of other antibiotics were included in the referent categories for several

models, we also performed sensitivity analyses where the exposed category included only those

who reported using the antibiotic class of interest, and the referent category only included

those who reported no antibiotic use. Participants who reported using other antibiotic classes

were excluded from these models.

To account for possible confounding by indication, we separately considered associations

between antibiotics taken for skin and antibiotics taken for non-skin purposes in modeling

antibiotic associations with weight gain. Women who did not use antibiotics were not asked

about these conditions or, if asked, asked in the same way as women who used antibiotics, and
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therefore we were unable to assess interactions between antibiotics and indications. Instead,

we compared associations for antibiotic users who reported uses for skin, and users who

reported uses for non-skin, and compared those against participants who did not report using

that antibiotic.

We conducted several sensitivity analyses. These included evaluating modification by race/

ethnicity, and diabetes status, at an alpha of 0.10. We controlled for time between first and sec-

ond follow ups in longitudinal models, and also separately evaluated whether associations

between antibiotic use differed by age at initiation. To assess this, we examined childhood ini-

tiation (<15 years), early adult initiation (15–45), and menopause initiation (45–55), and asso-

ciations with obesity at enrollment, restricted to participants who were over the age of 55.

All statistical analyses were performed in R V3.3.1.

Results

Women in the Sister Study were predominantly white, between 40 and 60 years of age at

enrollment, of normal weight, and approximately half had a college degree (Table 1). Of

50,884 women who were enrolled, 50,237 had complete covariate, exposure, and weight data

and met inclusion criteria. Of the included women, 46,697 (93%) completed the first follow-up

and 44,381 (88%) completed the second follow-up. Demographic composition was stable over

follow-up (Table 1). The first and second follow-ups took place on average 2.8 (sd = 0.6) and

5.7 (sd = 1.0 years) years after enrollment, respectively. The median length of use was 12

months for macrolides, penicillins, and sulfonamides, 6 months for cephalosporins and quino-

lones, and 24 months for tetracyclines (Table 1).

In adjusted analyses of the associations between ever-use of antibiotics and obesity at

enrollment, ever-use of cephalosporins (OR 1.78, 95% CI 1.38, 2.29), penicillins (OR 1.35, 95%

CI 1.20, 1.52), quinolones (OR 1.69, 95% CI 1.37, 2.09), and bactericidal antibiotics (OR 1.43,

95% CI 1.29, 1.58) were associated with an increased odds of obesity at enrollment (Table 2).

Ever-use of tetracyclines (OR 0.76, 95% CI 0.70, 0.83) and bacteriostatic antibiotics (OR 0.84,

95% CI 0.78, 0.91) were associated with a lower odds of obesity (Table 2). Macrolides and sul-

fonamides showed no association between ever-use and obesity at enrollment. Similarly, ever

use of any antibiotic was not associated with obesity at enrollment. Similar associations were

evident at the 1st and 2nd follow-ups, and for both adjusted and unadjusted ORs.

Associations between antibiotic use during the 4th decade of life (30s) and obesity at enroll-

ment resulted in slightly different findings. Use of penicillins (OR 2.00, 95% CI 1.40, 2.87) and

bactericidals (OR 1.71, 95% CI 1.29, 2.26), but not cephalosporins, quinolones or the broad

“any antibiotic” category, during their 30s was associated with obesity at enrollment (Table 3).

Initiating use of tetracyclines (OR 0.72, 95% CI 0.56, 0.92), or any bacteriostatic antibiotic (OR

0.82, 95% CI 0.67, 1.01), during a woman’s 30s was inversely associated with obesity (Table 3).

The magnitudes of the associations for penicillins and bactericidals were similar across catego-

ries of indications for use (Table 4). The OR for skin was non-significant for penicillins and

bactericidals, but few participants reported use of these antibiotics for skin conditions (n = 21

for penicillins, n = 30 for bactericidals). The inverse association between tetracyclines and obe-

sity was only present for skin-users (OR 0.64, 95% CI 0.48, 0.85); the OR for non-skin condi-

tion use was 1.19, 95% 0.70, 2.02. Similarly, the inverse association between bacteriostatic use

and obesity was only seen for skin users.

Findings for penicillin were similar when we examined associations between reported anti-

biotic use immediately prior to enrollment and weight gain during the follow-up periods

(Table 5). Penicillin use in the 5 years prior to enrollment was associated with increased weight

gain (% change in BMI) after follow-up (β 1.00, 95% CI 0.01, 2.00). Although the beta estimate
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for penicillin use in the 12 months prior to enrollment was similarly elevated, the association

was not significant (β 1.53, 95% CI -025, 3.31). These effect sizes are relatively modest; using

penicillin in the past 5 years was associated with a 1% gain in BMI. For example, for a 5’5”

woman who weighed 150 pounds at enrollment, this represents a gain of approximately 1.5–2

pounds over the entire follow-up period. Conversely, bacteriostatic use in the 5 years prior to

enrollment was associated with weight loss over follow-up (β -0.52, 95% CI -1.04, 0.00),

although there was no significant association for bacteriostatic use 12 months prior to enroll-

ment (β 0.28, 95% CI -0.67, 1.22). In contrast to results from models examining use in earlier

life (initiation of use in 30s), examining use in the 12 months or 5 years prior to enrollment

resulted in no consistent association between tetracyclines or bactericidals and weight change

after enrollment. For all models, associations were unchanged in sensitivity analyses where the

exposed category included only those who reported using the antibiotic of interest, and the ref-

erent category included only those who reported never taking any antibiotics.

Sensitivity analyses included assessing modification by race/ethnicity and diabetes status,

confounding by time between first second follow-ups, and age at antibiotic initiation. None of

these analyses influenced associations or changed interpretations.

Table 1. Characteristics of study population by follow-up.

Characteristic Total Population at Enrollment 1st Follow-up 2nd Follow-up

N = 50,237 N = 46,697 N = 44,381

Continuous Variables (Mean (SD))

BMI in 30s 23.30 (3.99) 23.24 (3.94) 23.19 (3.84)

Smoking in pack years 6.40 (12.48) 6.28 (12.33) 6.22 (12.21)

Current Smoking (Any) n (%) 4,056 (8.07) 3,565 (7.63) 3,285 (7.40)

Categorical Variables (n (%))

Education No College 24,615 (49.00) 22,539 (48.27) 21,103 (47.54)

College Degree 25,622 (51.00) 24,158 (51.73) 23,278 (52.46)

Race/

Ethnicity

NH white 42,073 (83.75) 39,579 (84.76) 38,436 (86.60)

NH Black 4,345 (8.71) 3,779 (8.09) 3,070 (6.91)

Hispanic 2,477 (4.93) 2,149 (4.60) 1,738 (3.92)

Other 1,313 (2.61) 1,190 (2.55) 1,137 (2.56)

Urban Rural 21,099 (41.98) 19,671 (42.12) 18,753 (42.25)

Urban 29,162 (58.02) 27,026 (57.88) 25,628 (57.75)

Age at Enrollment 35–44 6,461 (12.87) 5,856 (12.54) 5,478 (12.34)

45–54 17,330 (34.50) 15,990 (34.24) 15,216 (34.28)

55–64 17,712 (35.26) 16,672 (35.70) 15,923 (35.88)

� 65 8,734 (17.39) 8,179 (17.51) 7,764 (17.49)

Ever Chronic Antibiotic Use None 44,977 (89.53) 41,785 (89.48) 39,694 (89.37)

Any 5,260 (10.47) 4,912 (10.52) 4,720 (10.63)

Length of Antibiotic Use� (Median, 25/75 percentile in months) Cephalosporins 6 (3, 12) 6 (3, 12) 6 (3, 12)

Macrolides 12 (6, 30) 12 (6, 24) 12 (6, 24)

Penicillins 12 (4, 36) 12 (4, 36) 12 (4, 36)

Quinolones 6 (3, 12) 6 (3, 12) 6 (3, 12)

Sulfonamides 12 (6, 36) 12 (6, 36) 12 (6, 36)

Tetracyclines 24 (12, 36) 24 (12, 36) 24 (12, 36)

Total population at enrollment includes participants at enrollment who met inclusion criteria for the current study, 1st follow-up includes participants who returned the

1st follow-up questionnaire and had BMI information, 2nd follow-up includes participants who returned the 2nd follow-up questionnaire and had BMI data.

�Medians and 25/75 percentiles for antibiotic use are calculated based only on those who reported ever using that specific class

https://doi.org/10.1371/journal.pone.0216959.t001
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Discussion

Across all analyses, penicillin use was prospectively associated with weight gain or obesity,

which appeared independent of indication for use. Although bactericidal use during the 4th

decade of life was associated with obesity at enrollment, the association between bactericidal

use immediately prior to enrollment and subsequent weight gain was not significant. Although

use of tetracyclines and bacteriostatics were associated with reduced odds of obesity among

those taking antibiotics for skin purposes, there was no association for participants taking

these antibiotics for non-skin purposes. Additionally, most bacteriostatics users were tetracy-

clines users, and this association was likely driven by tetracyclines. Finally, ever-use of cephalo-

sporins, quinolones, penicillins and bactericidals were cross-sectionally associated with obesity

at enrollment, although cephalosporins and quinolones were not associated with weight gain

in prospective analyses that minimized the possibility of reverse causality. Reverse causality is

not a trivial concern, since the obese population has a higher risk of infection than the non-

obese population [38].

The association between antibiotics and weight change is biologically plausible and poten-

tially mediated by changes in the gut microbiota and alterations in hormones that regulate

energy homeostasis, such as leptin and ghrelin [23]. Antibiotic exposure does alter the compo-

sition of microbial communities (reviewed in [34]). However, there is a wide range of micro-

bial action across antibiotic classes and antibiotic targets. Tetracyclines and bacteriostatics

were paradoxically associated with reduced weight, although only among those using tetracy-

clines for skin conditions. This suggests the possibility of confounding by indication for these

classes of antibiotics. Although associations between penicillins and bactericidals were

Table 2. Prevalence odds ratios of associations between antibiotic use and obesity.

At Enrollment

N = 50,237

At 1st Follow-up

N = 46,697

At 2nd Follow-up

N = 44,381

�Not Obese Obese Unadjusted

OR (95% CI)

Adjusted

OR (95% CI)1
Unadjusted

OR (95% CI)

Adjusted

OR (95% CI)1
Unadjusted

OR (95% CI)

Adjusted

OR (95% CI)1

No Cephalosporins 35,114 14,872 1.78 (1.39, 2.29) 1.78 (1.38, 2.29) 1.54 (1.18, 2.01) 1.53 (1.17, 2.00) 1.57 (1.20, 2.07) 1.58 (1.20, 2.08)

Ever Cephalosporin 143 108

No Macrolides 34,780 14,788 0.95 (0.80, 1.12) 1.03 (0.87, 1.22) 1.08 (0.91, 1.28) 1.15 (0.97, 1.37) 1.10 (0.92, 1.30) 1.15 (0.97, 1.37)

Ever Macrolides 477 192

No Penicillins 34,479 14,512 1.43 (1.27, 1.61) 1.35 (1.20, 1.52) 1.35 (1.19, 1.53) 1.27 (1.12, 1.44) 1.29 (1.14, 1.47) 1.21 (1.06, 1.38)

Ever Penicillins 778 468

No Quinolones 35,050 14,825 1.77 (1.44, 2.18) 1.69 (1.37, 2.09) 1.50 (1.19, 1.88) 1.44 (1.14, 1.81) 1.27 (0.99, 1.62) 1.21 (0.94, 1.55)

Ever Quinolones 207 155

No Sulfonamides 34,915 14,833 1.01 (0.83, 1.23) 1.03 (0.84, 1.25) 1.07 (0.88, 1.31) 1.09 (0.89, 1.34) 1.14 (0.93, 1.39) 1.16 (0.94, 1.42)

Any Sulfonamides 342 147

No Tetracyclines 32,848 14,262 0.69 (0.63, 0.75) 0.76 (0.70, 0.83) 0.71 (0.65, 0.77) 0.77 (0.71, 0.85) 0.75 (0.68, 0.82) 0.81 (0.74, 0.89)

Ever Tetracyclines 2,409 718

No Antibiotics 31,494 13,483 0.93 (0.87, 0.99) 0.98 (0.92, 1.05) 0.92 (0.86, 0.98) 0.96 (0.89, 1.02) 0.94 (0.88, 1.00) 0.97 (0.91, 1.04)

Ever Any Antibiotic 3,763 1,497

No Bactericidals 34,207 14,007 1.50 (1.36, 1.65) 1.43 (1.29, 1.58) 1.39 (1.25, 1.54) 1.32 (1.18, 1.47) 1.33 (1.19, 1.49) 1.26 (1.13, 1.41)

Ever Bactericidal 1,050 658

No Bacteriostatics 32,323 14,007 0.77 (0.71, 0.83) 0.84 (0.78, 0.91) 0.79 (0.73, 0.85) 0.85 (0.79, 0.92) 0.83 (0.77, 0.90) 0.89 (0.82, 0.96)

Ever Bacteriostatics 2,934 973

�Obese case numbers reflect obesity status at enrollment. N’s for each time point reflect those with complete covariate and outcome data.
1Covariates for adjusted models include race/ethnicity, education, urban/rural, age, and total smoking pack years

https://doi.org/10.1371/journal.pone.0216959.t002
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consistent across indications, the number of participants who reported using these antibiotics

for skin conditions was relatively small. Prior research has also suggested that infections, and

not antibiotics, drive obesity [32]. Although this possibility cannot be ruled out in our study, if

this were true we would expect to see an overall effect for antibiotic use and obesity in our pop-

ulation, across antibiotic classes. However, we only report a consistent association for penicil-

lins, which argues against this potential confounder. Alternatively, if penicillins tend to be

prescribed more after intestinal surgery in response to longer and more resistant infections,

compared to other antibiotics, this may be another possible confounding factor. Possible

explanation for the differences may be due to differences in targeted action; for instance, later

generations of penicillins are generally considered to be broad-spectrum antibiotics. Research-

ers have speculated that broad-spectrum and narrow-spectrum antibiotics may differentially

alter bacterial diversity in humans [39]. Interestingly, tetracyclines are also considered broad-

spectrum antibiotics, and these classes generally had opposite effects on obesity. It is plausible

that broad-spectrum antibiotics may be more likely to influence weight changes through

broad alterations in the microbiome, and the direction of this weight change (up or down)

may be a function of the specific antibiotic class.

Differing results from the cross-sectional analyses and longitudinal analyses could be due to

a few factors. First, people who are overweight or obese are more likely to acquire an infection

[38] and thus need antibiotics. These individuals may also be less likely to engage in physical

activity due to their health status. Any cross-sectional analysis of a population that reports

associations between antibiotics and obesity will capture some of this phenomenon. Second,

the populations in the cross-sectional and longitudinal analyses are different. The cross-

Table 3. Incidence odds ratios of associations for initiating antibiotic use during the 4th decade of life with obesity

at enrollment.

1Not Obese Obese Adjusted

OR (95% CI)2

No Cephalosporins1 34,659 11,898 1.52 (0.90, 2.55)

Ever Cephalosporin 44 22

No Macrolides 34,326 11,832 1.01 (0.65, 1.55)

Ever Macrolides 93 28

No Penicillins 34,044 11,620 2.00 (1.40, 2.87)

Ever Penicillins 77 52

No Quinolones 34,595 11,853 1.02 (0.50, 2.09)

Ever Quinolones 34 10

No Sulfonamides 34,462 11,853 1.11 (0.68, 1.81)

Any Sulfonamides 63 22

No Tetracyclines 32,411 11,412 0.72 (0.56, 0.92)

Ever Tetracyclines 342 77

No Antibiotics 31,269 10,851 1.01 (0.85, 1.19)

Ever Any Antibiotic 594 189

No Bactericidals 33,775 11,464 1.71 (1.29, 2.26)

Ever Bactericidal 144 80

No Bacteriostatics 31,891 11,197 0.82 (0.67, 1.01)

Ever Bacteriostatics 470 120

1Use reflects initiation of chronic antibiotic use during the 4th decade of life (30s). Models exclude women who

reported being obese during their 30’s
2All models adjusted for race/ethnicity, education, urban/rural, age, and total smoking pack years.

https://doi.org/10.1371/journal.pone.0216959.t003
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sectional analyses classify everyone who ever chronically used an antibiotic as exposed, while

the longitudinal analyses classifies only those who used antibiotics in their 30s, or those who

used antibiotics in the 12 or 60 months prior to enrolling in the Sister Study, as exposed. Anti-

biotic use at different time points in life may have varying effects–puberty, pregnancy, and

menopause are all hormonally driven events that might modify any effects of antibiotics on

weight gain. These time periods, with the exception of pregnancy, were mostly excluded from

the prospective analyses, but included in cross-sectional analyses. Additionally, analyses that

predict weight gain after enrollment based on pre-enrollment antibiotic use will fail to capture

many of those who experienced weight gain immediately after antibiotic use, biasing those

results towards the null. These effects would, however, be captured in the cross-sectional

analyses.

In general, previous studies of antibiotic use during infancy and overweight and obesity in

children’s cohorts have implicated exposure to multiple classes of antibiotics rather than peni-

cillins alone [26, 27, 33]. However, one study reported adverse associations with penicillins,

cephalosporins, and macrolides [25], and a randomized clinical study in adults reported

weight gain in patients treated for H. pylori with amoxicillin [5]. Another cohort reported no

Table 4. Associations between antibiotic use1 during the 4th decade of life and obesity at enrollment, according to

indications for use3.

N Not obese/Obese OR2 (95% CI)

Macrolides

No Macrolide Use 34,326 / 11,832 Ref

Macrolides for Skin 56/15 0.97 (0.54, 2.1.73)

Macrolides for Non-Skin 37/13 1.06 (0.56, 2.01)

Penicillins

No Penicillin Use 34,044 / 11,620 Ref

Penicillins for Skin 13/8 2.32 (0.94, 5.73)

Penicillins for Non-Skin 64/44 1.95 (1.32, 2.88)

Sulfonamides

No Sulfonamide Use 34,462/ 11,853 Ref

Sulfonamides for Skin 16/3 0.69 (0.20, 2.39)

Sulfonamides for Non-Skin 47/19 1.23 (0.72, 2.11)

Tetracyclines

No Tetracycline Use 32,411 / 11,412 Ref

Tetracyclines for Skin 290/58 0.64 (0.48, 0.85)

Tetracyclines for Non-Skin 52/19 1.19 (0.70, 2.02)

Bactericidals

No Bactericidal Use 33,775/ 11,464 Ref

Bactericidals for Skin 19/11 2.16 (1.01, 4.61)

Bactericidals for Non-Skin 125/69 1.65 (1.22, 2.23)

Bacteriostatics

No Bacteriostatic Use 31,891 / 11,197 Ref

Bacteriostatics for Skin 342/73 0.70 (0.54, 0.90)

Bacteriostatics for Non-Skin 128/47 1.12 (0.0.80, 1.57)

1Use reflects initiation of chronic antibiotic use during the 4th decade of life (30s). Models exclude women who

reported being obese during their 30’s
2All models adjusted for race/ethnicity, education, urban/rural, age, and total smoking pack years
3Cephalosporins and quinolones had fewer than 10 reported users for skin and are excluded

https://doi.org/10.1371/journal.pone.0216959.t004
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effect for penicillins (a narrow spectrum antibiotic) but did report effects for broad-spectrum

antibiotics [27]. Infancy presents a very different microbial developmental window, and differ-

ent antibiotics may have differing impacts on the microbiota of infants relative to adults. Addi-

tionally, others included short-term use of antibiotics while we examined longer-term, chronic

use. Differences in effects of broad and narrow spectrum antibiotics are not consistent across

prior cohort studies. While penicillins can be reliably classified as narrow spectrum, other

antibiotic classes differ in their targets by generation and we were unable to reliably classify

antibiotics by targeted spectrum. Classification of bacteria as having bactericidal (kills bacterial

cells) or bacteriostatic (inhibits growth of bacterial cells) action has been used previously in

examining associations with diabetes [40, 41], although the distinction has not previously been

adopted in studies of associations with obesity or weight gain.

There were several strengths and limitations to this study. Primary limitations include the

lack of indications data among non-antibiotic users, the lack of data about shorter-term antibi-

otic use (e.g., 7–10 days of antibiotics at a time), the entirely female and mostly white makeup

of the study population, and the relatively small numbers of long-term users of antibiotics. We

were unable to perform a true analysis of the interaction between illness and antibiotics, as we

had no data on the relevant illnesses in non-antibiotic users. For instance, if someone reported

no antibiotic use, they were not asked about possible antibiotic-related illnesses. Thus, we did

not know if non-users had a skin condition or a respiratory condition, and could not evaluate

the effect of antibiotics among all participants with a particular condition. Instead, we were

Table 5. Mixed models of longitudinal associations between antibiotic use before enrollment and percentage

change in body mass index between follow-ups.

Antibiotic use 12 months Prior To

Enrollment

β (95% CI)

Antibiotic Use 5 years Prior To

Enrollment

β (95% CI)

Cephalosporins N Use/No

Use

26/48,099 72/48,053

Cephalosporins β (95% CI) 0.06 (-2.31, 2.42) -0.21 (-1.63, 1.20)

Macrolides N Use/No Use 25/48,080 99/48,006

Macrolides β (95% CI) -0.55 (-2.94, 1.84) -0.92 (-2.12, 0.28)

Penicillins N Use/No Use 48/48,046 152/47,942

Penicillins β (95% CI) 1.53 (-0.25, 3.31) 1.00 (0.01, 2.00)

Quinolones N Use/No Use 33/48,087 165/47,955

Quinolones β (95% CI) -1.18 (-3.29, 0.94) -0.52 (-1.46, 0.42)

Sulfonamides N Use/No

Use

19/48,095 83/48,031

Sulfonamides β (95% CI) -1.61 (-4.50, 1.27) -0.60 (-1.92, 0.72)

Tetracyclines N Use/No Use 121/47,970 271/47,720

Tetracyclines β (95% CI) 0.80 (-0.29, 1.90) -0.43 (-1.05, 0.20)

Bactericidals N Use/No Use 103/48,031 366/47,768

Bactericidals β (95% CI) 0.71 (-0.50, 1.91) 0.04 (-0.60, 0.67)

Bacteriostatics N Use/No

Use

163/47,971 534/47,600

Bacteriostatics β (95% CI) 0.28 (-0.67, 1.22) -0.52 (-1.04, 0.00)

Linear Regression with random effects for subject and visit. BMI reported at enrollment, at first follow-up, and

second follow-up. Percent change in BMI calculated for time between enrollment and first follow-up, time between

first follow-up and second follow-up, and time between enrollment and second follow-up. All models adjusted for

race/ethnicity, education, urban/rural, age, smoking, and BMI at enrollment. Results are similar without controlling

for BMI at enrollment.

https://doi.org/10.1371/journal.pone.0216959.t005
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limited to estimating associations for participants who used antibiotics for skin purposes, used

for non-skin purposes, or did not use that antibiotic. The confidence intervals for most of

these associations were quite wide, which limited any assessment of whether the effects were

different by indication category. However, we can generally conclude that the associations for

penicillins remained consistent regardless of indication, while associations for tetracyclines/

bacteriostatics seemed to vary by indication.

Another variable with potential misclassification is self-reported weight, particularly during

the participant’s 30’s. Weight may fluctuate significantly over a decade, and it is unknown

whether women reported average weight, maximum weight, or minimum weight during their

30s. However, BMI in 30s was similar for antibiotic and non-antibiotics users, suggesting that

outcome misclassification is likely non-differential by exposure status. Additionally, we used

self-reported weight at both follow-ups, which may be subject to some exposure misclassifica-

tion, particularly among obese and underweight women. However, comparisons against exam-

iner-measured height and weight in this population suggest that women are accurate self-

reporters of their height and weight, and under-reporting for obese women is rarely >10%

[42].

Recall bias for the exposure could also be a potential problem in this study. Using an antibi-

otic three times a week for three months or more is an unusually long period of time for antibi-

otic usage. Although participants may be more likely to remember taking an antibiotic for this

length of time, it is also possible that women who recall taking antibiotics for an unusual length

of time, such as one month, may have incorrectly reported taking the antibiotic for the full

three months. Thus, the retrospective nature of this medication assessment is subject to some

exposure misclassification. Additionally, although long-term antibiotic use may be more likely

to impact the microbiome than short-term doses, antibiotic doses for one to two weeks are

much more common. Repeated dosings of smaller amounts do appear to bring about long-

lasting changes in gut microbiomes [11]. It is possible that many of the women that were clas-

sified as unexposed in the current study were actually exposed to multiple dosings of antibiot-

ics during the time periods of interest, but were considered unexposed because they did not

meet the criteria of taking antibiotics for 3 months or more at a time.

A final limitation is the external generalizability of the study. We only studied these associa-

tions in a female population that was mostly white. Therefore, we cannot draw conclusions

about the relevance of these findings to men, or to a population with a higher percentage of

minorities. Although we observed minimal confounding, and no effect modification by race/

ethnicity, residual confounding may be present. Minority participants in the Sister Study tend

to have higher incomes and to have competed more years of schooling than the general popu-

lation of minority women which could in turn affect factors related to both infection and

access to healthcare.

Study strengths include considering indication for use in analyses, using both retrospective

and prospective longitudinal data, and examination of this study question in an adult popula-

tion over a long period of time. The use of both retrospective and prospective data revealed a

few notable items. One, there were no associations between antibiotic use in the past 12

months and prospective weight change. It is possible that weight does not change immediately

after antibiotic exposure. Changes in satiety hormones and energy storage or harvest may not

stabilize until the relevant microbial communities stabilize in response to antibiotic exposure,

which may take several years. Second, associations for penicillins were consistent with both

retrospective and prospective data.

This potential antibiotic side effect should be further investigated, as public health impact

may be high. Antibiotic prescription rates are high; in 2011, healthcare providers prescribed

842 prescriptions per 1000 persons, and antibiotic prescriptions are prescribed incorrectly for
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between 38% to 60% of ambulatory visits [43, 44]. Perceptions in clinical communities about

harmful side effects of antibiotic use are generally limited to concerns about antibiotic resis-

tance, but the possible impact on the microbiota and associated ailments should be considered.

Long-term use of antibiotics is somewhat rare, and penicillins are used long-term for prophy-

lactic treatment of rheumatic fever, sickle cell disease, recurrent otitis media, endocarditis, sal-

monella infections, and certain types of Lyme disease. Although the benefits of antibiotics may

outweigh the possible side effects of weight gain in these clinical circumstances, patients should

be monitored for weight changes in response to judicious treatment.
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