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Abstract

Software-implementations of brain-inspired computing underlie many important computational 

tasks, from image processing to speech recognition, artificial intelligence and deep learning 

applications. Yet, unlike real neural tissue, traditional computing architectures physically separate 

the core computing functions of memory and processing, making fast, efficient and low-energy 

computing difficult to achieve. To overcome such limitations, an attractive alternative is to design 

hardware that mimics neurons and synapses which, when connected in networks or neuromorphic 

systems, process information in a way more analogous to brains. Here we present an all-optical 

version of such a neurosynaptic system capable of supervised and unsupervised learning. We 

exploit wavelength division multiplexing techniques to implement a scalable circuit architecture 

for photonic neural networks, successfully demonstrating pattern recognition directly in the optical 

domain. Such photonic neurosynaptic networks promise access to the high speed and bandwidth 

inherent to optical systems, attractive for the direct processing of optical telecommunication and 

visual data.

Introduction

In our everyday life, artificial neural networks (ANNs) are already heavily active behind the 

scenes, for example carrying out tasks such as face and speech recognition that are 

frequently performed on our mobile phones1. Thinking of more complex applications, such 

as medical diagnostics2 and autonomous driving1 3, high-speed data-analysis will become 

even more important in the future. However, fulfilling this demand for fast and efficient 
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processing using traditional computation techniques is problematic, due to speed and energy 

inefficiencies4. Traditional computers are built following the von-Neumann architecture, 

having two separate units for memory and processor and operating in a sequential way one 

command at a time. Compared to the massively parallel signal processing of the brain, it 

becomes clear why simulating a neural network in software on a machine based on the von-

Neumann architecture and limited by the transfer of data between memory and processor, 

cannot be efficient5. A more radical approach – neuromorphic computing – seeks to 

overcome the limitations of carrying out brain-like processing using conventional computers 

by developing hardware mimics of the basic building blocks of biological brains, i.e. 

neurons and synapses, and combining these into suitably-scaled networks and arrays. Such 

an approach could, for example, enable the efficient processing and analysis of data in 

parallel directly on-chip, so finding widespread utility in power-critical situations such as for 

mobile devices and so-called “edge computing” applications6.

Recently, a number of different concepts for realizing hardware (i.e. neuromorphic) 

implementations for artificial intelligence (AI) have been proposed in the electrical domain7 

8 but optical approaches are very much in their infancy 9–13. A most promising candidate 

for photonic neuromorphic computing is however that based around phase-change materials 

and devices, since these have been shown to exhibit an intrinsic ability to provide in 

hardware the basic integrate-and-fire functionality of neurons and the plastic weighting 

operation of synapses14 15 16 17 18. However, a fully optical, integrated and scalable 

neuromorphic framework for implementing spiking neural networks using phase-change 

materials has—to the best of our knowledge—not yet been demonstrated. In this work, 

therefore, we propose and fabricate an all-optical spiking neuron circuit, with integrated all-

optical synapses, and demonstrate that such a system is capable of the prototypical AI task 

of pattern recognition. Moreover, training/learning in the system is implemented in both a 

supervised and an unsupervised way, both cases having a wide range of applications but 

relying on different learning rules. In the first case, where training sets with pairs of known 

inputs and outputs are present, supervised learning rules can be applied, such as the well-

known backpropagation algorithm19 20. The second case requires unsupervised learning, 

meaning that the network adapts on its own to specific repeating features and patterns that 

are unknown beforehand21. We devise a scalable, layered architecture, based on wavelength 

division multiplexing (WDM), for realizing such complex integrated photonic systems, 

presenting a photonic neural network consisting of four neurons and sixty synapses (and 140 

optical elements in total) which is able to successfully recognize letters presented to it. By 

implementing an all-optical spiking neural network on a nanophotonic chip, we provide a 

first step towards optical neuromorphic systems, which benefit from the high bandwidth and 

fast signaling properties that come with operating fully in the optical domain 22 23.

Photonic implementation of an artificial neuron

A sketch of our optical spiking neuron circuit, also incorporating all-optical synapses, and 

how it is integrated on a nanophotonic platform is shown in Figure 1a-b. The neuron 

represents a system comprising N input (pre-synaptic) neurons, one output (post-synaptic) 

neuron and N interconnecting synapses. Each connection between the pre-synaptic neurons 

and the post-synaptic neuron has a certain weight wi. In the configuration of Figure 1a, 
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optical pulses from the pre-synaptic neurons are fed from the left into the connecting 

synapses, thence to the post-synaptic neuron itself. The synapses are built of optical 

waveguides (see Figure 1b) and weighting is achieved via phase-change material cells (here 

of area 3.6 μm2 and shown as red squares) integrated on top of the waveguides, which can 

modify the propagating optical mode in a controlled manner. Phase-change materials 

(PCMs) are commonly used in re-writable optical disc technologies, such as Blu-ray RE, 

and exhibit a large contrast in the absorption of light between their amorphous and 

crystalline states (phases) of matter24 25 26. With the PCM-cell in the amorphous state, the 

synaptic waveguide is highly transmissive, representing a strong connection between two 

neurons. In the crystalline state, however, most of the light is absorbed leading to a weak 

connection. After the input pulses have been weighted, they are combined into a single 

waveguide using wavelength division multiplexing (WDM) 27,28 and guided to the (output) 

spiking neuron circuit. This is composed of a ring resonator with its own integrated PCM-

cell that can be switched (between crystalline and amorphous states) by the incoming 

combined pulses. Switching the neuronal PCM-cell in turn changes the optical resonance 

condition of the ring and its propagation loss. When the neuronal PCM-cell is in the 

crystalline state, a suitable probe pulse sent along the ‘output’ waveguide couples strongly 

into the ring resonator and so no output pulse (spike) will be observed. However, if the 

instantaneous combined power of the weighted input pulses from the pre-synaptic neurons is 

high enough to switch the neuronal PCM-cell to its amorphous state, the probe pulse is no 

longer on resonance with the ring and will be transmitted past the ring, so generating an 

output neural spike. As the switching of the PCM-cell only occurs above a certain threshold 

power, the neuron only generates an output pulse (spike) if the weighted sum of the input 

power exceeds this threshold. Thus, the system naturally emulates the basic integrate-and-

fire functionality of a biological neuron, with the distinction that the artificial neuron 

integrates over the optical power at a fixed time, as opposed to its biological counterpart that 

integrates incoming pulses over time. This artificial neuron, shown in photonic circuit form 

in Figure 1c, serves as a building block in layered photonic networks (described later) suited 

to the scalable implementation of neurosynaptic systems.

The neurosynaptic system described so far in the above provides the basic structure needed 

for supervised learning tasks, where the weights of the inputs are set by an external 

supervisor. However, in order to also be capable of unsupervised learning, we add a 

feedback waveguide channelling parts of the neuron’s output spike back to the synaptic 

PCM-cells. In this way (and as described in more detail later), the connections from all 

inputs that contributed to a particular output spike will be enhanced, while those that did not 

contribute will be weakened – or in Hebbian terms, “neurons that fire together, wire 

together.”

Figure 1d shows an optical micrograph of the actual implementation (x3) of a single-neuron 

neurosynaptic system, fabricated via electron-beam lithography on a silicon-nitride on 

silicon-oxide platform. Several input waveguides each with a synaptic PCM-cell on top 

(indicated by red ovals) are fed to the upper waveguide using small ring resonators as a 

simple multiplexing device (the ring resonators have four different radii increasing linearly 

from 40 μm to 55 μm, an optical Q of around 10000 and provide insertion loss of 1.5 dB - 

see supplementary section S5 for more details. This upper waveguide then leads the light to 
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the neuronal (large) ring resonator (radius 60 μm) with its own integrated PCM-cell (area 9 

μm2). Probe pulses sent to the waveguide lying below the neuronal ring resonator either 

couple to it or generate an output spike depending, as described previously, on whether the 

neuronal PCM-cell is in the crystalline or amorphous state. The light is coupled onto and off 

the chip using grating couplers which provide access to multiple optical fibres in the 

measurement setup.

Optical performance of a single neuron device

Figure 2a shows in detail the photonic signal processing and optical operation of a single 

neuron. Each input pulse is sent on a different wavelength λi and firstly partly absorbed 

(weighted) by the relevant synaptic PCM-cell. After weighting, the individual input 

waveguides are combined with a multiplexer to a single waveguide, summing up the input 

powers. If this power is high enough to switch the neuronal PCM-cell of the large ring 

resonator (see Figure 2b), an output spike is generated and in the case of unsupervised 

learning the synaptic weights are adjusted using the feedback loop. In this specific device/

example an output pulse is generated if the summed power here exceeds 430 pJ (see section 

9 in the supplementary materials). In Figure 2b a more detailed scanning electron 

micrograph of the ring resonator used to deliver the spiking neuron function can be seen. 

The neuronal PCM-cell used to tune the resonance condition is deposited on top of a 

waveguide crossing specially designed for low optical losses (0.23 dB 29). The second 

waveguide crossing (without a PCM-cell) is only used for testing purposes and offers the 

ability of a bias input.

In order to characterise the integrate-and-fire type response (or activation function) of our 

neuron circuit, several transmission spectra for the resonator were obtained after sending 

pulses of different energy to the neuronal PCM-cell via the crossing waveguide (Figure 2c), 

see Methods section. By plotting the transmission of the ring resonator after different 

excitation pulses vs. the pulse energy at a fixed wavelength, an activation function as shown 

in Figure 2d is obtained. Depending on which wavelength is chosen, the contrast and 

maximum transmission level of the output function can be adjusted. Figure 2d shows the 

activation at 1553.4 nm (i.e. at the dashed line in Figure 2c), representing the operation with 

the highest contrast of 9 dB between the output states. It can clearly be seen that only above 

a threshold energy of 60% of the maximum pulse energy is a significant output generated. 

This non-linear response resembling the rectified linear unit (ReLU) function is crucial for 

neural activation functions, since it projects complex input data to higher dimensions 

enabling linear separation by the output neurons30.

Supervised and un-supervised learning

Having found the working point for our all-optical spiking neuron, supervised learning tests 

are now carried out. In this case, the synaptic weights of the network are set by an external 

supervisor (as for example done in software-based ANNs using the backpropagation 

algorithm). Here, a training set of data consisting of pairs of input patterns and the expected 

output is shown to the network. Depending on the deviation between the expected and actual 
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output, the synaptic weights are adjusted in an optimization process until the solution is best 

approximated and the network is trained.

The experimental neural network used is composed of two single neurosynaptic systems (of 

the type shown in Figure 1d) each consisting of four input (pre-synaptic) neurons connected 

to one output (post synaptic) neuron by four PCM synapses. The weights of the first neuron 

were set to the pattern “1010” meaning that the first and third PCM synapse were in a high 

transmission state (contributing significantly to the activation energy) and the second and 

fourth were in a low transmission state (contributing less to the activation energy). The 

second neuron was trained in the same way to the pattern “1100”. In Figure 3a and b the 

post-synaptic neuron output is plotted as a function of the input pattern. It can clearly be 

seen that in both cases (i.e. for both input patterns) the neurons were trained successfully 

and, based on the neuron’s output, it can be easily concluded which pattern was presented to 

the network. Using only two output neurons on the same set of input neurons, our all-optical 

neuromorphic system can already solve simple image recognition tasks. By increasing the 

number of inputs per neuron and the number of neurons, more complex images can be 

processed and more difficult tasks, such as letter (or digit) recognition or language 

identification can be solved using this same basic approach, as we show later (in experiment 

for letter recognition, by simulation for digit recognition and language identification).

Above we illustrated an example of supervised learning. This learning technique is feasible 

for many tasks but has the limitation that a training set with tuples of input patterns and 

expected outputs must be present. If the output is unknown, for example if an unknown but 

repeating pattern must be found from a data stream, then supervised learning is not 

applicable and unsupervised learning procedures are necessary. In an unsupervised 

approach, the network updates its weights on its own and in this way adapts to a certain 

pattern over time, without the need for an external supervisor.

In order to do this, an update rule needs to be defined. A common concept in unsupervised 

learning is spike-timing-dependent plasticity (STDP) following Hebb’s postulate32. Here 

the change in the synaptic weight after an output spike depends on the relative timing 

between the input and the output spike of a neuron (i.e. the timing difference between pre- 

and post-synaptic neuron firings). If an input signal arrives right before an output spike was 

generated, that input signal is likely to have contributed to reaching the firing threshold and 

the corresponding weight will be increased. If the input pulse arrives after the output spike 

occurred, the synaptic weight will be decreased. The amount of potentiation (weight 

increase) or depression (weight decrease) is a function of the time difference between input 

and output spike, as described by Bi and Poo33.

A similar but simplified learning rule is applied in our all-optical neuron approach. As the 

timing between incoming pulses and output pules in our case is fixed (because we operate 

the neuron in a clocked way, one complete input pattern per time step – see Methods 

section), there is no varying time delay between input and output events. We therefore adopt 

a simplified learning rule, increasing the synaptic weights of all inputs that contributed to a 

spike generation, and decrease the weights of all that did not. Experimentally we obtain this 
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behaviour by overlapping (in time) the output pulses with the input pulses (see Methods 

section).

Figures 3d and e show the development over time of the four synaptic weights during 

unsupervised learning by a single neuron. Initially all the PCM-synapses are in the 

amorphous (high transmittance) state. When the input pattern ‘0110’ is repeated, the neuron 

adapts to it over time, until the neuron has finally learned this pattern without any 

intervention from an external supervisor. The neuron is now specialized to recognize this 

particular pattern. From Figure 3d it is clear that the weights w2 and w3, corresponding to 

the inputs three and four, stay almost constant over time, as the overlapping input and 

feedback pulses preserve their amorphous state. In contrast, weights w1 and w4 are 

depressed stepwise with each epoch.

A scalable architecture for photonic artificial neural networks

Having successfully demonstrated a single-neuron neurosynpatic system as a fundamental 

building block for photonic neural networks, a way of connecting these artificial neurons 

into larger networks is now developed. An architecture exploiting individually addressable, 

interlinked, photonic layers is thus implemented, as shown schematically in Figure 4a. The 

whole network consists of an input and an output layer which are optically connected via N 

hidden layers. Each hidden layer takes the output of the previous layer as an input and 

passes its outputs to the next layer. The input layer is the optical interface to the real world, 

taking the data to be processed and distributing it to the next level in the network.

A single layer of the network consists of a collector, a distributor and its neurosynaptic 

elements. The collector gathers all the outputs from the previous layer, which are then 

equally distributed to the N neurons within the layer (fully connected network) by the 

distributor. The photonic neurons themselves operate as described in detail before: a phase-

change synapse weights the inputs and a WDM multiplexer builds the sum, which is passed 

to the activation unit that decides if a neuronal output pulse is transmitted. In this 

architecture, each layer is addressed optically with its own waveguide for generating the 

probe signal. Therefore, the optical power in the layer is not limited by the transmitted 

optical response from a previous layer.

Figure 4b describes how the constituent parts of a layer translate into the actual photonic 

circuit. The outputs from a previous layer are multiplexed onto a single waveguide using 

ring resonators (thus building the collector). This signal is then equally distributed to the 

neurons within this layer, again using ring resonators for demultiplexing (thus building the 

distributor). By choosing the gap between the feeding waveguide and ring resonator, the 

coupling efficiency can be tuned (see supplementary figure S8.) Following the formula for 

the coupling efficiency c_eff,i=1/(N’+1-i) with N’ neurons on the layer and the neuron 

position i then, for example, in a layer with four neurons this means, that 1/(4+1-1)=1/4 of 

the light is coupled to the first neuron, 1/3 of the remaining light is passed to the second 

neuron, 1/2 to the third and the residual light to the fourth neuron. The circuit-diagram of the 

actual photonic neuron, the neuro-synaptic system, was shown in Figure 1c and is the same 
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as used in the experiments described above. The output pulses of a layer can then be 

connected to the collector of the next layer.

We note that using the above approach no waveguide crossings are needed for distributing 

the signal to the neurons, thus preventing crosstalk and losses. Because the output pulses are 

generated for each layer individually, there is also no accumulation of errors and signal 

contamination over subsequent layers. This fact also simplifies the timing of the network as 

each layer can be processed step by step: First, the input pulses are sent, and the activation 

units are switched where appropriate. Second, the output probe pulses are sent and 

transmitted to the next layer (if the threshold for neuron switching was reached). In a final 

step, the PCM-cells on the rings have to be returned to their initial state.

Realization of a single-layer neurosynaptic system

Figure 5 shows the experimental implementation of a full layer of the proposed neural 

network design consisting of four neurons with 15 synapses each. The full device is 

composed of more than 140 optical elements; optical micrographs of the photonic circuit are 

presented in section 2 of the supplementary materials. This network is capable, by way of 

example, to differentiate between four 15-pixel images, here representing the four letters A, 

B, C and D. In this system, the neurons are optically fed via an integrated WDM distributor 

with 15 ring resonators per neuron, while the collector is implemented off-chip using fiber-

based WDM components (see Methods section). As desired, all four output neurons are only 

activated when the learned pattern is shown (Figure 5b): Neuron 1 only fires if pattern ‘A’ is 

shown, neuron 2 only reacts to pattern ‘B’ and so forth. Thus, the network is able to 

successfully classify the four 15-pixel images. (A more complex exemplar task of language 

recognition, using a larger network with the same architecture, is discussed in the 

supplementary materials). We note, that in the all-optical implementation of this architecture 

all artificial neurons need to be recrystallized after each spiking event. Therefore the number 

of operation cycles is eventually limited by the endurance of the PCM-cells. While 

individual PCM devices in endurance experiments have already shown 1012 switching 

cycles16, further improvements in material design and device engineering are needed for 

high-speed and long-term switching operation.

Integrated phase-change photonic networks, designed and implemented as described above, 

are capable of simple pattern recognition tasks and can adapt to specific patterns. When 

operated with a waveguide feedback loop, they are capable of learning without an operator 

needed, and can do this in a non-volatile fashion using phase-change materials. The large 

contrast in absorption of light between their amorphous and crystalline state of matter makes 

phase-change materials an attractive and simple solution to be integrated as synaptic 

weighting mechanism. Compared to conventional computers that can only simulate the 

parallelism of neural networks, our all-optical neurons are intrinsically suited for mimicking 

biological neural networks. Compared to speeds of biological neural networks (~ 

milliseconds) our proposed neurons could operate several orders of magnitude faster, giving 

rise to substantial potential in dealing with large amounts of data in a short amount of time. 

Working exclusively in the optical domain, the spiking neurosynaptic network benefits from 

high-bandwidth and fast data transfer rates intrinsic to light. Moreover, using a layered 
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circuit architecture, we present a pathway to scaling our network to more complex systems 

which could be realized with foundry processing. This way also the off-chip components 

(used here for experimental expediency only) such as laser sources, optical amplifiers and 

modulators, can be integrated into a full system. Our integrated and novel design combines, 

via wavelength division multiplexing techniques, the outputs of multiple phase-change 

synapses to excite layered spiking phase-change neurons and holds promise for realizing all-

optical neural networks capable of addressing the upcoming challenges of big data and deep 

learning.

Methods

Device fabrication

The nanophotonic circuits used in this work are realized using electron-beam lithography 

(EBL) with a 100-kV system (Raith EBPG 5150). In a first step, opening windows for lift-

off processing of alignment markers made from gold are exposed in the positive tone resist 

Polymethylmethacrylat (PMMA) on a silicon wafer (Rogue Valley Microdevices) with a 

3300 nm silicon oxide and 344 nm silicon nitride layer on top. After development in 1:3 

MIBK:Isopropanol for 2 min, a stack of 5 nm chromium, 120 nm gold and 5 nm chromium 

again are evaporated via electron-beam physical vapour deposition (PVD). The lift-off step 

to remove the PMMA is performed in acetone, leaving the gold markers for the alignment in 

the next EBL-steps.

In the second lithography step the photonic structures are defined. TI Prime is used as an 

adhesion agent for the negative-tone ebeam resist maN 2403. The photonic circuitry is 

developed in MF-319 for 60 s and afterwards placed on a hotplate at 105°C for two minutes 

of reflow processing to reduce surface roughness. By reactive ion etching in a CHF3/O2 

plasma, the resist mask is transferred into the sample till the silicon nitride is fully etched. 

The remaining resist on the structures is removed in an oxygen plasma for 10 minutes.

The last EBL step consists of writing windows for the deposition of the phase-change 

material and is executed in the same way as defining the marker windows. After 

development, 10 nm of the phase-change material GST are sputter-deposited and covered by 

a 10 nm film of indium tin oxide (ITO) to prevent oxidation of the GST. The GST and ITO 

capping layers were deposited using RF sputtering with an argon plasma (5 mtorr working 

pressure, 15 sccm Ar, 30 W RF power, and base pressure of 2×10-6 Torr). Finally, the GST 

is crystallized on a hot plate for about 10 minutes at 210°C. The photonic circuits are 

composed of single mode waveguides at 1550 nm with a width of 1.2 μm.

Measurement setup

The experimental setup used to operate the all-optical neurons comprises pattern generation 

and read-out of the individual weights, as sketched in the Supplementary materials. The 

optical read-out is achieved via transmission measurement using a continuous wave laser 

(Santec, TSL 510) and four low-noise photodetectors D1-D4 (New Focus, Model 2011) that 

are monitored on a computer. In order to couple light efficiently onto the chip, an optical 

fiber array is aligned with respect to the on-chip grating couplers to provide multi-port input. 
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For optimal coupling efficiency to the chip the polarization is optimized with a set of 

polarization controllers.

Pattern generation as input for the on-chip neuron is accomplished with four cw-lasers set to 

different wavelength matching the on-chip multiplexer. Off-chip the four light paths are 

combined using a fiber multiplexer and desired optical pulses are created using an electro-

optical modulator (EOM) and a computer controlled electrical pulse generator (Agilent, HP 

8131A). After amplifying the pulses with an erbium-doped fiber amplifier (Pritel, EDFA) 

the pulses are de-multiplexed again and guided to the on-chip device. Using circulators 

pump and probe light are counter-propagating through the device enabling efficient 

separation of the beam paths. Arbitrary input patterns are then selected by switching on and 

off the shutters of the pump lasers.

Similar to the input pulses, the output pulses are also created from a cw-laser in combination 

with an EOM and amplified by an EDFA. A small portion of the output is measured with 

detector D0, while the remaining light is amplified and send to the ports F1-F4 as a feedback 

pulse for weight adjustments. Turning off the feedback amplifier puts the device in a 

supervised learning mode. The setup used for the four neuron-network is shown in 

supplementary figure S2.

Activation unit

In order to obtain the ReLU function shown in Figure 2d pulses with different energies up to 

approximately 700 pJ have been sent to the ring resonator resembling the activation unit. 

Because of changes introduced in the structure of the PCM on the waveguide crossing, the 

transmission spectrum undergoes a significant change between the initial crystalline state 

(0% pulse energy) and the final amorphous state (maximum pulse energy). This is partially 

explained by the resonance wavelength (at which the light is coupled into the ring and 

therefore the transmission is minimal) slightly shifting to shorter wavelength with increasing 

amount of amorphization (which causes a change in the real part of the refractive index of 

the phase-change material, leading to a slightly shifted resonance condition (see 

Supplementary Materials)). However, we also observe that the minimum transmission after 

amorphizing the PCM-cell is much higher. This is a combined effect of the change in the 

imaginary part of the refractive index (absorption) and a change in the extinction ratio of the 

resonator. The lower absorption in the amorphous phase obviously leads to higher 

transmission but, equally important, changing the loss per round trip in the ring affects the 

coupling between ring and waveguide and therefore alters the extinction ratio.

Estimation of the energy balance

The maximum pulse energy used to switch the PCM-cell in this experiment was 710 pJ 

employing optical pulses of 200 ns width. For setting the weights similar energies are used. 

In the experiments we operate our neurons with relatively long optical pulses in order to 

implement two-pulse switching29 which relies on overlapping pulses in the time-domain. As 

the output pulse was amplified off-chip and the optical path was therefore relatively long 

(compared to on-chip waveguides), longer pulses had to be applied to ensure the overlap.We 

note, however, that lower switching energies can be employed by moving towards ps 
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pulses29,31. It is also important to note that this operation scheme does not require 

continuous energy input for maintaining the state of the PCM weights due to their non-

volatile response. Therefore, the energy budget per neuron to perform one operation is given 

by the switching energy for the ring resonator plus the energy required to return the PCM 

element to its original fully-crystalline state.

Update of weights in unsupervised learning

Via a feedback waveguide, the neuron’s output spike is guided back to the synaptic PCM-

cells (see Figure 3c). If the input pulses are now long enough in time such that they overlap 

with the feedback pulse at the waveguide crossing where the synaptic PCM-cell is located, 

then the overlapping pulses have enough energy to switch the synapse into its low-absorbing 

amorphous state (weights w2 and w3 in Figure 3c). A feedback pulse that encounters a 

synapse without an input pulse will partly crystallize the corresponding PCM-cell because of 

the lower pulse energy, and therefore decrease the weight (weights w1 and w4). Due to the 

properties of the phase-change material used, the PCM-cells can only be amorphized in a 

single step31, meaning that if the neuron fires, all contributing inputs will always be 

potentiated completely. Opposite to that, full crystallisation can be achieved in several 

steps29 and the weights can correspondingly be decreased stepwise. Successful 

unsupervised learning can be accomplished using such weight update rules, as we show 

experimentally in Figure 3 for small-scale systems, and in the supplementary information 

(section 10) by simulation for larger-scale systems.

Image encoding and implementation of the WDM distributor and collector

To feed a certain pattern to the neural network, it has to be encoded in optical pulse patterns 

which are presented to the on-chip network. The images shown in Figure 5b (corresponding 

to the letters A-D) are encoded in the following way: each pixel corresponds to the 

resonance wavelength of one of the ring resonators within a neuron, as indicated by the 

numbers superimposed on the pixels in fig 5b. These wavelengths are aligned to WDM 

channels 27-41 in the telecommunication C-band. In the experiment we present the “white” 

pixels to the network such that the pulse pattern corresponding to an ‘A’ is, for example, 

represented by an optical pulse consisting of wavelengths 1, 3, 5, 8 and 14. These 

wavelengths are multiplexed onto the input waveguide as described in more detail in the 

supplementary materials and equally split to the synapses of the four neurons by the 

distributor. After adjusting the synapses (PCM-cells) corresponding to the patterns ‘A’, ‘B’, 

‘C’ and ‘D’ using optical pulses, as described previously for the single neuron (Figure 3), 

the four different pulse patterns are sent to the input of the device. Subsequently, the change 

in the output spike intensity is observed for all four neurons as shown in Figure5b.

Simulation of language identification with a two-layer network

Using the scalable architecture, we further simulate the performance of a scaled-up, 

multilayer version of the network of fig. 5a for carrying out a much more complex task of 

language identification. The network for this task consists, as shown in Figure S16a),b) in 

the supplementary materials of four input neurons, three hidden layer neurons and two 

output neurons. The network is assembled using the scaling architecture described in Figure 

4 and built up using model representations of photonic neurons according to the measured 
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experimental data (activation function shown in Figure 2d)). This particular network is then 

used to detect if the language of a given input text is either English or German (the sample 

texts are taken from34). In a first step the ratio of each vowel (“a”, “e”, “i”, “o”, “u”) and the 

total number of characters in the input text is calculated (preprocessing). In a second step the 

five obtained ratios are fed to the inputs of the neural network and the outputs are computed. 

Each neuron in the simulated network uses the measured optical response from the on-chip 

neurons (see supplementary materials section 10). Already with a count of about 35 words in 

the input text, an accuracy above 90% for the language detection is attained. With 150 words 

the accuracy reaches 99.6%.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. All-optical spiking neuronal circuits.
a-b) Schematic of the network realized in this work consisting of several pre-synaptic input 

neurons and one post-synaptic output neuron connected via PCM-synapses. The input spikes 

are weighted using PCM-cells and summed up using a WDM multiplexer. If the integrated 

power of the postsynaptic spikes surpasses a certain threshold, the PCM-cell on the ring 

resonator switches and an output pulse (neuronal spike) is generated. c) Photonic circuit 

diagram of an integrated optical neuron with symbol block shown in the inset (top right). 

Several of these blocks can be connected to larger networks using the wavelengths inputs 
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and outputs as described in more detail in Figure 5 d) Optical micrograph of three fabricated 

neurons (B5, D1 and D2) showing four input ports. The four small ring resonators on the left 

are used to couple light of different wavelengths from the inputs to a single waveguide, 

which then leads to the phase-change material cell at the crossing point with the large ring. 

The triangular structures on the bottom are grating couplers used to couple light onto and off 

the chip.
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Figure 2. Spike generation and operation of the artificial neuron.
a) Schematic of the photonic implementation of a phase-change neuron circuit. Light of 

different wavelength is weighted by phase-change elements w1-w4 and summed up by a 

multiplexer to a single waveguide. If this activation energy surpasses a threshold, an output 

pulse is generated, and the weights are updated. b) Scanning electron micrograph of a ring 

resonator used to implement the activation function. By switching the PCM-cell on top of 

the waveguide crossing, the resonance condition of the resonator can be tuned. The 

waveguide on the bottom of the ring is used to probe the resonance and generate an output 

pulse. c) Transmission measurement of the device in b) and its dependence of pulse energy. 

The resonance shifts towards shorter wavelength with increasing pulse energy send to the 

PCM-cell on the ring. At the same time the transmission increases because of reduced 

absorption in the PCM-cell and thus changes the coupling between ring and waveguide. d) 
Normalized transmission to the output at a fixed wavelength (dashed line in c)) showing the 

activation function used to define the firing threshold of the neuron.
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Figure 3. Supervised and unsupervised learning with phase-change all-optical neurons.
a) and b) show the neuron output of two individual neurons when presented with different 

input patterns. Neuron one learned to recognize pattern ‘1010’, while neuron two generates 

an output signal when ‘1100’ is shown. In this example the eight weights of the neural 

network were set by an external supervisor. c) Schematic illustrating the unsupervised 

learning mechanism in an all-optical neuron. If an output spike is generated, the synaptic-

weights where input and feedback pulses overlap in time are potentiated, while the weights 

that are only hit by the single feedback pulse are depressed. d) Change of the four synaptic 

weights over time when the pattern ‘0110’ is repeatedly shown starting from fully 
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amorphous (high transmitting) weights. The weights where input- and feedback pulse 

overlap stay almost constant over several epochs. The other weights where only the feedback 

pulse is shown decrease continuously. e) Development of the weights over time, clarifying 

that the information of the pattern is encoded in the weights.
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Figure 4. Scaling architecture for all-optical neural networks.
a) The general neural network is composed of an input layer, an output layer and several 

hidden layers. Each of these layers consist of a collector gathering the information from the 

previous layer, a distributor that equally splits the signal to individual neurons and the 

neuronal and synaptic elements of the layer itself. Each neuron has a weighting unit and a 

multiplexer to calculate the weighted sum of the inputs. The sum is then fed to an activation 

unit which decides if an output pulse is generated. b) Photonic implementation of a single 

layer from the network. The collector unites the optical pulses from the previous layer using 
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a WDM multiplexer. A distributor made from the same rings as the collector but with 

adjusted coupling efficiency equally distributes the input signal to the PCM synapses of each 

neuron. The letters “P”, “W” and “R” denote the input ports used to probe the output, set the 

weights and return the neuronal PCM to its initial state.

Feldmann et al. Page 19

Nature. Author manuscript; available in PMC 2019 November 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 5. Experimental realisation of a single layer spiking neural network.
a)The device consists of four photonic neurons, each with 15 synapses. Each synapse 

corresponds to a pixel in a 3x5 image (see b)) and is encoded in the wavelengths 

corresponding to the ring multiplexers (see numbering in b)). The full device comprises an 

integrated photonic circuit built up from 140 optical components. b) The change in output 

spike intensity is shown for the four trained patterns illustrated on the right-hand side. The 

neural network successfully recognizes the four patterns as each neuron only responds 

(spikes) to one of the patterns. The error bars denote the standard deviation for n=5.
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