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Abstract

Observational epidemiological studies are prone to confounding, measurement error, and reverse 

causation, undermining robust causal inference. Mendelian randomization (MR) uses genetic 

variants to proxy modifiable exposures to generate more reliable estimates of the causal effects of 

these exposures on diseases and their outcomes. MR has seen widespread adoption within cardio-

metabolic epidemiology, but also holds much promise for identifying possible interventions for 

cancer prevention and treatment. However, some methodological challenges in the implementation 

of MR are particularly pertinent when applying this method to cancer aetiology and prognosis, 

including reverse causation arising from disease latency and selection bias in studies of cancer 

progression. These issues must be carefully considered to ensure appropriate design, analysis, and 

interpretation of such studies.

In this review, we provide an overview of the key principles and assumptions of MR focusing on 

applications of this method to the study of cancer aetiology and prognosis. We summarize recent 

studies in the cancer literature that have adopted a MR framework to highlight strengths of this 

approach compared to conventional epidemiological studies. Lastly, limitations of MR and recent 

methodological developments to address them are discussed, along with the translational 

opportunities they present to inform public health and clinical interventions in cancer.
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Introduction

Obtaining reliable evidence of causal relationships from observational epidemiological 

studies remains a pervasive challenge1–3. While observational studies have made 
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fundamental contributions to understanding the primary environmental causes of various 

cancers (e.g., smoking and lung cancer, hepatitis B and liver cancer, asbestos and 

mesothelioma)4–6, recent decades have seen numerous instances of apparently robust 

observational associations being subsequently contradicted by large chemoprevention 

trials7–15. Notable translational failures include the ineffectiveness of beta-carotene 

supplementation to prevent lung cancer among smokers in the Alpha-Tocopherol, Beta-

Carotene Cancer Prevention Study and vitamin E supplementation to prevent prostate cancer 

in the Selenium and Vitamin E Cancer Prevention Trial. Contrary to expectations from 

observational data, findings from both trials suggested that supplementation may increase 

rather than reduce the incidence of cancer8,16.

Part of the difficulty in translating observational findings into effective cancer prevention 

and treatment strategies lies in the susceptibility of conventional observational designs to 

various biases, such as residual confounding (due to unmeasured or imprecisely measured 

confounders) and reverse causation17,18. These biases frequently persist despite energetic 

statistical and methodological efforts to address them19–21, making it difficult for 

observational studies to reliably conclude that a risk factor is causal, and thus a potentially 

effective intervention target. This issue is likely further compounded by the modern 

epidemiological pursuit of risk factors that confer increasingly modest effects on disease 

risk, which can contribute to a ubiquity of spurious findings in the literature22–24.

Despite these challenges, observational studies remain crucial for informing cancer 

prevention and treatment policy given issues in translating basic science to human 

populations and because intervention trials are expensive, time-consuming, and often 

unfeasible in a primary prevention setting. The development of novel analytical tools that 

can help address some of the limitations of conventional observational studies therefore 

remains an important field of research. One such approach known as Mendelian 

randomization (MR) which uses genetic variants to proxy potentially modifiable exposures 

has seen increased adoption within population health research and offers much promise to 

generate a more reliable evidence-base for cancer prevention and treatment.

What is Mendelian randomization?

MR uses germline genetic variants as instruments (i.e., proxies) for exposures (e.g., 

environmental factors, biological traits, or druggable pathways) to examine the causal effects 

of these exposures on health outcomes (e.g., disease incidence or progression)25–31. The 

use of genetic variants as proxies exploits their random allocation at conception (Mendel’s 

first law of inheritance) and the independent assortment of parental variants at meiosis 

(Mendel’s second law of inheritance). These natural randomization processes mean that, at a 

population level, genetic variants that are associated with levels of a specific modifiable 

exposure will generally be independent of other traits and behavioural or lifestyle factors, 

although several caveats exist (see Table 1). Analyses using genetic variants as instruments 

to examine associations with outcomes have a number of advantages: i) effect estimates 

should be less prone to the confounding that typically distorts conventional observational 

associations32, ii) because germline genetic variants are fixed at conception, they cannot be 

modified by subsequent factors, thus overcoming possible issues of reverse causation, and 
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iii) measurement error in genetic studies is often low as modern genotyping technologies 

provide relatively precise measurement of genetic variants, unlike the substantial (and at 

times differential) exposure measurement error which can accompany observational studies 

(e.g., due to self-report).

Comparison of Mendelian randomization to Randomized Controlled Trials

Due to the random allocation of alleles at conception it can be useful to compare the 

structure of a MR analysis to the design of a randomized trial, where individuals are 

randomly allocated at baseline to an intervention or control group (Figure 1). Groups defined 

by genotype should be comparable in all respects (e.g., approximately equal distribution of 

potential confounding factors) except for the exposure of interest. It follows that any 

observed differences in outcomes between these genotypic groups can be attributed to 

differences in long-term exposure to the trait of interest. This latter point is an important 

distinction when interpreting results from a MR analysis as compared to a randomized 

controlled trial: MR will generally estimate the effect of life-long “allocation” to an 

exposure on an outcome, unless an exposure typically occurs only from a certain age - e.g., 

alcohol consumption and smoking - and the genetic proxy affects metabolism of that 

exposure33. If the effect of this exposure on an outcome is cumulative over time, a MR 

analysis may generate a larger effect estimate than that which would be obtained from a 

randomized trial examining an intervention over a limited duration of time. Additionally, if 

the effect of an exposure on an outcome operates primarily or exclusively over a critical or 

sensitive period of the life course (e.g., early childhood), a MR analysis should be able to 

“capture” a causal effect of this exposure but will not be able to distinguish such period 

effects. In contrast, a randomized trial will have the flexibility to test certain interventions 

over restricted periods of follow-up and in individuals who may be within narrow age 

ranges. These distinctions are discussed in more detail in “Cancer Latency and Reverse 

Causation – benefits of MR”.

More formally, MR is a form of instrumental variable (IV) analysis that relies on three key 

assumptions: the IV (here, one or more genetic variants) should (i) be reliably associated 

with the exposure of interest; (ii) not be associated with any confounding factor(s) that 

would otherwise distort the association between the exposure and outcome; and (iii) should 

not be independently associated with the outcome, except through the exposure of interest 

(known as the “exclusion restriction criterion”) (Figure 2a). If all assumptions are met, MR 

can provide an unbiased causal estimate of the effect of an exposure on disease or a health-

related outcome. Violation of one or more of these assumptions means that instruments are 

invalid and, consequently, that findings from such an analysis may yield a biased effect 

estimate.

Previous success of Mendelian randomization approaches and potential for 

cancer research

Over the past decade, MR has been increasingly adopted as an analytical approach within 

population health research, particularly the fields of metabolic and cardiovascular disease 

(CVD), where there are several notable examples of important causal inferences. For 
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example, MR has suggested a likely causal role of statins on type 2 diabetes (T2D) 

risk34,35; likely non-causal roles of circulating levels of high-density lipoprotein cholesterol 

(HDL-C) in myocardial infarction36 and C-reactive protein (CRP) in T2D37; pointed to the 

efficacy of proprotein convertase subtilisin/kexin type 2 (PCSK9) inhibitors for CHD 

prevention prior to the publication of confirmatory long-term trial results34,38; and 

prioritized further examination of apolipoprotein B39,40, lipoprotein(a)41 and 

interleukin-642 and de-prioritized fibrinogen43 and secretory phospholipase A(2)-IIA44 as 

intervention targets for CVD. Although this approach has scope to test the effects of an 

increasing number of exposures relevant to cancer through the continued growth in large-

scale genome-wide association study (GWAS) output, to date there remains a noticeable gap 

in the MR literature with regard to cancer compared to other outcomes (Supplementary 

Figure 1).

Here, we provide an overview of some recent studies that have applied MR to cancer 

outcomes, highlighting both the potential strengths compared to conventional 

epidemiological studies and the unique challenges of performing MR studies in cancer. 

Recent methodological extensions to the original MR paradigm are presented, with 

emphasis on the translational opportunities that they may offer to inform drug target 

validation and public health strategies to reduce the burden of cancer.

Considerations for MR in cancer

Both the principal strengths of MR and important limitations of this method have been 

discussed in detail previously25–31,45–49. The latter are presented in Table 1 with some 

methodological and statistical approaches that have been developed to address them outlined 

in Table 2 and Table 3. Considerations which are specific to investigating causality in the 

setting of cancer are outlined below.

Cancer Latency and Reverse Causation – benefits of MR

Given long latency periods for many cancers, spurious findings resulting from reverse 

causation are an important concern in cancer epidemiology. Reverse causation has been 

suspected in several instances of ambiguous74–76 or paradoxical findings77 in the cancer 

literature. For example, early studies documenting an association between higher circulating 

cholesterol and lower cancer incidence were variably interpreted as plausible evidence of a 

protective effect of raised cholesterol on cancer risk or as latent cancer leading to a reduction 

in cholesterol levels78–80. With the introduction and widespread usage of low-density 

lipoprotein cholesterol (LDL-C) lowering medications for the prevention and treatment of 

CVD, concern arose that such measures could thus be increasing cancer rates81,82.

In an early proposal of the use of genetics as a tool to circumvent issues of reverse causation 

in observational data, Katan et al.83 suggested examining the association of genetic variants 

in APOE, determinants of circulating cholesterol levels, with cancer risk. As germline 

APOE genotype was fixed at conception, it was argued that it would not be influenced by 

subsequent cancer development and could therefore be used to establish whether cholesterol 

had a causal effect on cancer incidence. Subsequent MR analyses testing the effect of 
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lifelong elevated cholesterol through genetic variation in APOE, NPC1L1, PCSK9, and 

ABCG8 have reported null associations with overall cancer risk84–86. These findings 

alongside secondary analyses of statin trials showing no effect on cancer rates87 suggest that 

– a potential explanatory role of confounding aside - early observational findings supporting 

a protective effect of cholesterol on cancer risk likely reflected undiagnosed cancer or early 

carcinogenic processes causing a reduction in cholesterol levels in pre-diagnostic samples.

Long-term exposure – benefits of MR

The advantages of exploiting the fixed nature of germline genotype extends beyond 

addressing reverse causation in observational studies. Large cancer prevention trials are 

often constrained to examining interventions over a limited duration in time and over a 

particular period in the life-course (e.g., middle and/or late adulthood)88. Given the length 

of time required for solid tumor development89, randomized trials will often not allow 

sufficient follow-up for the effect of an intervention to be detected. In turn, long-term 

chemoprevention trials that are conducted may suffer from issues of non-compliance in the 

intervention arm, contamination in the control arm, and attrition during follow-up.

Further, the optimal timing of an exposure to prevent cancer may be early in the life-course 

and therefore may not be adequately addressed in randomized trials90. For example, it has 

been proposed that certain carcinogenic agents or processes may confer an effect, or a 

particularly pronounced effect, only over ‘critical periods’ of early life or adolescence (e.g., 

the influence of inadequate childhood nutrient intake on adult cancer risk or the pubertal 

period as a window of breast cancer susceptibility)91–95. Interrogating the long-term effect 

on cancer of a given intervention in a prevention trial among children or adolescents would 

be unfeasible.

Examining the effect of genetic variants allocated at conception can therefore offer an 

important first step in identifying risk factors that may be sensitive to duration or timing of 

an exposure over the life course. Inferences made from promising MR findings to plausible 

intervention effects in a subsequent randomized trial would then need to carefully consider 

the possibility that effect estimates obtained in a MR analysis could be sensitive to critical 

period effects (in which case intervening on an exposure outside of this period may not alter 

disease risk) or represent the cumulative effect of lifelong exposure to a biomarker (in which 

case a relatively short-term trial may generate a smaller effect estimate than that obtained 

from MR). Adopting a “triangulation” framework where evidence from different 

epidemiological approaches with non-overlapping sources of bias are integrated can then be 

used to further examine durations of intervention necessary to confer an effect or ‘pinpoint’ 

possible critical windows of susceptibility to carcinogenic agents96. For example, 

multivariable regression analyses examining the association of an exposure, with some 

evidence of causality from MR studies, over different lengths of follow-up may help to 

identify the duration of exposure required to confer an effect. A negative control study with 

repeat measures of an exposure both within and outside of hypothesized critical periods 

(e.g., dietary fat intake before, during, and after pubertal development), in relation to 

subsequent disease risk (e.g., breast cancer)97 could be used to help refine periods of 

increased vulnerability to cancer-causing exposures.
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Cancer Latency and Reverse Causation – limitations of MR

Genetic variants known to directly affect an exposure will in some cases be well-

characterized (e.g., variants in APOE), and it will be established whether or not the variant-

exposure associations are influenced by the outcome of interest. The biological 

understanding of other variants associated with risk factors that are identified in GWAS, 

however, is often more limited. In some situations in which genetic variants are associated 

with both an exposure and outcome of interest, the association between a variant and 

outcome might be via the exposure (i.e., a valid IV analysis) but it is also possible that, 

under certain circumstances, there may be a primary effect of the variant on the outcome 

which in turn causes a change in the exposure.

This situation has been illustrated previously in the context of body mass index (BMI) and 

CRP where an erroneous causal effect can be generated if a genetic variant that primarily 

influences BMI, which in turn influences CRP levels because BMI has a causal effect on 

CRP, is mistaken as being a variant with a primary influence on CRP25. Use of such a 

variant as an instrument for CRP in a MR analysis of the effect of CRP on BMI would then 

lead to biased results.

This introduction of reverse causation into a MR analysis may be problematic for common 

cancers with long latency periods between tumour initiation and diagnosis (e.g., breast and 

prostate)98. Reverse causation in this context could be mitigated by obtaining gene-exposure 

estimates in a healthy population where the prevalence of undiagnosed, latent cancer is 

likely to be low. These estimates could then be used to generate IV estimates in a two-

sample MR framework. Additionally, steps could be taken to construct an instrument solely 

consisting of genetic variants that plausibly act directly on a trait. For example, in 

constructing an instrument for CRP levels, this could include solely using variants within 

CRP itself as these variants are more likely to be exclusively associated with CRP levels 

than variants in other genes99. However, it should be noted that a trade-off of using few, 

biologically-informed SNPs as an instrument is that sensitivity analyses examining 

horizontal pleiotropy – when feasible to perform – will have limited statistical power.

Selection bias in cancer progression analyses

A particular concern in cancer epidemiology is that exposures that influence cancer 

incidence may not influence cancer progression or survival. For example, although smoking 

is a robust risk factor for breast cancer incidence, smoking cessation upon development of 

breast cancer seems to have little effect on subsequent survival100. There has been some 

suggestion that folate may play a dual role in prostate and colorectal carcinogenesis: 

protective against DNA damage prior to the development of neoplasia, but promoting 

tumour progression via enhanced tumour proliferation and tissue invasion once cancer has 

developed101,102.

Some MR studies have begun to examine the effect of risk factors on both cancer incidence 

and progression103. In a recent analysis examining the effect of alcohol on prostate cancer 

risk in 46,919 men in the PRACTICAL consortium, alcohol consumption was not associated 
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with overall prostate cancer risk but increased risk of prostate cancer mortality among men 

with low-grade disease104. Such MR studies exploit the fact that GWAS are being 

increasingly used to identify genetic variants associated with cancer progression or survival 

105,106.

However, there are important methodological considerations in investigating factors causing 

cancer progression. This is because prognostic studies can suffer from selection bias due to 

the fact that any factors that cause disease incidence (or diagnosis) will tend to be correlated 

with each other in a sample of only cases, even when they are not correlated in the source 

population. Thus if at least one factor causes both incidence and disease survival 

(hypothetically, insulin resistance in Figure 3), all the other factors which cause disease 

incidence (hypothetically, smoking in Figure 3) will appear to be associated with survival, 

unless the true prognostic factor is conditioned upon. Thus, the estimated effect on 

progression for any factor that is associated with incidence is likely to be biased. However, 

any factor that is not associated with incidence will not suffer from selection bias by 

studying only cases in a MR analysis.

When conducting prognostic studies, care should be taken to examine and (where possible) 

overcome the selection bias due to studying only cases103. First, the observed data could 

also be used to help identify plausible directed acyclic graphs (DAGs) including both disease 

incidence and progression. For example, if a risk score for a phenotype, and an 

environmental variable, are correlated in cases, but not in the source population this would 

suggest that both factors influence disease incidence, diagnosis, or self-selection into the 

study. However, lack of evidence for such correlations does not imply that there is no 

selection bias, and expert or external knowledge should be used in constructing the DAG, as 

is usual practice. The DAG can then be used to help inform sensitivity analyses. Additional 

data on factors that predict incidence could be combined with observed data in cases, to 

minimise selection bias, either by conditioning or by inverse probability weighting. If more 

than one DAG are considered plausible a priori, then they can be used to conduct sensitivity 

analyses by examining how robust the conclusions are to the causal assumptions made. The 

DAG can also be used to identify which assumptions are being made that are untestable 

given the observed data, and then sensitivity analyses can be conducted by examining 

plausible values for those relationships.

Illustrative examples

To illustrate the use of MR in analyses examining cancer outcomes, we have outlined three 

studies that have employed this approach to understand the causal role of various exposures 

on cancer incidence.

Selenium and prostate cancer risk

Prospective studies reporting inverse associations of dietary, blood, and toenail selenium 

with risk of prostate cancer107–113, along with findings from in vitro studies114,115, led to 

development of the Selenium and Vitamin E Cancer Prevention Trial (SELECT)116. 

SELECT was a 2x2 factorial trial of 35,533 healthy middle-aged men that examined the 

effect of daily supplementation with selenium, vitamin E, or both agents combined, as an 
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intervention for prostate cancer prevention. The trial was stopped after 5.5 of a planned 12 

years follow-up due to a lack of efficacy compounded by possible carcinogenic (increased 

rates of high-grade prostate cancer) and adverse metabolic (some evidence of increased rates 

of T2D) effects in the selenium supplementation group8,9. It is plausible that residual 

confounding may have accounted for conflicting results between prospective studies and 

SELECT117,118, though others have suggested that these differences may have reflected 

differences in baseline levels of selenium of participants in some observational studies as 

compared to SELECT119.

To test whether a MR approach could have predicted the results of SELECT, a two-sample 

MR analysis (Table 2) was performed using summary data on 72,729 individuals from the 

PRACTICAL consortium120,121. Eleven single-nucleotide polymorphisms (SNPs) robustly 

associated with blood selenium in previous GWAS122,123 (P<5x10-8) were combined into a 

genetic instrument (Table 3) to proxy circulating levels of selenium (Figure 1). To allow for 

direct comparison of effect estimates with SELECT, the authors investigated the odds ratio 

(OR) per 114 μg/L increase in circulating selenium, scaled to match the measured 

differences in blood selenium between supplementation and control arms in SELECT.

Consistent with results from SELECT, a 114 μg/L life-long increase in blood selenium in 

MR analyses was not associated with overall prostate cancer risk (OR:1.01, 95% CI:

0.89-1.13; P=0.93; SELECT: Hazard Ratio (HR):1.04, 95% CI:0.91-1.19). MR analysis of 

selenium on advanced prostate cancer (OR:1.21, 95% CI:0.98-1.49; P=0.07) was concordant 

with weak evidence for an increased risk of high-grade prostate cancer in the selenium 

supplementation arm of SELECT (HR:1.21, 95% CI:0.97-1.52; P=0.20). Likewise, the effect 

of selenium on T2D (OR:1.18, 95% CI:0.97-1.43; P=0.11) was consistent with weak 

evidence for an increased risk of T2D in the selenium arm of SELECT (HR:1.07, 95% CI:

0.97-1.18; P=0.16).

A limitation of this analysis is that the authors did not test the hypothesis that the effect of 

selenium on prostate cancer risk varied by baseline selenium status. One way to investigate 

this in an MR framework would be to test for interaction in effect estimates by study 

location – whether the study was conducted in selenium replete (e.g. USA) versus selenium 

deficient (e.g. Europe) countries. If differences in baseline levels of selenium do impact on 

the effect of selenium on prostate cancer, we would expect different effect estimates in these 

different settings.The overall similarities in findings between this MR analysis and that of 

SELECT, as compared to results from conventional observational studies, thus provides 

some support for the utility of an MR approach in approximating experimental results using 

observational data. Further, these results suggest that performing a MR analysis may be an 

important time-efficient and inexpensive step in predicting both efficacy and possible 

adverse effects of an intervention before an RCT is performed.

Alcohol and oesophageal cancer risk

Regular alcohol consumption is associated with a substantial increased risk of oesophageal 

squamous cell carcinoma in observational studies, with an approximate two-fold increased 

risk for moderate drinkers and five-fold increased risk for heavy drinkers when compared to 

occasional/non-drinkers124. However, alcohol consumption is often associated with other 
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lifestyle and behavioural factors (e.g., smoking and dietary intake), which may themselves 

predispose toward oesophageal cancer125,126. Further, most studies that examined this 

hypothesis have used case-control designs, which may introduce reporting bias if cases 

recall alcohol consumption differently from controls124.

The ability to metabolize acetaldehyde, the principal metabolite of alcohol and a 

carcinogen127, is encoded by ALDH2, which is polymorphic in some East Asian 

populations. Specifically, the ALDH2 *2 allele produces an inactive protein subunit that is 

unable to metabolize acetaldehyde, resulting in markedly higher peak blood alcohol levels in 

*2*2 homozygotes compared to *1*1 homozygotes128. Individuals with the *2*2 genotype 

experience a flushing reaction to alcohol, along with dysphoria, nausea, and tachycardia, and 

therefore have very low levels of alcohol consumption129. Consequently, genetic variation 

in ALDH2 is robustly associated with both acetaldehyde levels and alcohol consumption 

(via differences in physiological response to levels of acetaldehyde). This satisfies the 

instrumental variable assumption that an instrument is robustly associated with an exposure 

of interest and ALDH2 can be utilized as an instrument for examining both regular alcohol 

consumption and blood acetaldehyde levels among alcohol consumers130.

In a meta-analysis of seven studies with a total of 905 oesophageal cancer cases of East 

Asian descent, individuals with the ALDH2 *2*2 genotype were found to have an 

approximately 3-fold reduced risk of oesophageal cancer, as compared to the ALDH2 *1*1 

genotype (OR:0.36, 95% CI:0.16-0.80), suggesting a protective effect of reduced alcohol on 

oesophageal cancer131. However, when comparing individuals with a heterozygous *1*2 

genotype to *1*1 individuals, the former were shown to have a (seemingly paradoxical) 

overall increased oesophageal cancer risk (OR:3.19, 95% CI:1.86-5.47). A naïve 

interpretation of this finding, without consideration of the effect of the ALDH2 *2 allele on 

blood acetaldehyde, would suggest that individuals with moderate alcohol intake had the 

highest risk of oesophageal cancer.

When this association was stratified by self-reported alcohol intake, the effect of *1*2 

genotype on oesophageal cancer was shown to differ markedly by alcohol intake. Among 

non-drinkers, there was no strong evidence for an increase in risk among heterozygotes (OR:

1.31, 95% CI:0.70-2.47) relative to *1*1 individuals. However, among heavy drinkers there 

was a 7-fold increase in risk (OR:7.07, 95% CI:3.67-13.6). Similarly, meta-regression 

analysis showed evidence that level of alcohol intake influenced the effect of the *1*2 

genotype on oesophageal cancer risk (P=0.008) (i.e., the larger the amount of alcohol intake, 

the greater the OR of *1*2 versus *1*1 genotypes). As the possession of an ALDH2 *2 

allele only appeared to increase risk of oesophageal cancer among heterozygotes who 

reported alcohol intake, this suggested that the substantially elevated acetaldehyde levels in 

these heterozygotes may mediate the effect of alcohol intake on oesophageal cancer.

More generally, this example illustrates how interpretation of MR findings can be 

challenging when there is limited biological understanding of the genetic variant used as a 

proxy for a given exposure. MR results that appear to be strongly discordant with underlying 

biology should be followed-up alongside available functional understanding of genetic 
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variants employed as instruments to help resolve ambiguous or paradoxical results and avoid 

naïve interpretation of findings.

Body mass index and lung cancer risk

In contrast to the relationship of adiposity with risk of most cancers, BMI has shown 

consistent inverse associations with incidence of lung cancer, particularly among current and 

former smokers132,133. As smoking is a robust risk factor for lung cancer and has an 

inverse effect on BMI134, some have argued that residual confounding by smoking could 

account for this apparent protective association135. Reverse causation (i.e., undiagnosed 

lung cancer or disease processes leading up to lung cancer prior to study entry influencing 

subsequent weight loss), especially in cohorts with insufficient follow-up time, has also been 

proposed as an explanation for this observational finding136.

Attempts to address these possible sources of bias have failed to provide clarity. For 

example, studies that reported finely stratifying associations across various dimensions and 

classifications of smoking behaviour (e.g., number of cigarettes smoked per day, “cigarette-

years” smoked, and time since quitting smoking) have found little evidence to support 

residual confounding by smoking influencing this association132,133. Further, studies 

removing individuals with inadequate follow-up have reported little effect on overall 

findings132,133,137,138, interpreted as suggesting that reverse causation is unlikely to be a 

major contributor to this association.

Given that germline genetic variants associated with BMI cannot be influenced by prevalent 

disease and should not be associated with potential confounding factors, a MR approach 

could be used to assess whether increased BMI is protective against lung cancer139,140. For 

example, Carreras-Torres et al. performed a MR analysis using GWAS results on 16,572 

lung cancer cases and 21,480 controls of European descent141. 97 SNPs previously 

associated with BMI in a GWAS of 339,224 individuals were compiled into an instrument to 

proxy for anthropometrically measured BMI. This instrument was associated with measured 

BMI but not with available measures of tobacco exposure, including pack-years, cigarettes 

smoked per day, or cotinine levels, providing some evidence against confounding through 

measured smoking variables134. In two-sample MR analyses, a 1-SD increase in 

genetically-predicted BMI was weakly associated with an increased risk of lung cancer (OR:

1.13, 95% CI:0.98-1.30; P=0.10), with strong heterogeneity across histological sub-types 

(Pheterogeneity<3x10-5). Notably, genetically-predicted BMI was positively associated with 

risk of both squamous cell (OR:1.45, 95% CI:1.16-1.62; P=1.2x10-3) and small cell 

carcinoma (OR:1.81, 95% CI:1.14-2.88;P=0.01) but showed weak evidence for a protective 

effect for adenocarcinoma (OR:0.82, 95% CI:0.66-1.01;P=0.06). These findings thus help to 

clarify a likely positive risk relationship of BMI with two major histosubtypes of lung 

cancer. Alongside some genetic evidence to suggest that elevated BMI may influence 

subsequent smoking uptake142, which itself reduces BMI while increasing lung cancer 

risk134, these findings collectively suggest a possible mechanism that could help to 

reconcile seemingly conflicting MR and observational findings. Further interrogation of a 

possible mediating role of smoking on the causal pathway between BMI and lung cancer 

risk using “two-step MR” (discussed in "MR for mediation") may be able to help shed 
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further light on the possible intricate relationship between smoking and BMI in the aetiology 

of lung cancer.

Recent methodological extensions and future applications

In recent years, the development of various methodological extensions to the original MR 

paradigm have helped to enhance the scope of MR analyses, several of which are discussed 

below with reference to possible applications in cancer epidemiology.

MR for mediation

Over the past decade, high through-put “omics” technologies have begun to permit 

exhaustive profiling of the epigenome, metabolome, and proteome (as examples), allowing 

the collection of high-dimensional molecular data on increasingly large number of 

individuals143. Such omics measures may serve as important mediators on causal pathways 

linking macro-level risk factors with cancer incidence or progression. While conventional 

mediation analyses exist to examine possible exposure-mediator-outcome relationships, the 

validity of these approaches relies upon strong assumptions which are unlikely to be met in 

practice, such as no measurement error and no unmeasured confounding144.

With the performance of GWAS on large collections of metabolites and other omic 

measures145,146, this will create opportunity to develop instruments for these traits. To 

establish whether a particular molecular intermediate is on the causal pathway between an 

exposure and cancer, genetic variants can be used as instruments for both exposures and 

putative mediators that influence a disease outcome in a two-step MR framework (Figure 

4)147.

For example, a method of testing the mediating role of methylation changes on cancer 

outcomes would be to exploit the fact that genetic variants (e.g., methylation quantitative 

trait loci, mQTLs) are robustly associated with methylation at CpG sites across the 

epigenome, providing possible instruments for MR analyses148. Two-step MR could then 

used to examine the potential mediating role of DNA methylation sites associated with 

exposures such as tobacco smoke149 which have also been found to be strongly associated 

with lung cancer risk150. To test whether methylation is causally mediating (some, or all of) 

the effect of tobacco exposure on lung cancer risk, in the first step, a SNP could be used to 

proxy smoking behaviour in order to investigate its effect on the intermediate phenotype 

(DNA methylation). In the second step, an independent SNP could then be used to proxy the 

intermediate phenotype (DNA methylation) which could then be examined in relation to the 

disease outcome (lung cancer)144. This approach has the potential to be scaled up within the 

context of high dimensional ‘omic datasets to integrate multiple tiers of molecular data in a 

causal framework 151,152. While statistical and computational challenges arise with 

increasingly complex networks of molecular mediators, numerous data reduction and 

variable selection techniques may be used to identify informative causal molecular pathways 

to disease, including pathway analysis, penalised regression, machine learning, and data 

mining techniques which are increasingly being applied in an automated fashion153,154 

(see Hypothesis-free MR).
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Factorial MR

Akin to a factorial RCT, factorial MR is a method of testing the independent and additive 

effects of two or more exposures on disease outcomes. This approach was adopted by 

Ference et al. who performed a 2x2 factorial MR analysis to examine the effect of the LDL 

cholesterol-lowering drug ezetimibe on risk of coronary heart disease (CHD), as compared 

to the effect of statins alone or when combined with statins155. Ference et al. examined the 

effect of genetically-lower LDL-C on the risk of CHD through SNPs in NPC1L1 (a target of 

ezetimibe) alone, HMGCR (a target of statins) alone, or variants in both gene regions 

combined. The authors reported that natural randomization to lower LDL-C through SNPs in 

NPC1L1 and HMGCR alone showed similar decreases in LDL-C and CHD and that 

randomization to lower LDL-C in both groups combined had a linearly additive effect on 

LDL-C lowering and a log-linearly additive effect on CHD risk. These results were 

corroborated by the ‘Improved Reduction of Outcomes: Vytorin Efficacy International 

Trial,’ which allocated 18,144 participants to ezetimibe, statins, both, or placebo156.

An important caveat of this approach is that it relies on access to individual-level data and 

requires very large sample sizes to have adequate statistical power to reliably detect 

differences in effect across groups.

Hypothesis-free MR

A novel extension to a conventional “hypothesis-driven” MR analysis is a phenome-wide, 

“hypothesis-free” MR analysis (termed “MR-PhEWAS”)153. This approach makes use of 

genotyped datasets with high-dimensional phenotypic data or summary GWAS association 

statistics to perform hundreds or thousands of statistical tests simultaneously in an agnostic 

manner. For example, the approach can be used to examine the effect of a single exposure 

across multiple outcomes or multiple exposures across a single outcome. In contrast to 

hypothesis-driven analyses, hypothesis-free approaches allow for testing hypotheses that 

may not have been considered or tested previously, thus identifying novel risk relationships, 

and can help to address issues of publication bias as all analyses are openly specified and all 

results are presented157.

For example, using a two-sample MR framework with summary data, Haycock et al. 
performed a MR-PheWAS examining the effect of telomere length on risk of 35 cancers and 

48 non-cancer diseases in 420,081 cases and 1,093,105 controls158. After correction for 

multiple-testing, they found that telomere length increased cancer risk across most sites and 

histological sub-types but reduced CVD risk. An important consideration when performing 

hypothesis-free MR analyses using summary data is the need to follow-up any putative 

findings in subsequent independent datasets. This can be a challenge when using summary 

GWAS data to perform such analyses if a large proportion of the available GWAS literature 

was used to provide causal estimates in the original “discovery phase” of an analysis.

MR for identifying causality of mutational signatures

Large-scale analysis of the genomes of thousands of cancer patients has helped to reveal 

somatic “mutational signatures” (distinctive somatic mutational patterns left by unique 
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carcinogenic agents) involved in the development of their tumours159,160. To date, 

mutational signatures have been identified across more than 30 different cancer types, with 

anywhere from two to six distinction mutational processes for each cancer type. Knowledge 

of the causes of somatic mutations within tumour tissue can improve understanding of the 

mechanisms by which endogenous and exogenous exposures promote the development of a 

cancer. Of the mutational signatures identified across cancer types, a putative cause has been 

proposed for approximately half159; MR may offer particular promise in helping to identify 

the aetiology of other mutational signatures identified161.

Robles-Espinoza et al. examined the effect of germline MC1R status, associated with red 

hair, freckling, and sun sensitivity, on somatic mutation burden in melanoma. Such an 

analysis can be viewed as a MR appraisal of the effect of this sensitivity phenotype on 

somatic mutation burden in melanoma162. For all six mutational types assessed, there was 

evidence of an increased burden of somatic single nucleotide variants in individuals carrying 

one or two MC1R R alleles (disruptive variants). For one of the six mutational signatures 

characterized by an abundance of somatic C>T single nucleotide variants, each additional R 

allele at MC1R was associated with a 42% (95% CI:15-76%) increase in the C>T single 

nucleotide variant count. This approach therefore highlights the possibility of testing the 

causal effect of suspected carcinogenic agents on mutational burden for various mutational 

signatures across cancer tissues and sub-types.

Drug repurposing and adverse drug effects

Drug repurposing, applying known drugs to novel indications, can provide a rapid, cost-

effective mechanism for drug discovery and may hold promise for the development of 

pharmacological interventions for cancer prevention163,164. In turn, for well-tolerated 

drugs that are considered candidates for repurposing, MR may offer an attractive approach 

for testing their potential chemopreventive efficacy. For example, it is currently possible to 

reliably instrument drugs for which there is a broad understanding of the biological 

mechanism of action (e.g., HMG Co-A reductase inhibitors, PCSK9 inhibitors, CETP 

inhibitors, and sPLA2 inhibitors in cardiovascular disease165). For the primary or tertiary 

prevention of certain cancers, aspirin, metformin, and bisphosphonates have all been 

proposed as possible candidate pharmaceutical agents for repurposing166–168. Using MR 

as a first step to test drug efficacy for novel cancer indications could help to prioritize or 

deprioritize which drugs should be taken forward to testing in RCTs for re-purposing.

MR may also provide a useful approach for predicting adverse effects of 

pharmaceuticals169. Pre-approval trials are often not able to adequately capture 

development of adverse effects due to the comparatively small number of individuals 

typically exposed to a drug in such trials (unless drug effects are very common or very 

large), the limited duration of most trials, and unknown generalizability of trial participants 

to the broader population. While many of these issues can be addressed post-approval of a 

drug through spontaneous reporting systems, these introduce their own limitations including 

confounding, for example by indication, environmental factors, or lifestyle traits. MR studies 

should be able to overcome these limitations and have been employed in some instances to 
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test or anticipate adverse effects of interventions in ongoing trials (e.g., adverse effects of 

statins on T2D as proxied by variants in HMGCR)34,35,170–172.

While knowledge of biological pathways can help to anticipate some adverse drug effects 

pre-approval of a drug, it may not be possible to correctly predict all such effects173. One 

possible approach to resolve this would be to use MR-PhEWAS to perform a phenotypic 

scan of a genetically-instrumented drug exposure across hundreds or thousands of potential 

outcomes, as outlined previously. The identification of possible adverse effects of a drug 

through this approach could then be used to pre-specify and adequately power secondary 

outcome measures or, alternately, to de-prioritize further investigation of a therapeutic target.

Conclusion

Observational epidemiological studies are prone to various intractable biases which can 

undermine robust causal inference. Mendelian randomization offers a promising approach to 

generate a more reliable evidence-base for cancer prevention and treatment. The advent of 

MR methods using summarized data means that such analyses can now be performed more 

efficiently, rapidly, and with greater statistical power than previously possible. Further, the 

range of methodological extensions to the original MR paradigm now available have greatly 

expanded the scope of this approach, enabling increasingly sophisticated causal questions to 

be interrogated174. Despite this, there are inherent constraints on the types of 

epidemiological questions that can be answered with this approach as compared to 

conventional observational analyses. For example, MR is restricted to examining exposures 

that have a heritable component and suitable genetic proxies for these exposures; MR cannot 

isolate critical period effects for exposures; and MR will usually only represent the effect of 

lifelong exposure to a biomarker. These limitations mean that inferences made from MR will 

be most informative when integrated alongside insights gained from other epidemiological 

approaches and study designs. Given optimism surrounding use of the method in helping to 

strengthen evidence for public health and pharmacological interventions175, it is likely that 

there will be a continued proliferation of MR analyses in the literature in the near future. 

Careful design, analysis, and interpretation of such studies with consideration of the 

limitations of the method will provide the greatest opportunity for such studies to inform 

cancer prevention and treatment strategies.
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Abbreviations

MR Mendelian randomization

IV instrumental variable

CVD cardiovascular disease

T2D type 2 diabetes

HDL-C high-density lipoprotein cholesterol

CRP C-reactive protein

PCSK9 proprotein convertase subtilisin/kexin type 2

GWAS genome-wide association study

LDL-C low-density lipoprotein cholesterol

BMI body mass index

DAGs directed acyclic graphs

SELECT Selenium and Vitamin E Cancer Prevention Trial

GWAS genome-wide association study

SNPs single-nucleotide polymorphisms

mQTLs methylation quantitative trait loci

CHD coronary heart disease

MR-PheWAS Mendelian randomization phenome-wide association study

LD linkage disequilibrium

GAME-ON Genetic Associations and Mechanisms in Oncology

WHR waist-hip ratio

GRS genetic risk score

IVW inverse-variance weighted

WME weighted median estimator

MBE mode-based estimate

InSIDE instrument strength independent of direct effects

ZEMPA Zero Modal Pleiotropy Assumption
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Figure 1. Schematic comparison of the structure of a randomized controlled trial (SELECT) and 
a Mendelian randomization analysis (PRACTICAL)
In SELECT (left), individuals were randomly allocated to the intervention (200 μg daily 

selenium supplementation, which lead to a 114μg/L increase in blood selenium) or control 

group (placebo). In PRACTICAL (right), the additive effects of selenium-raising alleles at 

eleven SNPs, randomly allocated at conception, were scaled to mirror a 114μg/L increase in 

blood selenium. If an RCT trial is adequately sized, randomization should ensure that 

intervention and control groups are comparable in all respects (e.g., distribution of potential 

confounding factors) except for the intervention being tested. In an intention-to-treat 

analysis, any observed differences in outcomes between intervention and control groups can 

then be attributed to the trial arm to which they were allocated. Likewise, in a MR analysis, 

groups defined by genotype should be comparable in all respects (e.g., distribution of both 

genetic and environmental confounding factors) except for their exposure to a trait of 

interest. Any observed differences in outcomes between groups defined by genotype can 

then be attributed to differences in life-long exposure to the trait of interest under study.

Yarmolinsky et al. Page 25

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2019 May 17.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 2. Illustration of MR methodology
(A) A genetic variant (G) is used as a proxy for a modifiable exposure (E) to assess the 

association between E and an outcome of interest (O) without the issues of reverse 

causation, and confounding (U). MR methodology relies on three main assumptions, in that 

G must (i) be reliably associated with E; (ii) not be associated with U; and (iii) not be 

independently associated with O, except through E. This method is exemplified in the 

context of assessing the association of smoking and lung cancer (B), using the CHRNA5-
A3-B4 SNP as a genetic instrument for heaviness of smoking.
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Figure 3. Directed acyclic graph for selection bias in prognostic studies
In this example, the square bracket indicates that we are conditioning on pancreatic cancer 

incidence in a survival study by only studying pancreatic cancer cases, thus inducing an 

association between smoking (a factor that is otherwise independent of pancreatic cancer 

survival) and pancreatic cancer survival. This link is broken when conditioning on the factor 

that influences both cancer incidence and survival (e.g., insulin resistance), which can 

otherwise be seen as a confounder of the association between smoking and cancer survival. 

If a factor appears to influence pancreatic cancer survival that is not associated with 

pancreatic cancer incidence (e.g., treatment for pancreatic cancer), selection bias in such an 

MR analysis would not be expected.
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Figure 4. Two-step Mendelian randomization analysis examining the mediating effect of 
methylation on the association between smoke exposure and lung cancer
In the first step, a SNP within CHRNA5-A3-B4 is used as an instrument for smoke exposure 

to assess the causal association between smoking and DNA methylation. In the second step, 

an independent cis-SNP is used as an instrument for DNA methylation to assess the causal 

association of DNA methylation with lung cancer risk. The two-step method allows 

interrogation of the mediation effect of DNA methylation in the association between 

smoking and lung cancer risk.
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Table 1
Limitations of Mendelian randomization and techniques available to address them

Limitation Description Techniques to Address Limitation

Limitations to robust causal inference

Horizontal pleiotropy A genetic variant affecting an outcome via a biological pathway 
independent of the exposure under investigation, violating the 
“exclusion restriction criterion”

Assessment of heterogeneity across 
individual SNP estimates
MR-Egger regression and intercept 
test
median-approaches
Mode-based approaches
Sensitivity analysis removing 
potentially pleiotropic SNPs
Restrict risk score to SNPs in well-
characterized genes
Stratification by exposure status (e.g., 
ALDH2 and self-reported alcohol 
intake)

Linkage disequilibrium Linkage disequilibrium (LD) is the non-random association of alleles at 
different loci that are close in proximity on a chromosome. If a certain 
SNP is being used as an instrument for an exposure in a MR analysis, 
and this SNP is in LD with another SNP that affects the outcome via an 
independent pathway, then the assumptions for MR will be violated

LD pruning of SNPs prior to MR 
analysis
Weighted generalized linear 
regression
Perform studies in populations with 
different LD structures

Population stratification Allele frequencies vary among populations of different genetic ancestry, 
and similarly, disease risk often varies among populations of different 
genetic ancestry, which could introduce genetic confounding into a MR 
analysis, potentially resulting in spurious causal estimates

Restricting analyses to individuals of 
a homogenous genetic ancestry
Genomic inflation factor calculation
Adjusting MR analysis by genetic 
ancestry or ancestry-informative 
principal components

Trait heterogeneity For a given trait (e.g., adiposity), SNPs may influence various 
dimensions of this trait (e.g., both overall and visceral adiposity) but 
GWAS have only examined associations with a subset of these 
dimensions (e.g., solely BMI). This may produce misleading inferences 
if the aim of an analysis is to ascertain the causal effect of a particular 
dimension of a trait.

Better understanding of complex 
phenotypes
Multivariable MR

Limitations that complicate interpretation

Canalization Developmental compensation against the effect of a genetic variant 
being used as an instrument that could attenuate the magnitude of an 
observed MR association towards the null

Knowledge of the period of life when 
the influence of a genetic variant(s) 
on an exposure may emerge can help 
guide whether developmental 
compensatory processes are plausible. 
For example, behavioural exposures 
that typically occur after fetal 
development (e.g., alcohol, smoking) 
will be unlikely to be influenced by 
canalization whereas in utero 
exposure may. There are currently no 
approaches for evaluating suspected 
canalization in MR analyses.

Complexity of association Misinterpretation of MR results can arise from limited biological 
understanding of genetic variants utilised as IVs. Examples include 
interpretation of the effect of the heterozygous ALDH2 genotype on 
oesophageal cancer risk (discussed in “Illustrative examples”) and 
previous MR analyses that have examined the effects of interleukin-6 
42 and extracellular superoxide dismutase 176 on CHD risk (discussed 
in more detail elsewhere 49).

Improved biological understanding of 
genetic variants with functional 
annotation, pathway analysis, and 
gene set enrichment

Dynastic effects In certain circumstances, it is possible that parental genotype can 
confound an association of offspring genotype with offspring disease 
risk. For example, genetic variants influencing parental height will not 
only influence offspring height genotype but could also influence 
offspring disease risk via an independent effect of maternal height-
raising alleles on the in utero environment of the offspring 177,178).

Between-sibling MR design
Within-family MR design

Critical period effects If a biomarker primarily influences disease risk over a critical or 
sensitive period of the life course, a MR estimate should capture the 

Negative exposure control design
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Limitation Description Techniques to Address Limitation

causal effect of this biomarker but may not be able to distinguish period 
effects

Weak instrument bias If IV is not robustly associated with the exposure, estimates will be 
biased towards the observational estimate in a one-sample setting and 
towards the null in a two-sample setting

Increase sample size
Genetic risk scores or combining 
summarized data from multiple 
genetic variants
Two-sample MR analysis

“Winner’s Curse” Chance correlation between genetic variants and confounders can 
introduces an overestimation of the effect of a “lead” genetic variant on 
an exposure of interest in the discovery stage of a GWAS. The effect of 
this phenomenon will depend on the degree of overlap of participants in 
the GWAS discovery dataset and subsequent MR analyses. In a one-
sample MR setting with a binary outcome, winner’s curse should not 
lead to bias if control participants were used in the discovery GWAS. If 
both cases and controls were used in the discovery dataset, this will lead 
to weak instrument bias. If the instrument is identified in a sample 
independent to the one in which MR analysis is performed, this will 
lead to an underestimate of the causal effect.

Two-sample MR analysis
Split-sample MR analysis

Low statistical power Genetic variants typically explain a small amount of variance for a 
given exposure, thus MR requires large sample sizes to test hypotheses 
with adequate power. Furthermore, in finite samples, confounders may 
not be perfectly balanced between genotypic groups

Large GWAS and GWAS consortia
Genetic risk scores or combining 
summarized data from multiple 
genetic variants
Two-sample MR analysis
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Table 2
Summarized data and two-sample MR

Methodological 
approaches and 
related 
considerations

Description

Two-sample MR    Historically, both gene-exposure and gene-outcome estimates in MR analyses had to be obtained from a single sample 
which relied upon the availability of information on genotype, exposure, and outcome among all participants in that 
dataset. In practice, this not only posed a challenge in that large-scale measurement of a given exposure of interest (e.g., 
many molecular traits) may not only be prohibitively expensive but also that measurement of certain exposures may not 
be possible (e.g., if adequate blood sample collection or preservation has not taken place)50. An extension to the original 
MR paradigm that has allowed MR analyses to overcome some of these challenges is the integration of gene-exposure 
and gene-outcome estimates from two independent (non-overlapping) datasets into a single analysis, an approach called 
“two-sample MR” analysis50,51.

Two-sample MR 
with summarized 
genetic association 
data

   It is possible and increasingly common practice to perform MR analyses exclusively using summarized data on gene-
exposure and gene-outcome estimates51,52. A strength of two-sample MR with summary data is that the scope of 
possible MR analysis can be expanded significantly by exploiting the growing amount of publicly-available summary 
data from large genome-wide association study (GWAS) consortia53 and is aided by the development of a harmonised 
MR platform that has collated these datasets (MR-Base)54. Utilizing data from separate exposure and outcome samples 
can help to bolster statistical power in MR analyses by increasing the overall sample size of an analysis, particularly 
when testing effects on binary disease outcomes like cancer, and also reduces the likelihood of “winner’s curse” bias 
(see Table 1)51. This increased power also means that sensitivity analyses to test pleiotropy assumptions (see Table 3: 
Genetic risk scores and pleiotropy) which are often statistically inefficient are better-powered to detect violations of 
these assumptions. Furthermore, whereas in a one-sample MR setting weak instruments can bias effect estimates 
towards the observational effect, resulting in potential false positive associations, in a two-sample setting weak 
instrument bias distorts findings towards the null. Thus, conducting both analyses is a form of sensitivity analysis that 
provides bounds to a possible causal effect.
To test whether height has a causal effect on risk of colorectal, lung, and prostate cancer, Khankari et al. used a two-
sample MR approach. This employed: i) summarized gene-exposure estimates from a panel of 423 single-nucleotide 
polymorphisms (SNPs) previously found to be associated with height in a large GWAS meta-analysis (GIANT 
consortium; N=253,288) and collectively explaining approximately 16% of variance in height; and ii) summarized gene-
outcome estimates from a total of 47,800 cancer cases (across the three outcomes ascertained) and 81,533 controls from 
the Genetic Associations and Mechanisms in Oncology (GAME-ON) consortium55. This approach allowed robust 
causal inference with adequate statistical power. While Khankari et al. did not examine the effects of height across stage/
grade or histological sub-type of the three cancers examined, two-sample approaches enable statistically efficient 
examination of risk factors across such stratified groups which may have limited sample sizes.

Limitations of two-
sample MR

   While two-sample MR offers some clear advantages over a conventional one-sample approach, it also introduces 
additional assumptions. One important assumption is that the separate datasets from which gene-exposure and gene-
outcome associations are obtained are representative of the same underlying population, for example with regard to sex, 
age, ethnicity, or genetic profile. While most GWAS that have examined sex-specific associations of traits have often 
reported at most modest evidence of sexual dimorphism56,57, given the sex-specific nature of certain cancers, care 
should be taken to ensure that instruments are obtained from sex-stratified GWAS for analyses of these cancers when 
available. For example, in examining the effect of waist-hip-ratio (WHR) on endometrial or ovarian cancer this could 
involve using the 34 SNPs associated with WHR in women exclusively as a primary instrument, then comparing results 
with those obtained using the 47 SNPs associated with WHR across both sexes as a sensitivity analysis58,59. 
Concordance of findings between both approaches may suggest that directionally-consistent SNPs associated with WHR 
at genome-significance in women, but not men, simply reflected reduced statistical power in sex-stratified GWAS 
analyses and not genuine heterogeneity in SNP-effects between sexes. A second challenge when performing two-sample 
MR using summary data is the difficulty in examining the IV assumption that an instrument used is independent of 
exposure-outcome confounders. While restriction of analyses to ethnically homogenous gene-exposure and gene-
outcome datasets will reduce the possibility of confounding through population stratification, in lieu of data on measured 
potential confounders, this assumption cannot be directly tested. While one way of approximately testing this 
assumption is performing look-up of associations of SNPs with suspected potential confounders in curated GWAS 
databases, this would not preclude chance confounding relationships arising in the dataset(s) from which summary data 
were obtained. Third, with the use of summary data from large GWAS consortia, it is possible that there may be some 
participant overlap in the datasets from which gene-exposure and gene-outcome associations are obtained. If overlap is 
small, this should not substantially bias effect estimates, however substantial overlap will bias MR toward the 
observational effect60.
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Table 3
Genetic risk scores and pleiotropy

Methodological 
approaches and 
related 
considerations

Description

Using multiple 
genetic variants as 
an instrument

   While GWAS over the past decade have been successful at identifying robust associations between common genetic 
variants (usually SNPs) and thousands of phenotypes, the effects of individual variants on traits are often modest61. 
Consequently, statistical power for MR analyses using single variants as instruments can be limited. A common 
approach of overcoming limited statistical power is to combine multiple variants into a genetic risk score (GRS) or 
combine summary data across multiple SNPs, which increases the variance explained for a trait of interest, improving 
instrument strength62,63. A GRS or instrument with summarized data from multiple SNPs can consist of an unweighted 
summation of risk-factor increasing alleles across variants but, more commonly, a weighted approach is used (e.g., 
weighted by the estimated SNP-exposure effect size or, in settings with summary data, by the inverse of the standard 
error of the gene-outcome association – called the “inverse-variance weighted (IVW) method”). In a two-sample setting 
(see Table 2: Summarized data and two-sample MR), an instrument consisting of summarized data from multiple 
variants will typically be constructed by combining SNPs that are independent (i.e., not in LD with each other). 
However, it is also possible to combine correlated SNPs in low to moderate LD into an instrument, using weighted 
generalized linear regression for example62. This requires the creation of a weighting matrix which takes into account 
correlations between SNPs, often with use of a reference panel like the Hapmap or the 1,000 Genomes Project64,65, 
which is then used to correctly inflate standard error estimates. The latter method may be preferable to overcome weak 
instrument issues when few independent SNPs are available.

Vertical vs 
horizontal 
pleiotropy

   While construction of a GRS can help to enhance statistical power in MR analyses, increasing the number of variants 
included in a score is accompanied by an increased probability that any of these variants could be pleiotropic (i.e., one 
variant having effects on two or more traits). In a genetic epidemiological context, an important distinction is made 
between vertical and horizontal pleiotropy, each having different effects on the interpretation of MR findings. Vertical 
pleiotropy occurs when one variant has an effect on two or more traits that both influence an outcome through the same 
biological pathway. For example, variants in FTO that not only associate with BMI, but also with fasting insulin and 
glucose concentrations would be consistent with a causal effect of BMI on these downstream traits66. In this case, a MR 
analysis examining the effect of BMI on T2D risk using these FTO variants would be consistent with an instrument 
(genetic variants associated with BMI) influencing an outcome (T2D) exclusively through the exposure of interest 
(BMI). This form of pleiotropy would be expected in complex biological systems and does not pose a threat to the 
validity of a MR analysis67. In contrast, horizontal pleiotropy occurs when one variant has an effect on two or more 
traits that influence an outcome through independent biological pathways. For example, genetic variants associated with 
triglyceride levels also show substantial overlap with variants associated with LDL-C and HDL-C68. As a putative effect 
of triglyceride-increasing variants on CHD risk may not only operate through elevation of triglycerides but through 
alternate cholesterol pathways, a naïve MR analysis using all triglyceride-increasing variants without addressing 
pleiotropy in this instance could invalidate the “exclusion restriction criterion” IV assumption. The presence of 
horizontal pleiotropy thus poses a direct threat to the validity of MR findings.

Assessment of 
horizontal 
pleiotropy

   When using either a single or a small number of genetic variants as IVs, the presence of horizontal pleiotropy for any 
individual variant can be assessed through SNP look-ups in curated GWAS databases with complete summary data (e.g., 
MR-Base54, PhenoScanner69, dbGap70) to examine whether associations for a given SNP have been reported for traits 
other than the exposure of interest. Sensitivity analyses can then be performed by dropping variants that are suspected to 
be horizontally pleiotropic and then carefully interpreting pooled causal estimates with and without suspected 
horizontally pleiotropic SNPs. When an instrument consists of multiple genetic variants, an important first step in 
examining the presence of horizontal pleiotropy in analyses is to assess heterogeneity in causal estimates across 
individual IVs (including visually examining heterogeneity using a funnel plot). While substantial heterogeneity in 
causal estimates may be indicative of the presence of horizontal pleiotropy, if there is overall symmetry in the funnel 
plot, pleiotropic effects will be balanced (termed “balanced pleiotropy”) and the overall causal estimate generate will be 
unbiased. In contrast, if there is considerable asymmetry in a funnel plot, this will suggest that horizontal pleiotropic 
effects of individual IVs are not balanced and that overall causal estimates will be biased (termed “directional 
pleiotropy”). MR-Egger regression and the weighted median estimator (WME) are two widely implemented approaches 
for detecting and accounting for directional pleiotropy, and are applicable to analyses utilizing individual-level and 
summary-level data71,72. An additional approach called the mode-based estimate (MBE) has also recently been 
proposed as a method to examine horizontal pleiotropy in MR analyses73. All of these methods can help to detect IV 
violations while making different assumptions about the nature of horizontal pleiotropy and thus, when feasible, using 
all approaches as sensitivity analyses in a given MR analysis can serve as an important mechanism to assess the 
robustness of findings to pleiotropic bias.

Sensitivity 
analyses to 
examine horizontal 
pleiotropy when 
using multiple 
genetic variants

   MR-Egger regression provides a consistent causal effect estimate even when all genetic variants are invalid IVs 
because they violate the exclusion restriction criterion. This approach performs a weighted linear regression of the gene-
outcome coefficients on the gene-exposure coefficients with an unconstrained intercept term. If the IV assumption that 
the association of each variant with the outcome is mediated exclusively through the exposure of interest is met, this 
intercept term should be zero. An intercept term that differs from zero would suggest the presence of unbalanced 
pleiotropy, thus providing a test for directional pleiotropy. In turn, the slope coefficient in MR-Egger regression will 
provide an estimate of a causal effect adjusted for directional pleiotropy. An important consideration when using MR-
Egger is that it works under the InSIDE (instrument strength independent of direct effect) assumption. In essence, 
InSIDE assumes that no association exists between the strength of gene-exposure associations and the strength of bias 
due to horizontal pleiotropy. Intuitively, if multiple genetic variants in an MR analysis have horizontally pleiotropic 
effects through unrelated intermediate variables, it would be expected that this assumption should hold. However, this 
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Methodological 
approaches and 
related 
considerations

Description

assumption is unlikely to be satisfied in situations where all pleiotropic effects are due to the presence of a single 
confounder. As such, in lieu of an established method of formally testing the InSIDE assumption, interpretation of 
intercept terms and slope coefficients generated through MR-Egger should be made with this assumption in mind. A 
complementary sensitivity analysis to MR-Egger is the weighted median estimator. This approach provides an estimate 
of the weighted median of a distribution in which individual IV causal estimates in a risk score are ordered and weighted 
by the inverse of their variance. Unlike MR-Egger which can provide an unbiased causal effect even when all IVs are 
invalid, WME requires that at least 50% of the information in a risk score is coming from IVs that are valid in order to 
provide a consistent estimate of a causal effect in a MR analysis. However, an advantage of WME is that it provides 
improved precision as compared to MR-Egger and does not rely on the InSIDE assumption. The mode based estimator 
generates a causal effect using the mode of a smoothed empirical density function of individual IV causal estimates in a 
risk score. This approach operates under the assumption that the most common effect estimate of individual IVs in a risk 
score arises from valid instruments (called the Zero Modal Pleiotropy Assumption, or ZEMPA). If this assumption holds, 
the mode can provide a consistent causal estimate even if most of the (non-modal) IVs are invalid. Both simple and 
weighted mode approaches (weighted by the inverse variance of the SNP-outcome association) can be utilized. Mode-
based approaches have less power to detect a causal effect than the weighted median estimator but greater power than 
MR-Egger regression under the condition of no invalid instruments. Similar to the weighted median estimator, mode-
based approaches are also (by default) less susceptible to bias from outlying variants in a risk score.
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